Labeling of sentence boundaries is a necessary prerequisite for many natural language processing tasks, including part-of-speech tagging and sentence alignment. End-of-sentence punctuation marks are ambiguous; to disambiguate them most systems use brittle, special-purpose regular expression grammars and exception rules. As an alternative, we have developed an efficient, trainable algorithm that uses a lexicon with part-of-speech probabilities and a feed-forward neural network. After training for less than one minute, the method correctly labels over 98.5% of sentence boundaries in a corpus of over 27,000 sentence-boundary marks. We show the method to be efficient and easily adaptable to different text genres, including single-case texts.
Title
Adaptive Sentence Boundary Disambiguation
Published
Computer Science Division, University of California at Berkeley, Berkeley, California, February 1994
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-94-797
Type
Text
Extent
10 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).