Description
An abstract independence system is specified by a ground set E and a family of subsets of E called the independent sets; it is required that every subset of an independent set be independent. We investigate parallel algorithms for determining a maximal independent set through oracle queries of the form "Is the set A independent?", as well as parallel algorithms for determining a maximum independent set through queries to a more powerful oracle called a rank oracle. We also study these problems for three special types of independence systems: matroidoids, graphic matroids and partition matroids.
We derive lower and upper bounds on the deterministic and randomized complexity of these problems. These bounds are sharp enough to give a clear picture of the processor-time trade-offs that are possible, to establish that randomized parallel algorithms are much more powerful than deterministic ones, and to show that even randomized algorithms cannot make effective use of extremely large numbers of processors.