We present a hierarchical planning system and its application to robotic manipulation. The novel features of the system are: 1) it finds high-quality kinematic solutions to task-level problems; 2) it takes advantage of subtask-specific irrelevance information, reusing optimal solutions to state-abstracted subproblems across the search space. We briefly describe how the system handles uncertainty during plan execution, and present results on discrete problems as well as pick-and-place tasks for a mobile robot. This is an extended version of a paper by the same name appearing in ICAPS '10.
Title
Combined Task and Motion Planning for Mobile Manipulation
Published
2010-03-08
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2010-27
Type
Text
Extent
8 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).