Description
High contrast grating (HCG) is an emerging element in integrated optoelectronics. Compared to the other elements, HCG has very rich properties and design flexibility. Some of them are fascinating and extraordinary, such as broadband high reflectivity, and high quality factor resonance - all it needs is a single thin-layer of HCG. Furthermore, it can be a microelectromechanical structure. These rich properties are readily to be harnessed and turned into novel devices.
This dissertation is devoted to investigate the physical origins of the extraordinary features of HCG, and explore its applications in novel devices for integrated optoelectronics. An intuitive picture will be presented to explain the HCG physics. The essence of HCG lies in its superb manipulation of light, which can be coupled to applications in light generation and detection. Various device innovations, such as low-loss hollow-core waveguide, fast optical phased array, tunable VCSEL and detector are demonstrated with the HCG as a key element. This breadth of functionality of HCG suggests that HCG has reached beyond a single element in integrated optoelectronics; it has enabled a new platform for integrated optoelectronics.