This paper presents a new algorithm for the independent components analysis (ICA) problem based on efficient entropy estimates. Like many previous methods, this algorithm directly minimizes the measure of departure from independence according to the estimated Kullback-Leibler divergence between the joint distribution and the product of the marginal distributions. We pair this approach with efficient entropy estimators from the statistics literature. In particular, the entropy estimator we use is consistent and exhibits rapid convergence. The algorithm based on this estimator is simple, computationally efficient, intuitively appealing, and outperforms other well known algorithms. In addition, the estimator's relative insensitivity to outliers translates into superior performance by our ICA algorithm on outlier tests. We present favorable comparisons to the Kernel ICA, FAST-ICA, JADE, and extended Infomax algorithms in extensive simulations.
Title
Independent Components Analysis by Direct Entropy Minimization
Published
Computer Science Division, University of California at Berkeley, Berkeley, California, January 2003
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-03-1221
Type
Text
Extent
26 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).