Advances in photo editing and manipulation tools have made it significantly easier to create fake imagery. Learning to detect such manipulations, however, remains a challenging problem due to the lack of sufficient training data. In this paper, we propose a model that learns to detect visual manipulations from unlabeled data through self-supervision. Given a large collection of real photographs with automatically recorded EXIF metadata, we train a model to determine whether an image is self-consistent — that is, whether its content could have been produced by a single imaging pipeline. We apply this self-supervised learning method to the task of detecting and localizing image splices. Although the proposed model obtains state-of-the-art performance on several benchmarks, we see it as merely a step in the long quest for a truly general-purpose visual forensics tool.
Title
Fighting Fake News: Image Splice Detection via Learned Self-Consistency
Published
EECS Department, University of California, University of California at Berkeley, Berkeley, California, May 14, 2018
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2018-67
Type
Text
Extent
21 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).