
Analysis and Experiences with Information Flow

Tracking as a Practical Means to Prevent Data

Leakage

Lisa L Fowler

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-126

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-126.html

December 9, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Analysis and Experiences with Information Flow Tracking as a
Practical Means to Prevent Data Leakage

by Lisa L. Fowler

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Scott Shenker
Research Advisor

(Date)

* * * * * * *

Professor Ion Stoica
Second Reader

(Date)

Analysis and Experiences with Information Flow Tracking as a
Practical Means to Prevent Data Leakage

Lisa L. Fowler
University of California at Berkeley

Abstract

Data leakage is a primary concern for companies and
governmental agencies, for which information flow is
means for mitigation. A popular technique used for
evaluating pre-existing binaries is “taint tracking,”
but such approaches in real-life application were im-
practical due to excessive performance costs and nu-
merous false positives due to taint explosion. The
novel techniques used by our system PIFT directly
eliminated these concerns, but revealed new deeper
and more troubling concerns. In using PIFT success-
fully for information flow tracking on a commodity
GUI-based operating system, and upon further in-
spection, we discovered that the applications and op-
erating systems that we use in day-to-day practice are
imperfect components that violate the basic tenets of
information flow. In this thesis, we explore infor-
mation flow tracking as a whole, elaborate on these
troubling discoveries, and argue that no matter the
performance improvements or adjustments made to
correct the metadata for information flow tracking,
it will be impossible to provide useful data for the
prevention of data leakage without addressing and
resolving common practices prevalent across legacy
software.

1 Introduction

Controlling data leakage is one of the top security
concerns today. For many industries, data loss is
the top corporate security concern [2, 20, 55]; a con-
cern that has increased as companies move to trust-
ing third parties with their data, namely with the
increase in reliance on cloud computing [45, 56]. In or-
der to prevent and mitigate data loss, the concerned
party must ensure that the target data and docu-
ments are stored only at authorized locations and are
disseminated only to the appropriate parties. The
target data can be restricted in various ways, such as
only editable by a small group of corporate officers, or
viewable only those with a particular security clear-
ance, or forwarded to anyone within the organization

but not the general public. Unfortunately, the recent
history of major data leaks1 suggests that most orga-
nizations are severely deficient in this regard, includ-
ing those in government [37, 49, 50, 54], education [8,
44, 61], and the commercial world [19, 38, 43, 57, 59].

There are three main human vectors for data leak-
age:

• Malicious external party

• Malicious internal party

• Well-meaning internal party

In practice, it is for all intents and purposes impossi-
ble to prevent a determined internal party with oth-
erwise legitimate access to the target data from exfil-
trating that data. The determined malicious insider
can utilize any number of out-of-band techniques for
leaking the data, e.g., printing the documents, tak-
ing pictures of the documents, memorizing the data,
sending information encoded as timed requests to a
target website, and so on. Given that a malicious in-
sider is limited only by the extent of his imagination,
we do not attempt to address this threat, and instead
seek to make their task more difficult.

We have seen corporate insiders intentionally leak-
ing sensitive data in recent news [17], however none
of the incidents cited earlier were due to malicious
employees: The leaks were the result of external at-
tackers and/or carelessness on behalf of well-meaning
employees. In many cases, the organization had al-
ready devoted significant resources to improving their
security prior to the leak. Furthermore, even after
detecting a leak and improving security, additional
security breaches often still occur [3, 61]. It is appar-
ent that data confinement is a serious problem and
the blame cannot be placed on organizational com-
placency or internal malfeasance.

1.1 Imperfect components

Despite the clear threat, and the money and effort
devoted to developing new security technology, it is

1See http://blog.dataleaktoday.com for a litany of such in-
cidents.

1

evident that it is hard to prevent leaks of sensitive
information even in well-managed organizations
with well-intentioned employees. In short, as we
address herein, it is because most current efforts to
confine sensitive data rely on imperfect components,
and furthermore, it is because of these imperfect
components that any effort to automatically detect
or prevent data loss has remained fruitless.

In the case of a malicious external party, the at-
tacker must exploit a vulnerability in the system. The
vulnerability can be any number of: a security policy
oversight, a social vulnerability, or a latent technical
vulnerability in the operating system or application
software. For simplicity, we assume a robust secu-
rity policy, however this does not make the task any
easier.

Consider the second vulnerability: the human
component. The attacker can trick otherwise well-
meaning internal parties into revealing confidential
information. In this case, the attacker might imper-
sonate a friendly party or someone in authority in
order to gain the target employee’s security creden-
tials, or to trick the employee into installing malicious
software on their otherwise secure workstation, etc.
Regardless of the particular attack, the outcome in
this scenario is the same: the sensitive data will be
exfiltrated from the entity’s domain of control.

Next, we examine the technical vulnerabilities in
the systems that we are trying to protect. In order
to prevent leakage of the target computer data, we re-
quire the operating system and application software
to be resilient against attacks. However, most soft-
ware in use today is rife with bugs that can easily be
exploited for exfiltration [9]. This is an exceptionally
effective vector for attack, and unfortunately there is
little hope that this will be rectified in the near future:
Legacy code will remain in use for a long time and
even modern software has significant vulnerabilities.
If we insist on using legacy software while attempt-
ing to defend against data leakage, we must build a
separate supporting mechanism that compensates for
the extant bugs and vulnerabilities.

This system must also be able to detect when
unauthorized parties (such as malicious code, or per-
sonnel lacking the required clearance) have accessed
sensitive data. This is limited in part by the efficacy
of the security policy and how well access control
mechanisms have been implemented. However, we
consider again that we are attempting to implement
access control on legacy code, which may or may
not support such a mechanism. Furthermore, access
control and data obfuscation techniques (such as
encryption) often protect the data during only part

of its lifetime. For example, even though a credit
card number is encrypted and protected by ACLs
while stored in the database, it will have to be
decrypted, stored in memory, perhaps written to
cache, and processed in the clear. In our current
operating systems and applications, any of those
intermediate states is likely not protected by the
same level of strict security. Our modern operating
systems simply do not support protecting data
throughout its lifetime.

In the case of a well-meaning internal party, we
still encounter hurdles. Confining sensitive data re-
quires users to obey dissemination restrictions on
documents and datasets. Yet we know that other-
wise well-meaning users can be careless and occasion-
ally email sensitive documents to the wrong parties,
transfer data to insecure machines, or otherwise in-
advertently allow data to leak.2

Stricter security regulations are not necessarily the
answer because, as Don Norman notes, “When se-
curity gets in the way, sensible, well-meaning, ded-
icated people develop hacks and workarounds that
defeat the security” [34]. For example, to get around
data restrictions implemented on corporate comput-
ing systems, users might use a USB key to transfer
the data to their personal laptop, thereby creating an
even worse security situation [50].

More generally, when given a choice between secu-
rity and convenience, both the market and individual
users will choose the latter. For instance, one of the
biggest security problems is users running executable
code downloaded from an external source. However,
this is a feature often required by web sites, so if secu-
rity regulations forbid users from doing so, the users
will likely find some way around those regulations to
continue doing what they wish to do.

Applications can even use legitimate techniques to
achieve their goals—techniques that could later cause
security holes. For example, Skype allows file trans-
fers [24]. For legitimate reasons, all of Skype user ses-
sion traffic is encrypted, including the file transfers.
However, this end-to-end encryption means that no
intermediate party can inspect the traffic for viruses
or confidential data leaks. Skype currently provides
no way of externally disabling file transfers; If one

2This does not take into account willful data theft, which is
a case that we find out of scope for this analysis. Beyond the
now famous Wikileaks events [17], we have also seen that lax
data protection systems have enabled employees to steal sen-
sitive company data prior to leaving the company. In a recent
survey, 59% of ex-employees willfully took data without an em-
ployer’s permission, with only a little over half of those data
thieves reporting unfavorable views of their former employer
[25].

2

wanted to prevent Skype file transfers, one must block
Skype entirely—which is a technique that companies
utilize for exactly this reason.3

1.2 Reducing the problem

It is clear that we must find a solution to data
loss prevention that supersedes the imperfect com-
ponents. We see that ultimately the outcome in all
of the above circumstances is that sensitive data has
left its protected systems in one form or another. We
reduce the problem to addressing just this outcome,
while considering the nuances of each vector.

Fundamentally, the goal in preventing data leakage
is understanding data movement and data lifetime de-
spite these imperfect components. In order to do so,
we must know what is happening to the target data,
presently or in the past:

1. Where are that data and its derivatives right
now?

2. How are the data and its derivatives accessed?

A separate but no less important challenge is achiev-
ing determining this with minimal intrusiveness in or-
der to foster adoption and encourage continued use.

Many systems have attempted to provide correct
information flow tracking with varying levels of
success, as we discuss in Section 2. However, as
of yet, no system has proven ideal. In our own
attempt to build a data loss prevention system, we
believed that the first two challenges of tracking data
movement were solved problems and the main hurdle
was instead reducing intrusiveness by decreasing
the perceived user slowdown. As such, we strove to
significantly improve performance beyond the state
of the art into a practical, usable, information flow
tracking substrate. After doing so, we discovered
that in fact, answering the first two questions
correctly was in fact nearly impossible due to our
underestimation of the inherent flaws in our legacy
systems. We believe that these inherent flaws in
our imperfect components means that any efforts
to develop a whole-system real-time system that
sufficiently captures data lifetime based on legacy
systems will remain fruitless.

We provide herein an introduction to information
flow tracking, as well as a discussion of the varied rea-
soning, techniques, and use-cases for information flow
tracking. We briefly describe our own solution and

3C.f., promotional material for security products Watch-
guard Firebox X Core http://www.watchguard.com/products/
core-e/overview.asp and Trend Micro LeakProof http://

www.vmware.com/appliances/directory/193163

detail our experiences applying an information flow
tracking technique for data loss prevention in mod-
ern applications and operating systems. We continue
with pinpointing the flaws in the general approach of
dynamic analysis for information flow tracking, and
conclude with our recommendations for properly ad-
dressing data leakage prevention in future systems.

2 Information flow tracking

One way to gain insight into potential leaks of sensi-
tive data is to measure information flow, namely the
derivation of information in one data object o into
another data object s. Among other uses, graphs of
information flow can be used to check confidential-
ity (if a path exists between a confidential s and an
unauthorized o, there is a leak) and integrity (e.g.,
discovering if a path exists between a trusted s and
an untrusted o).

Improved security of information flow can be
achieved manually by the programmer, wherein the
programmer directly makes each and every assertion
necessary to enforce the desired data flow. How-
ever, this process is onerous, difficult to verify, and
any oversights lead to critical vulnerabilities [9]—and
does not take into account the dependencies between
different co-existing systems and applications. In an
effort to alleviate this problem, researchers began ex-
ploring providing information flow control (IFC) with
the application of information flow models [1, 12, 13].

In short, keeping track of the original sensitive data
and any of its derivatives enables us to see when that
data is destined to an unapproved site or recipient.

2.1 Applications of IFT

Information flow tracking (IFT) systems and ap-
proaches currently have four main application do-
mains:4

I Application security
Attack detection and prevention; unknown vul-
nerability detection; measure the behavior of for-
eign applications; detect malware (e.g., keylog-
gers); automatic input filter generation (e.g., de-
fending against command injection attacks). Ex-
amples include Panorama [69], CWSandbox [67],
TaintCheck [31].

II Data lifetime
Provide assertions on data deletion; enforc-
ing information flow policies; auditing policy-

4The provided examples are not an exhaustive list.

3

compliant data usage.5 Examples include Taint-
Bochs [6].

III Software testing & debugging
Find data leaks; discover input that causes a fail-
ure; test case generation; verify or ensure policy-
compliant data usage; ensure correctness. Ex-
amples include PQL [23].

IV General use
Any combination of the above. Examples include
TaintDroid [15], Neon [75], RESIN [70], Loki [72],
DStar [74] and HiStar [73].

Despite the common goal of providing information
flow tracking, systems built for a target application
domain will often prove insufficient for another do-
main, and even the general use IFT systems are of-
ten limited in their application to different scenar-
ios. Clearly, a system developed for automatic test
case generation will likely be insufficient for capturing
real-time command injection attacks. These differ-
ences will prove to be critical when we later explore
the efficacy of IFT in the different scenarios.

2.2 Additional considerations

Regardless of the target application, the IFT system
designer must consider additional tradeoffs. These
decisions have a direct impact on the completeness of
the approach. A system might choose to focus on a
narrow problem, ignoring more general cases, or vice
versa. We enumerate several common, but critical,
tradeoffs.

Online or offline Is the target system to be pro-
tected an interactive system? Does the IFT sys-
tem need to measure real-time events? Will the
analysis be performed on a test machine or in an
otherwise out-of-band manner? Section 2.2.1.

Restrictions on modifications Is modifying the
application/operating system/runtime/etc an
acceptable assumption? In particular: Can we
make changes to the hardware or are we limited
to only software changes? To what extent can
we modify the target system? What is the
smallest data representation that we are inter-
ested in tracking? Section 2.2.2.

Whole-system analysis Are we only concerned
with behavior within a single application (e.g.,

5For example, detecting regulatory compliance violations,
or providing assurances to customers that data is being han-
dled in a particular way, such as promising that no user data
will be sent to third party applications [43].

sanitizing user input in a particular web appli-
cation such as in [5]); or do we seek to provide
derived data management across multiple appli-
cations or networked systems? Section 2.2.3.

Permanence Will it be necessary to maintain meta-
data beyond a particular transaction or session?
Should that metadata be maintained across sys-
tems or instances? Section 2.2.4.

Policies How much should the system understand
“policies”? Are actions on all sensitive items
treated the same way? Will the system be re-
quired to support an externally defined policy,
or should it enable the definition of new policies
on the fly (e.g., the marking of a particular email
as “Do not forward”)? Section 2.2.5.

We explore each of these tradeoffs in more detail.

2.2.1 Online or offline

Based on the expectations of interactivity and perfor-
mance, information flow tracking can be done online
or offline. It is necessary to perform IFT in real time
(online) when you wish to take immediate action on
information flow events, such as blocking the network
transmission of confidential records, or preventing an
employee from downloading a copy of the source code
to a USB drive.

In contrast, offline IFT can be done on a separate
test machine, or when performance is not a prior-
ity. Offline IFT is often simpler due to these lower
performance demands, more tolerance to false posi-
tives and negatives (since the results can be verified
or repeated), and better isolation. Offline IFT is par-
ticularly appropriate for malware analysis [67, 69], as
well as software testing and debugging.

IFT can also be implemented partially online and
offline. For example, a web application request could
be duplicated and a copy sent to a single “canary”
machine out of thousands of datacenter servers in or-
der to perform the slower analysis in a non-disruptive
manner. Similarly, one may also record live system
events and replay those events on an offline IFT sys-
tem to log any questionable events during an audit.
It is also possible to delay certain IFT calculations
until a later point in time if the approach can toler-
ate such a delay [46]. In this case, IFT can be delayed
until a particular event triggers the need for verifica-
tion, such as a user submitting a form for processing.

2.2.2 Restrictions on modifications

Depending on the assumptions regarding modi-
fiability, the IFT system can have very different

4

incarnations. If one assumes that it is impossible to
change the hardware or to add supplemental hard-
ware support, we are clearly restricted to place all
IFT support only into the software. Other scenarios
allow for changes to the software, but only via the
runtime; or allow such extreme changes as rewriting
the entire operating system (e.g., Asbestos [63],
HiStar [73], and LoStar [72]); or supports writing
or rewriting programs in a different programming
language that natively supports IFT.

Can we make changes to the software or hardware?
Many researchers choose to build hardware-based so-
lutions for IFT [4, 11, 21, 46, 47, 53, 58, 62, 64].
By providing IFT support in hardware, performance
penalties could be reduced, and absolutely no changes
would be necessary for the application and operating
system. In fact, the new architectures often incur low
performance overheads and are completely transpar-
ent to the existing programs

Of course, a hardware-based solution is sometimes
impossible if we are unable to make changes to the
hardware, such as in the case of a deployment on
commodity hardware. Some software-based solutions
attempt to emulate these hardware changes through
the use of emulators (such as QEMU) and software-
based shadow memory [18, 52, 69].

Currently, commodity hardware does not support
the basic notions of information flow tracking. While
a hardware-based solution might be excessive when
one is merely verifying user input, it is useful to
consider the fundamental primitives that could be
built into hardware that would support IFT solutions
across application domains.6

To what extent can we modify the target system?
The approaches available to the system designer will
be very limited by where and how much they can
modify the target system.

Some of the more promising IFT systems used a
custom operating system with IFT primitives pro-
vided natively [22, 63, 70, 73]. If it is not possible to
modify the operating system and provide IFT prim-
itives, the system designer must decide where in the
application stack to insert the IFT mechanism.

If we cannot edit or view the source code, we are
limited to binary or dynamic analysis, which is per-
formed on an executing program on real or virtual
hardware and can be done without access to the
source code.7 Examples of this particular scenario

6We believe that this would be a ripe venue for future work.
7For an in depth discussion of dynamic analysis (including

dynamic taint analysis and forward symbolic execution), please
see Schwartz, Avgerinos, and Brumley’s detailed guide, “All

are when we wish to provide IFT in commodity off-
the-shelf proprietary software or downloaded foreign
executables. Systems that use dynamic analysis in-
clude [4, 7, 14, 16, 65, 69], whose target domains vary
from security to software verification, and more.

If we can edit the source code of the target pro-
gram, we can use static analysis, which can be per-
formed without executing the program, and requires
access to the source code and/or object code. Some
examples include [28, 40, 66], which use static analy-
sis for software verification and testing. Both meth-
ods have advantages and disadvantages, and some ap-
proaches espouse a combination of both static and
dynamic analysis.

Additionally, the inter-positioning point for the
IFT mechanism can vary based on the approach.
Some techniques provide augmented libraries that
can be used on the fly [5, 36]. Other approaches
might require recompiling the entire program, or even
rewriting the program in an advanced IFT-aware pro-
gramming language.

Over time, it has become evident that hybrid
approaches often are more fruitful than a system
that depends only on dynamic analysis or only on
static analysis. Dynamic analysis suffers greatly
from both false positives and false negatives (as
we explore later in this paper), and static analysis
cannot be done on foreign binaries such as malware.
Another technique that has shown great promise is
improving isolation (such as sandboxing the software
that you cannot inspect properly) and performing
IFC at these boundary points, such as with [35, 42].

What is the smallest data representation that we
are interested in tracking? Depending on the ap-
proach used, IFT can be simplified when considering
larger objects (process or file object rather than single
characters or bytes). However, there is a tradeoff, as
having analysis available at a finer grain can enable a
larger feature set. For some use-cases, an extremely
fine grain might be unnecessary (e.g., for detecting
command injection attacks)

IFT can be performed at any level in the spec-
trum of fine or coarse grained analysis. The granu-
larity can have a large impact, both on performance
and on supported features. For example, an IFT sys-
tem that tracks data at the byte-level could support
“auto-redaction” wherein certain phrases in a docu-
ment could be censored or revealed depending on the
recipient’s security clearance level; such a task would
be impossible for a system that tracked information

you ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid to
ask” [48].

5

flow to and from file objects alone.

2.2.3 Whole-system analysis

Another major decision for feature trade-off is in the
choice between whole-system analysis, or targeted
analysis. In the case of automatic input filter gen-
eration for a single application (such as for defending
against command injection attacks), it might suffice
to provide IFT for only those data used by that ap-
plication, as in [5, 32, 39, 68].

Privacy Oracle [11] and TightLip [29] are
lightweight tools that are capable of analyzing appli-
cations for information leaks without any application-
level instrumentations. However, these systems are
limited to the software whose outputs only depend on
inputs (and externally controllable parameters such
as time and system configurations) and not scalable
to tracing multiple input data.

Other use-cases for IFT require a more complete
understanding of data movement. In the case of mal-
ware analysis, it is critical to understand what other
data the malware might be accessing, meaning that
fundamentally, the scope is not limited to a single
application. Another case is of detecting keyloggers,
or other forms of unintended data leakage. The user
wishes to know all the places where that data resides,
and not just limited to the scope of a single applica-
tion. An even larger scale is to consider the interac-
tion across multiple systems, such as in [75] and [26].
Additional examples of systems that provide whole-
system analysis are: Panorama [69], TaintBochs [6],
and our own system [16].

2.2.4 Permanence

When considering a particular need for IFT, one must
evaluate whether or not historical information flow
metadata should be retained. Should the IFT be per-
formed only on a per-session basis (such as in the case
of evaluating command injection attacks), or should
the metadata persist despite major state changes such
as system shutdowns?

Clearly for many instances of software verification,
it is sufficient to consider the information flow history
for a limited amount of time. When using IFT to
prevent data leakage, a confidential document should
be treated as confidential over its lifetime, and thus
the metadata must be kept in persistent storage and
protected as much as the data itself.

2.2.5 Policies

Depending on the particular application for IFT, the
policy needs can vary greatly. In a system with only

one well-defined attack vector, such as with command
injection attacks on a particular web form, or for
determining if a particular piece of malware has ac-
cessed sensitive data, it is sufficient to treat all data
as either suspect or not (or more generally, suspect,
sensitive, and neither).

For other applications, the system might want to
support elaborate policies encoded as metadata. For
example, it might be necessary to flag a particular
email as “Do not forward” and enforce that that email
and its derivatives are never sent over the network
interface, while at the same time supporting a “Do
not print” notion.

Clearly, information flow tracking can also become
information flow control if the system chooses to en-
force the desired policies regarding information flow.

Another point of consideration for implementation
is that of defining the policies themselves. Some
systems, such as those performing offline analysis
of particular software (either for testing or security
evaluation), can have the policies defined deus ex
machina and will never change throughout the IFT
process, e.g., keystrokes coming over the network
interface are to be treated as suspect and nothing
else. Other systems might want to enable the user to
declare policy on the fly, e.g., letting the user decide
that a new document is confidential.

After this exploration of the history and tradeoffs
in developing an information flow tracking system, we
present our own approach to preventing data exfil-
tration, named PIFT for Practical Information Flow
Tracking, and comment on our experiences using such
a system.

3 System overview

Conceptually, our system architecture is analogous
to a recently proposed IFT system (Neon [75]) and
makes use of similar building blocks to it and its
predecessor [18]—namely, a hypervisor and an aug-
mented QEMU-based emulator that tracks informa-
tion flow. However, Neon fails to meet the impor-
tant requirements of high performance and correct
yet parsimonious label propagation for the following
reasons:

1. Taint tracking by plain instrumented emulation
is extremely expensive. For example, even a
simple computation on tainted data can incur a
slowdown on the order of 95×8 when only 1/64th
of the input file is tainted [75] (no data is pro-
vided on how the system behaves with a more

8According to [75]-Table 3.

6

stressful amount of taint). Such a slowdown is
unacceptable in practice and significantly hin-
ders the adoption of dynamic taint tracking sys-
tems for everyday use.

2. To be comprehensive, taint tracking has to track
information flow across pointer references, i.e.,
taint the referenced data with the same taint as
the pointer. However, prior work [51] shows that
this leads to accidental tainting of kernel data
structures, meaning that soon any other appli-
cation interacting with the kernel also acquires
taint, and eventually, the taint status propagates
to all data in the system. Such taint explosion
renders the effort of IFT ineffective and substan-
tially impairs the performance of the system.

In order for any data leakage prevention system
to be successful in the face of such willful yet well-
meaning circumvention:

• The system must minimize any impact to the
user—the user should be able to continue be-
having as they would otherwise, with minimal
performance impact;

• The system must be fine-grained enough to sup-
port the desired policies—As in our Skype file
transfers case, blocking Skype entirely would be
undesirable; we merely wish to prevent the loss
of sensitive data;

• The system must support legacy applications
and operating systems.

We propose three novel techniques that help us
address the above challenges and bring real-time
taint tracking closer towards the realm of practicality.
Specifically:

(1) PIFT performs taint tracking in the emulator at
a higher abstraction level than Neon and other
previous systems. Emulators such as QEMU
break down each emulated guest instruction into
a series of micro-instructions. Prior work per-
forms taint tracking by changing each micro-
instruction to propagate taint, which immedi-
ately incurs a significant but non-essential over-
head. In contrast, PIFT tracks the flow of in-
formation directly at the native instruction level
of the protected VM, which enables a range of
optimizations that are difficult or impossible to
apply at the micro-instruction level.

(2) PIFT performs taint-tracking asynchronously
and in parallel with the main emulation code-
path. The key insight is that up-to-date taint

information is only needed under certain con-
ditions (e.g., when switching from emulated to
native execution or when invoking a policy).
Hence, instead of tracking the propagation of
taint labels synchronously and in lockstep with
emulation, PIFT generates separate streams of
taint tracking instructions and executes them
asynchronously on another CPU core. In Sec-
tion 5, we show that asynchronous taint tracking
performed at a level of abstraction that directly
matches the machine architecture can produce
a 60× performance improvement over the best
previous results.

(3) Finally, we identify via empirical evaluation that
accidental tainting of kernel data structures hap-
pens through a very narrow interface—a few spe-
cific functions in the kernel. We design tech-
niques to intercept such channels of taint explo-
sion and securely control taint flow, such that
kernel data structures do not unnecessarily get
tainted. We propose several minor modifica-
tions to the Linux kernel that eliminate acciden-
tal tainting and solve the kernel taint explosion
problem for all practical purposes.

After building this system with a goal of fast per-
formance with fine grained analysis on legacy soft-
ware, we evaluated it on commodity off the shelf soft-
ware. In doing so, we discovered that we had under-
estimated the final requirement of “supporting legacy
application and operating systems.” We continue to
detail our approach for an IFT solution despite this
setback, and address our discoveries after presenting
our technique.

3.1 Design choices

As we detailed in Section 1, any developer of an IFT
solution must consider particular tradeoffs with re-
spect to what can or should be modified in the target
system. We elaborate on our choices herein.

3.1.1 Software-based solution

Our solution must work on legacy systems, and on
commodity off-the-shelf software as well as hardware.
As such, we are limited to a software-based solution.
Currently, we can assume that the hardware provides
no IFT primitives, and thus we chose to use emulation
in order to achieve those primitives.

3.1.2 Whole-system analysis

Information flow tracking across the entire operating
system can enable a number of useful tasks. By en-

7

Control VM Protected VM

QEMU / Tag Tracker

Page Tag

Descriptors

Protected

VM

(emulated)

PIFT-ext3

Filesystem NFS Server

Xen-RPC

NFS Client

Xen-RPC

VFS

Kernel
(ring 1)

User
(ring 3)

App1 App2

PageTag

Mask
Shadow

page tables

Xen-PIFT (ring 0)

Event channel

Shared ring buffer

Figure 1: PIFT System Architecture. The protected VM
is emulated via QEMU in the control VM when it accesses
tainted data. The PTT-ext3 filesystem is located in the
control domain and the protected VM communicates with
it via a shared memory RPC mechanism.

abling the programmer to discover deviations from
the expected flow logic, IFT-aware systems can pro-
vide tools for stronger security and debugging. IFT-
aware systems can also provide support for stronger
policies to protect sensitive data or intellectual prop-
erty. For example, given a whole-system IFT mecha-
nism, one could enforce a policy that no derivations
of the contents of a particular sensitive file can be
sent over any network interface.

For our target application of preventing data exfil-
tration, we must provide a whole-system fine-grained
solution.

3.1.3 Dynamic analysis via taint tracking

A primary means for achieving IFT on binaries is a
method wherein a label is recorded in shadow mem-
ory, and that label is propagated as contents of the
memory are computed upon and moved. This label is
sometimes referred to as a “taint” label, a term that
originated from “taint mode” in Perl, wherein all user
supplied input is treated as tainted and suspect un-
less the programmer explicitly approves the data [36].
Taint-tracking systems have been used for malware
analysis [69], software verification [7], and protecting
data of interest [71]. Some of these uses require online
(or real-time) analysis [75], whereas others are suit-
able for offline analysis [30]. Like our predecessors [18,
75], we use this technique.

3.1.4 Prevent data leaks

There is a large literature of taint tracking techniques
which were successfully applied for malicious code
analysis (e.g., [5, 18, 30, 31, 52]). Recently, many

approaches focused on information flow tracking for
protecting user data or preventing data leaks [26, 75,
76]. In our PIFT system, we also strove to provide
full-system fine-grained information flow tracking for
daily use defending against data leakage.

3.1.5 Persistent metadata

For our use case of preventing data leaks, clearly a
confidential document should always be treated as
confidential, even if the user reboots their system.
As such, we must require that any IFT metadata has
permanence. We also wish to provide metadata that
can be transmitted between distributed systems.

3.1.6 Policies

Following [33], at a conceptual level the behavior of
our system is dictated by three policies:

• Input Policy: The input policy determines
what data is tainted and what taint to apply.
For example, an input policy might be to taint
all data from a socket with a particular label, and
track it as it flows through the system. Of course,
users and administrators can always mark taint
on files and data themselves.

• Propagation Policy: A propagation policy de-
termines how taint is propagated from one lo-
cation to another. By default, our propagation
policy carries taints from data sources to data
sinks for all data movement (MOV, MOVS, PUSH,

POP, ADD, CMOV, etc.) instructions.

• Assert Policy: An assert policy determines
when to take action and what actions to take,
based on the taint. For example, for data exfil-
tration, the appropriate assert policy would be
to check taints and prevent exfiltration only at
exit points, such as writing to a network device.
By default, we worked with an exfiltration-style
assert policy.

Figure 1 sketches a high-level picture of our system
architecture, and more detail can be found in [16].

3.2 Prior work

Our system builds on extensive prior work in informa-
tion flow tracking (IFT) and dynamic taint analysis
(or “taint tracking”) in commodity operating systems
and applications. Information flow tracking was in-
troduced nearly 30 years ago as a technique for secu-
rity policy enforcement [12, 13]. Early efforts focused
on static analysis (such as the popular work in infor-
mation flow control by Myers and Liskov [28]), with

8

later techniques supporting dynamic information flow
labels by combining static and run-time checking,
such as [27] and [29]. Another recent work in dynamic
information flow tracking [70] offers a language run-
time that propagates policy objects along with data,
and applies this policy by filtering objects at system
I/O boundaries. However, each of these language-
based techniques require significant alterations to ap-
plication, and the static techniques cannot support
dynamic changes to policy without recompilation.

PIFT associates taint labels with low-level ele-
ments of the machine state (individual bytes in CPU
registers, in physical memory, and on disk) and tracks
their propagation at the level of machine instruc-
tions. Previous systems such as Asbestos [63], HiStar
[73], and LoStar [72] employ an alternate approach—
attaching data labels to OS-level primitives such as
file descriptors, sockets, address spaces, and pro-
cesses.

In order to perform information flow tracking in en-
vironments that do not provide such language, com-
piler, or OS support, recent efforts have relied on bi-
nary rewriting at runtime as a way of introducing IFT
into commercial applications and operating systems.
This has been used to address numerous security-
related issues. For example, one body of work [30, 60,
69] applies taint tracking mechanisms to the problem
of malware detection and analysis. These projects
impose significant slowdowns, but performance is a
secondary concern for offline analysis. Other systems
use taint tracking mechanisms to understand the is-
sues of data lifetime and leakage (e.g., [6], [10], or to
enforce security policies on the flow of sensitive user
data in networked environments [75]).

Byte-level taint tracking faces significant perfor-
mance challenges and a number of optimizations have
been suggested in earlier work. Demand emulation
and shadow page table trapping were first proposed
in [18] and our system directly leverages these tech-
niques. Similar in spirit to our work, the Log-Based
Architecture proposed in [46] attempts to improve the
performance of fine-grained information flow analy-
sis through asynchrony and parallelism, but depends
on a major hardware extension. Speck [33] proposes
a set of techniques for parallelizing security checks
(including taint tracking) on commodity hardware.
Speck focuses on tracking within one user-level pro-
cess and assumes OS-level support for speculative ex-
ecution, while our work achieves full-system tracking
using a hardware emulator.

4 Designing for practical infor-
mation flow tracking

After building PIFT and addressing the performance
hurdles that prevented other systems from being
utilized in daily use, we explored in-practice using
PIFT as an information flow tracking substrate.
We present those findings herein, as well as reveal
our insights into improving the state of the art in
information flow tracking.

We illustrate the overall machinery of PIFT by
considering a typical usage scenario—enforcing con-
fidentiality policy on the contents of a sensitive file.
For simplicity of exposition, we assume that the user
taints the entire file with a single policy label. Ini-
tially, the tainted file resides on disk that is man-
aged by the taint-aware filesystem and applications
in the protected VM execute directly the native host
CPU. When an application opens the tainted file, the
call is routed via the hypervisor to the filesystem in
the control VM. Before returning the file handle, the
filesystem makes a call to the hypervisor, informing
it of the file’s taint label. In response, the hypervisor
marks the memory pages where the file contents are
stored as tainted.

Shortly thereafter, the protected VM tries to access
the file data and since the corresponding pages are
now marked as tainted, the hardware generates a page
fault and delivers it to the hypervisor. The hypervi-
sor saves the protected VM’s context and switches to
emulated execution in a user- space QEMU process
within the control VM.

The emulator is instrumented to track the move-
ment of taint labels in the manner that reflects the
computation performed by the protected VM. As
QEMU proceeds with the emulation, it executes addi-
tional logic to update data structures that keep track
of taint labels for machine registers and memory ad-
dresses. When the protected VM ceases to manipu-
late tainted data, the QEMU suspends the emulated
machine context and notifies the hypervisor, which
reverts the protected VM back to native virtualized
execution.

The final step is when the policy is invoked. For
example, the policy might specify that an exception
should be raised if tainted data is being externalized
through a network interface or a removable block
storage device, such as a USB stick. The exception
thrown could be an existing processor fault (e.g.,
an invalid opcode) or a new specialized exception.
The exception handler provides an opportunity to
write custom policy filters, which can either deny the
action, log it for audit purposes, or filter the content

9

being externalized.

Joining the efforts to provide information flow
tracking at a level that would reduce the hurdles
to adoption, we created PIFT. Through our system
PIFT, we provide users with a way of tagging files or
parts of their files, track which (non-malicious) ap-
plications access that data and how the data is com-
puted upon, and ultimately to where (if at all) the
data or any derivative is shipped. Note that PIFT’s
goal is not to secure sensitive data—tracking in PIFT
could be thwarted by additional focused effort from a
malicious application. Rather, PIFT enables users to
monitor their personal data and its interactions with
commonly used benign applications. The goal is that
this functionality be then used to analyze whether
an application is accessing more data than it needs,
help implement application access control, or to pre-
vent users from accidentally breaking data restric-
tions (e.g., ensuring that a secret company file does
not unknowingly get sent to an offsite email address).

The typical implementation approach to build such
information flow tracking is to instrument hardware
emulators such as QEMU with tracking instructions.
Hardware emulation is extremely slow, so to improve
performance, modern implementations [18] use em-
ulation only for those regions of code that interact
with tagged data. These efforts proved quite use-
ful for binary analysis [30], but the performance is
still not adequate for real-time use. In addition, fine-
grained tracking often results in accidentally tagging
control information such as kernel data structures,
which then amplifies into a taint explosion that un-
necessarily taints significant portions of data.

These two concerns, poor performance and taint
explosion, have rendered full-system fine-grained
information tracking impractical for deployment
outside of a laboratory environment. This paper
presents our progress in addressing these two prob-
lems and thereby making fine-grained taint tracking
more practical. However, this advance enabled
deeper testing and evaluation of this approach
against legacy software, and presented some trou-
bling results. We present our approach regardless,
since we provided significant performance advances
beyond the state of the art, and evaluate those
troubling results in our analysis.

Our approach (which we call PIFT for practical in-
formation flow tracking) begins with completely stan-
dard building blocks: PIFT uses the Xen hypervisor
to run the tracked system within a virtual machine,
and (as in [18]) dynamically switches execution on to
and off of an augmented QEMU hardware emulator

as tracking is required.
To improve performance, we track tags at a

higher abstraction level and in an asynchronous fash-
ion. Specifically, instead of instrumenting the micro-
instructions QEMU generates to track data, we create
a separate stream of tag tracking instructions from
the x86 instruction stream itself. This provides two
benefits:

• For the tracking instructions, we avoid the am-
plification that occurs when we go from one
x86 native instruction to multiple QEMU micro-
instructions.

• Since this is a separate stream, the tracking can
be done asynchronously and in parallel without
stopping the emulation context.

In essence, this approach is both directly more ef-
ficient (because it generates fewer tracking instruc-
tions), and it also allows us to execute those instruc-
tions asynchronously; it is the combination of these
two effects that give PIFT better performance.

Graphical environments present a non-trivial chal-
lenge for fine-grained taint tracking systems such as
PIFT. Although such environments rarely impose
high computational demands, the key challenge is
dealing with window rendering systems when tainted
data is present on the screen. A simple screen refresh
will involve moving tainted data around, and hence
lead to constant oscillating switches between native
and emulated execution.

A direct application of PIFT to a graphical envi-
ronment with tainted data on the screen leads to sig-
nificant performance impairment, to the point that
the user perceives serious interactivity problems. The
reason is a thrashing behavior resulting from repeated
screen repaint operations. In typical usage scenar-
ios, basic user actions (such as mouse movements and
keystrokes) trigger application-level events that cause
the window image to be recomputed. For instance, if
a text window is showing tainted data and the user is
entering text from the keyboard, each keystroke cause
a page fault and transition to emulation. When the
guest system finishes computing the new window con-
tents (reflecting the keystroke) and relinquishes the
CPU, we switch back to the native mode, but find
ourselves re-entering emulation once again upon the
next keystroke.

We found that the overall performance and usabil-
ity of the system can be greatly improved in such sit-
uation by making a simple fix: persistently switching
to emulation mode and remaining in emulation mode
for as long as tainted data remains on screen. Keep-
ing the system persistently in emulation also enables

10

us to leverage significant benefits from asynchronous
parallelized tracking. In fact, interactive graphical
environments seem to be a fairly compelling use case
for asynchronous taint tracking. Since the guest
workload is interrupt-driven and proceeds mostly at
human timescales, the taint tracker can easily keep
up with the producer and the log helps absorb the
short burst of computation resulting from basic user
activity.

Persistent emulation with asynchronous taint
tracking led us to a fully-operational and usable
graphical environment. In this environment, users
observe almost no perceivable degradation of interac-
tivity for simple UI actions (e.g., moving the mouse,
entering text, scrolling), which we show in Section 6.

For taint explosion (a common problem for
approaches such as ours), we show that a major
source of the explosion is the tainting of kernel data
structures via a few kernel entry functions. We
show that the taiting is accidental, and does not
reflect explicit information flow. PIFT leverages this
insight to effectively eliminate kernel taint explosion
by interposing and scrubbing taint labels at specific
and appropriate points, but unfortunately reveals
that taint explosion is a problem that persists into
desktop applications.

The cumulative effect of our techniques is making
fine-grained information flow tracking significantly
more practical. In fact, PIFT is usable and sup-
ports a full graphical user interface, enabling real user
activities—we edited portions of this paper with it!
It is this substantial advance that enabled us to more
deeply evaluate the technique of taint tracking as a
means for information flow tracking on legacy soft-
ware. From this analysis, we find that dynamic anal-
ysis for real-time information flow tracking is funda-
mentally flawed due to the reliance on the imperfect
components in the target legacy code. There is more
work to be done, however we wanted to report on our
progress and findings so that the community can help
in overcoming the remaining barriers.

4.1 Caveats

It was difficult for us to provide direct comparisons
with previous work. In the two specific cases where
we could do so, PIFT achieved a slowdown of
roughly 1.4× (compared to native code execution),
as opposed to previous efforts (in [75], based on [18])
in which the two comparison cases had slowdowns
of roughly one and two orders of magnitude, respec-
tively. We hasten to note that these two comparison

cases were optimistic ones, and there are other cases
where our slowdown is higher (roughly 20×).

As we noted, many similar approaches struggled
with the problem of taint explosion [10, 18, 30, 51],
wherein in certain paths of data flow, key system
components become tainted, and spread that taint
to irrelevant and unrelated data. For taint explosion,
we asserted that the source is accidental tainting of
kernel data structures via a few system calls. By in-
terposing at these specific system calls, and securely
scrubbing taint, we prevented accidental tainting of
kernel data structures. This prevents incorrect taint
propagation to other data, which we believed would
eliminate kernel taint explosion in practice. Since
this enabled us to analyze information flow in appli-
cations (rather than the operating system), we dis-
covered that not only does taint explosion occur due
to pointer tainting in the kernel, but common pro-
gramming paradigms in legacy software also result in
taint explosion.

While repeating the technique of interposing at
key points in the application (just as we did with the
kernel) to scrub the taint and prevent taint explosion
would be successful, it becomes intractable, and
forces us to augment the software, which is against
our earlier assertions that we could not make such
changes.

Before proceeding, we note that there is another
problem with taint tracking: Implicit information
flows (e.g., copying by branching) are not detectable
by dynamic analysis and do not leave behind a taint
trail. This can be a problem for certain applications
of taint tracking such as data exfiltration prevention.
However, here we are focusing on making taint track-
ing practical for applications such as auditing, debug-
ging and data tracking where malicious taint scrub-
bing via implicit flows is not a concern. Note that
researchers are attempting to address this particular
flaw by providing a hybrid solution between dynamic
analysis and static analysis or programming language
techniques. Thus, while implicit information flows
are an important issue for some applications of taint
tracking, we do not address this problem here.

In our current design, PIFT tracks all explicit data
flows resulting from variable assignments and arith-
metic operations. The emulator monitors the com-
putation on tainted data at the level of machine
instructions and propagates the labels accordingly.
We also track indirect flows that occur as the result
of pointer dereferencing, whereby a tainted value is
used as a base pointer or an offset to access another
value in memory. However, like other similar systems,

11

PIFT does not currently track the flow of information
through implicit channels that arise from control flow
dependencies, such as when the value of a tagged byte
influences a conditional branch.

5 Performance evaluation

In this section, we evaluate the performance overhead
of our prototype implementation under a variety of
workloads, which include synthetic microbenchmarks
and real-world applications. We find the following:

• For a system with 10% of the data tainted, the
computational overhead over native execution is
40%. In the worst case (when all data is tainted),
the overhead is 20×. Both of these results ap-
pear to be significantly better than prior work,
though we can only make exact comparisons in
two specific senarios.

• The performance improvement is the result of a
combination of high-level taint flow instrumenta-
tion and asynchronous parallel execution of taint
tracking.

• PIFT can support graphical windowing environ-
ments, ensuring a reasonable level of interactiv-
ity and application-level performance. To the
best of our knowledge, PIFT is the first online
taint tracking system to demonstrate support for
interactive workloads in a graphical desktop en-
vironment.

5.1 Setup

Our test machine is a Dell Optiplex 755 with a
quad-core Intel 2.4Ghz CPU and 4GB of RAM. The
hypervisor-level component of our implementation is
based on Xen 3.3.0. The emulator and taint track-
ing modules (based on QEMU v0.10.0) run in the
privileged Xen domain as a multi-threaded user-level
process. The guest domain is configured with 512MB
of RAM and one VCPU (as our current implementa-
tion does not yet offer support for multi-processor
guest environments). The guest runs a paravirtual-
ized Linux kernel v2.6.18-8.

Our experiments evaluate the overhead in the fol-
lowing configurations:

• NL: Linux on native hardware
• PVL: Paravirtualized Linux on Xen hypervisor
• Emul: Linux in a fully-emulated environment

using unmodified QEMU
• PTT: Our prototype implementation of Practi-

cal Taint Tracking

- PTT-S: Synchronous taint-tracking
- PTT-A(x): Asynchronous parallel taint
tracking with x MB of memory reserved for the
log. We explore using log sizes of 512MB, 1GB,
and infinite (∞)

We compare our system primarily with Neon [75]
when possible. Neon builds on top of the on-demand
emulation-based taint tracking system developed by
Ho et al. [18], and hence provides a comparison to
both systems most closely related to us. However, we
were unable to get the code for [18] working on our
system since it is based on a heavily outdated version
of QEMU and has fragile dependencies, and as such
would not work on our test systems. Thus, the only
way we could provide direct comparisons was to run
the same experiments as reported on in [75] and use
their published results to compare the two systems.

5.2 Application-level overhead (data
processing tools)

We evaluate the overall performance penalty of taint
tracking in common usage scenarios via microbench-
marks, as perceived by potential users of the system.
The goal is to measure if our taint tracking substrate
can be used for everyday computing activities.

5.2.1 Copying and compressing

We begin by considering two simple but very common
data manipulation activities:

LocalCopy - Copying a partially-tainted file to an-
other file in the guest filesystem using the cp com-
mand.

Compress - Compressing a partially-tainted input
file using thegzip command. Compression repre-
sents a somewhat more stressful scenario as it in-
volves a nontrivial amount of computation on the
input data.

This experiment exercises the ability of PIFT to
transition efficiently between virtualized and emu-
lated execution modes. Ideally, one would expect
the slowdown to scale linearly with the fraction of
taint, since the amount of taint should dictate the
amount of time spent in emulated taint tracking
mode. Our system does not show linear scaling be-
cause the heuristics for transitioning are not perfect.
The heuristics err on the conservative side, keeping
the system in emulated mode even if one could have
transitioned back to native virtualized mode a bit
earlier. Hence, the overhead at low levels of taint is
larger than the linear scaling would suggest.

12

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0

2
0

3
0

4
0

Fractional amount of tainted data

S
lo

w
d
o
w

n
 f
a
c
to

r
c
o
m

p
a
re

d
 t
o
 N

L
copy

PTT−A(512)

Neon

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0

4
0

6
0

8
0

1
0
0

Fractional amount of tainted data

gzip

Figure 2: Performance overhead in the LocalCopy and
Compress experiments.

Finally, although we do not have enough data to
draw definitive conclusions, we believe that these re-
sults yield a favorable comparison to Neon. In a sce-
nario with f = 1/64, where f is the fraction of tainted
data, Neon reports slowdown factors of 10× and 95×
for file copy and compression, respectively. This is
the only data point for this experiment reported in
[75] (Table 3). We see that taint tracking with PIFT
incurs significantly less overhead. The overhead for
both file copy and compression is only 1.4× over na-
tive execution. In Figure 2, we can see the perfor-
mance of PIFT over the range of f , but have no cor-
responding data from [75] except for f = 1/64.

5.2.2 Searching

In the next experiment, we consider another com-
mon usage scenario: text search. We use the grep
command to search the input data set for a single-
word string and measure the overall running time.
Our input dataset for this experiment is a 100-MB
text corpus spread across 100 equal-sized files. These
files reside on disk at the start of the experiment. We
measure the command completion time in all configu-
rations of interest and compute the slowdown relative
to native execution, i.e., NL. For PIFT, we repeat
the experiment multiple times, varying the number
of files f marked as tainted. Unfortunately we can-
not compare with Neon, since they do not report any
measurements for this scenario.

Table 1 reports the results of this experiment for
the most stressful scenario, i.e., when all files are
tainted (f = 1). As expected, the performance is
significantly worse compared to native execution for
this worst case scenario. PIFT with asynchronous

NL PVL Emul PTT PTT
-S -A(512)

Synch Asynch

Completion
time (s)

2.42 2.87 18.45 58.865 25.57

Slowdown
factor

1.00 1.18 7.62 24.32 10.56

Table 1: Text search performance in the worst-case sce-
nario (f = 1.0).

parallelized taint tracking is slowed down by a fac-
tor of 10×. For more modest amounts of taint, when
only 10% of the files are tainted, the overhead is 46%
over native execution.

Table 1 also quantifies the gain over synchronous
taint tracking obtained by performing taint track-
ing in an asynchronous parallelized fashion. Asyn-
chronous tracking using multiple cores roughly pro-
vides a 2.5× gain over synchronous sequential track-
ing on a single core. The best case gain that can
be obtained from parallelization of taint tracking is
if it creates an illusion that there is no taint track-
ing at all, i.e., it has the same performance as pure
emulation. PIFT with parallelized tracking incurs a
40% overhead over pure emulation. This nontrivial
overhead is to be expected, especially since the em-
ulated instruction sequence has to be instrumented
to write to the log operands that are needed by the
taint tracking instruction sequence.

5.3 Graphical text editor

To measure the performance impact on graphical
application-level operations, we instrumented the
gedit text editor application and ran a simple user
session. This session included launching the editor,
opening a 1.2MB text file, making some changes,
computing document statistics, and saving the file
under a different name. Table 2 reports the results
from this experiment and Figure 3 shows a trace of
taint tracking log usage and CPU utilization in the
control domain for this user session.

Although the text editor was fully usable and re-
sponsive during this user session, the measured per-
formance degradation was somewhat higher than we
expected. Notably, the component of the overhead
due to taint tracking does not increase from previous
experiments in the text console environment. At the
same time, the costs of basic system emulation in-
crease to about 20×. Further investigation revealed
the likely source of this discrepancy. The GNOME
graphical environment on x86 makes extensive use of

13

0 1000 2000 3000 4000

0
2
0

4
0

6
0

8
0

1
0
0

Timestep (100ms intervals)

%
 U

s
a
g
e

CPU Usage and Log Usage while using Text Editor

QEMU CPU (top)
Log (512MB)

Figure 3: Time series of log usage and host CPU usage
by the QEMU process. Note that the 100% CPU usage
mark represents full utilization of both processor cores
(producer and consumer).

Action NL Emul PTT-A(512)

Launch editor 2403 7472 8741
Open file 302 2087 4634

Compute document stats 307 7309 12491
Save file 420 8300 15086

Table 2: Completion time (in ms) for a range of user
actions in the gedit text editor experiment.

the SSE instruction set extensions and QEMU does
not currently optimize the emulation of these proces-
sor features. Current versions of QEMU dynamically
recompile arithmetic and memory access instructions
into native code and try to optimize the use of host
registers. At this time, QEMU does not perform JIT
recompilation for SSE instructions and does not take
advantage of the SSE registers available on the host
processor. We expect that the overhead of our sys-
tem will be reduced further with orthogonal improve-
ments in emulation technology.

6 In-practice performance eval-
uation

In the earlier sections, we evaluated the raw perfor-
mance of PIFT in several focused use cases. We now
explore using PIFT as an information flow tracking
substrate in interactive situations, on a system with a
modern GUI, in order to see if our performance gains
listed in Section 5 still persist when performing more
complicated tasks.

We focus on the user-perceived overhead when per-
forming common tasks in applications such as spread-
sheets, word processors, web browsers, etc. We also

evaluate the exact overhead of applying a policy
against the taint labels in a real-world situation in
order to enforce concepts such as, “You may not send
files with label xyz over the network.”

Graphical environments are difficult for fine-
grained taint tracking systems due to their highly in-
teractive nature. Additionally, keyboard and mouse
actions will cause many window updates (which may
contain tainted data) and thus may trigger many
transitions to and from emulation. We found that
the overall performance and usability of such a sys-
tem can be greatly improved by making a simple fix:
Persistently switch to emulation mode and remain in
emulation mode for as long as tainted data remains
on screen. Doing so also enables us to leverage signif-
icant benefits from asynchronous parallelized track-
ing. In fact, interactive graphical environments seem
to be a compelling use case for asynchronous taint
tracking. Since the guest workload is interrupt-driven
and proceeds mostly at human timescales, the taint
tracker can easily keep up with the producer and the
log helps absorb the short burst of computation re-
sulting from user activity. This is the primary devi-
ation from the sources of performance gains listed in
Section 5.

6.0.1 Graphical environment test setup

For the following series of performance tests in inter-
active environments, we used a Lenovo H320 with an
Intel Core i3 540 processor and 6GB DDR3 RAM.
Our guest environment was again configured with
512MB RAM, one VCPU, and a modified Linux ker-
nel v2.6.18-8. The taint tracking log was fixed at
1GB for PIFT-A, and the tests took place entirely in
emulated mode. We used the X Window server and
GNOME desktop environment. We used vncplay9 to
measure and replay user input in order to evaluate
the slowdown of various configurations. We provide
the following new testing parameters:

PIFT-x/C The guest is “clean” (no
tainted data in the system).

PIFT-x/T The application is instructed
to open or manipulate a
tainted file.

6.0.2 Graphical application launch test

In the first set of experiments in a graphical envi-
ronment, we measure the time it takes to launch a
program, render the graphical components, load a
file, and quit. The programs we measured were Abi-
word (an open source word processing program) and

9http://suif.stanford.edu/vncplay/

14

NL Emul PIFT−A/C PIFT−A/T PIFT−S/C PIFT−S/T

0
2
0

4
0

6
0

8
0

NL Emul PIFT−A/C PIFT−A/T PIFT−S/C PIFT−S/T

0
2
0

4
0

6
0

8
0

Application Launch Task (seconds)

Abiword

OpenOffice Calc

Figure 4: Completion time in seconds for starting an
application and opening a file (tainted and clean), in both
Abiword and OpenOffice Calc across all configurations.

Ideal NL PIFT-S/T PIFT-A(1GB)/T

WPM WPM %
of
Ideal

WPM %
of
Ideal

WPM %
of
Ideal

60 58.51 98 58.51 98 58.51 98
110 107.86 98 107.86 98 107.86 98
140 137.72 98 137.72 98 137.72 98
150 146.75 98 144.39 96 146.75 98
200 198.93 99 168.91 84 198.93 99

Table 3: Time (in seconds) to type a passage at varying
WPM, using vncplay to synthesize keypresses.

OpenOffice Calc (the spreadsheet component of the
OpenOffice.org productivity suite). All tests were
performed with cold filesystem caches.

In this computationally- and graphically-intensive
situation, we confirm the benefits of asynchrony
and see that slowdowns are moderate (Figure 4).
Compared against emulation alone, asynchronous
taint tracking results in less than a 2× slowdown
for launching an application, even when opening a
tainted document.

6.0.3 Common GUI-based task test

To measure the performance impact on user experi-
ence for common tasks, we measured the time that it
takes a user to complete a series of tasks in GUI-based
applications. We examined three interactive tasks in
particular: Typing into a word processor, updating a
spreadsheet, and browsing webpages.

Typing: To evaluate any perceived slowdown for
typing, we used a slightly modified vncplay to record
the entry of a passage of text into OpenOffice Writer
and play back the entry of the passage with the timing
adjusted to simulate typing at a number of different
speeds (the ideal WPM). When replayed, we mea-
sured the time for the entire passage to appear and

NL Emul PIFT−A/C PIFT−A/T PIFT−S/C PIFT−S/T

0
5
0

1
0
0

1
5
0

2
0
0

NL Emul PIFT−A/C PIFT−A/T PIFT−S/C PIFT−S/T

0
5
0

1
0
0

1
5
0

2
0
0

Productivity Task (seconds)

Web Browsing

Spreadsheet

Figure 5: Time in s to complete the given productivity
task (update spreadsheet in OpenOffice Calc, or browse
and click through 10 web pages) in all configurations.

used this to calculate an actual WPM. During play-
back, the passage was “typed” into the beginning of
a document that was already tainted (except in the
NL case). The results of this test are in Table 3.

Beyond this, we experience no perceptible differ-
ence in text entry speed using PIFT, from 60 WPM
through a very fast 110 WPM, and regardless of taint-
edness.10 For PIFT-S, we see performance degrada-
tion begin around 140–150 WPM. PIFT-A, however,
kept pace with NL throughout the entire test.

Spreadsheet: We measured the impact to user ex-
perience when performing a series of basic spread-
sheet tasks, such as formatting and copying cells, typ-
ing referential formulas, and navigating the spread-
sheet using both mouse and keyboard. We measured
the time that it took a user to complete the overall
task in OpenOffice Calc on each configuration. In NL,
the complete task took roughly 1m15s to complete.
It should be noted that this test focused on speed—
the task being mechanically completed as quickly as
possible, and did not allow for ‘think-time’, which
would reduce the impact of the overhead.

Our tests showed that emulation itself causes
roughly a 2× slowdown compared to NL (Figure 5),
and PIFT-A only incurs approximately another 15%
overhead regardless of taintedness.

Webpage Browsing: Finally, we evaluated brows-
ing and scrolling webpages. We created 10 sample
webpages of varying lengths, containing only very
simple HTML, CSS, and JavaScript. We added 10-
20 hyperlinks to each page, and gave the user the
task of finding and clicking on a specific hyperlink on
each page, which would then direct the browser to

10The difference of the measured WPM for all tests (includ-
ing native Linux) from the ideal is attributable to overhead
from VNC and vncplay. Indeed, before some modification to
the timing code in vncplay, the difference between ideal and
measured WPM was much greater.

15

another page in the series. The user used the Kon-
queror web browser with caching disabled and used
only the mouse for the duration of the test. All files
were local to the user.

We can see in Figure 5 that the user experiences
a 1.96× slowdown for completing the web browsing
task in the worst-case of PIFT-S/T compared to NL.
With PIFT-A(1GB), the task takes on average 1.48×
longer. Like the spreadsheet updating task, this task
was heavily dependent on screen updates, since the
user was required to scroll through and search for a
specific link on each page. As such, we suffer a perfor-
mance penalty due to this dependency on graphical
components, but it is no worse than 2× slower than
NL.

6.0.4 Impact of policy checking

One use of information flow tracking is monitoring
the flow of sensitive data, perhaps with the end goal
of auditing the export of sensitive data, or blocking
the export of such data outright. We challenge the
benefits gained by asynchronous taint tracking by in-
serting a policy check into a regular program, such
that all data will be checked against the policy and
data flagged with certain taint labels will be blocked
from export. We predict that the times that we re-
quire the logs to become current in order to perform
the policy check will be so infrequent that the over-
head of policy checking will be minimal.

In this test, we performed a scripted series of tasks,
including copying a 20MB file, compressing a direc-
tory (23MB uncompressed), appending tainted data
to another file, deleting files, and then attempting
to export a potentially controlled file via a modified
tftp. These tasks were carefully chosen to both ex-
plore the benefits of asynchronous taint tracking and
to narrowly focus on the overhead of checking the
data against a custom policy, such as, “You cannot
send files with taint label xyz.”

We performed this test in two forms: (A) tftp

compiled from source as-is. (B) tftp is modified
to support a semantic-aware policy checking mech-
anism. Six lines were added to the tftp source code,
including a reference to the PIFT helper library. The
outbound file is examined in 512B increments, with
each block checked for a matching taint label. If any
matching taint label is discovered, we present a noti-
fication and the file will be blocked and not sent.

In this test, we attempt to send a tainted file that
will pass the policy check, so that the times for trans-
fers will be included across all tests. We can see in Ta-
ble 4 that adding policy checking increases the vari-
ance in time to completion by roughly 3×, and adds

Environment Policy
Check?

Avg Std Dev

Emul N/A 19.69 0.75
PIFT-A(1GB)/T Yes 36.72 2.44
PIFT-A(1GB)/T No 36.35 0.91
PIFT-S/T Yes 44.91 1.82
PIFT-S/T No 44.38 0.52

Table 4: Evaluating the overhead of policy checking.
Time (in seconds) to complete a sequence of basic tasks,
with policy checking code enabled and disabled.

a 1% overhead to complete the task.

One should note that the version of tftp that
performs policy checking innately requires more
lines of code in order to perform the policy check
and handle errors gracefully. It is possible that a
developer could extend their target program with
inefficient policy checking code. Since PIFT only
provides the information flow tracking substrate, we
cannot control how the final developer writes the
policy checking code, and thus cannot estimate the
final overhead for all programs under all circum-
stances. In this experiment, we see a very small
overhead to perform the policy check, and we foresee
that given enough care on behalf of the developer,
future applications that leverage the information
flow tracking benefits of our system will see similar
overheads.

In summary, through three key improvements,
PIFT provides performance benefits across all tasks
when compared to prior work. For novel features,
such as support of graphical environments, even
though tainted data on the screen effectively forces
the system to stay in emulated mode, we see en-
couraging results for confirming the benefit of asyn-
chronous taint tracking. For graphically intensive
tasks, we see that it will take the user no more than
2–3× longer to complete a task with taint tracking
than without. For applications with minimal graph-
ical updates (such as word processing), the impact
is imperceptible. Furthermore, we see that when us-
ing asynchronous taint tracking for some CPU-heavy
workloads, around 40–50% of the overhead is from the
emulation and not the actual taint tracking. Thus,
additional improvements to our performance in these
workloads are possible through further optimization
of the core emulation mechanisms used by QEMU.

Despite these advances, we discovered something
troubling about our assumptions. We believed that
performance was the key hindrance against adoption
(solving which enabled us to test our system against
a fully functional GUI), and that we had solved the

16

kernel taint explosion problem by removing the extra-
neous taint labels from selected system calls (solving
which enabled us to get useful results in practice).
However, since we were able to test our system in
practice on common desktop software, we discovered
that our system was dependent on imperfect compo-
nents, and these imperfections would prevent us from
ever achieving our goals using this approach.

7 Imperfect components

Once we were able to get a usable system-wide infor-
mation flow tracking system, we were able to explore
the effectiveness of taint tracking information flow in
commodity applications. When we started, we be-
lieved that performance was the primary hurdle pre-
venting the adoption of IFT solutions. After our eval-
uation, we have decided that performance, while still
important, is negligible when considered in the light
of so many false-positives and false-negatives. Cur-
rent applications and operating systems consistently
violate the basic tenets of information flow such that
any IFT solution based on dynamic analysis is in-
tractable.

7.1 Implicit flows

We face the problem of implicit flows with the use
of several common programming constructs, namely
branching. Consider the following code sample:

int x = 0;

char ch = getchar ();

if (ch == ’a’)

x = 1;

We can see that in this case, any taint associated
with ch cannot be directly propagated to the vari-
able x using our technique. x does not explicitly
depend on ch, but could be used to leak information
regarding the value of ch. We assume that the
user is benign and will only use programs that they
believe to be well-behaved, thus we do not concern
ourselves with handling these cases directly. Instead,
we argue that if the user or administrator determines
that implicit flows such as these are essential to a
program’s function, he will instead opt to confine
the execution of that program to a separate virtual
machine. Any program that requires branching
(e.g., if and switch statements) to perform its main
function should be evaluated on a case-by-case and
per-site basis.

Consider another case:

char ch = getchar ();

int x = my_array[ch];

As described in Section 4, any taint associated with
ch is propagated to x.

We seek to argue that the second case of using
tainted data as an index into an array of potentially
untainted data is in fact a more common technique
than using branching to generate output.

Case study: tr

tr is a simple command-line text replacement tool.
The basic function of this program is to replace a set
of single characters in a given input string with corre-
sponding characters, or delete those target characters
entirely.

In the case of character replacement, the method
is straightforward and taint-maintaining. tr creates
an array, string1[] such that all 256 ASCII char-
acters appear in the following manner: For every
a = 0..255, where a is the numerical ASCII repre-
sentation for a character, string1[a] = a. If a char-
acter a is due to be replaced with b, tr then sets
string1[a] = b. After performing all the desired sub-
stitutions to this character index, tr then executes
the replacement by merely reading the input string
character by character, and using each character as
an index into the string1 array, creates a new string
with the desired characters replaced. Since taints are
propagated when using tainted data as an index to
an array, we can still enforce data confinement.

while ((ch = getchar ()) != EOF)

(void)putchar(string1[ch]);

In the case of character deletion, we face the prob-
lem of implicit flows. In this case, tr sets the values
of string1[a] to be either 1 or 0 indicating whether
or not the character is due to be deleted. Then, upon
reading the input string character by character, the
new string is created by only those characters for
which string1[a] == 0.

while ((ch = getchar ()) != EOF)

if (! string1[ch])

(void)putchar(ch);

In this case, the taint on the deleted characters will
not be propagated, due to the fact that the tainted
character would only be used in the if statement,
and as written, the tainted character will not appear
in the output string.

While tr could be used in a manner that re-
tained taint, one usage case could potentially leak
information, and as such, we would leave it to

17

the administrator to decide if this program should
be limited to execution in a separate virtual machine.

Case study: TEX and dvipng

When rendering a DVI as a PNG, the process is
very straight-forward. DVI commands correspond-
ing to the numerical representation of the character,
such as SETC_127, indicate that the program should
typeset the character 127. Pixels are plotted directly
from the information retrieved from the font table
(e.g., ptr=currentfont->chr[c];), as indexed by the
character’s numerical representation. As such, the
data retrieved from the font table is directly used to
set pixels (Figure 6).

We can see that the conversion from DVI to PNG
does not use any form of branching based on poten-
tially tainted data, and will thus maintain taints.

Looking at the conversion of TEX to DVI, we have
an implicit flow problem with the use of ligatures.
TEX attempts to locate sequential characters that
could be represented by a ligature, such as in the
cases of “fi” and “ffi’, and replaces them with the ap-
propriate ligature, if supported by the desired font.
Unlike with other ASCII characters, the original char-
acters will not be transcribed directly into the output
DVI file, and thus the taint for these few characters
will disappear.

In summary, using an application such as dvipng

would not be restricted, but an administrator might
choose to execute tex and variants in separate virtual
machines.

Case study: gnuplot

gnuplot is a popular open-source command-line
data and function plotting utility. We explore how
gnuplot decides which pixels to draw to the output
image.

In evaluating functions, gnuplot uses a stack to
hold intermediate values. Each incoming value is
pushed to the stack, which is then popped from the
stack and evaluated according to the desired mathe-
matical function as a simple passed argument, with
the output pushed back on the stack. This is easily
handled with our technique for taint propagation. As
such, calculating sin(x) where x is tainted will result
in a tainted output.

Results are stored in a struct that maintains the co-
ordinates that will be plotted. Coordinates are con-
verted to terminal coordinates, using the following
macro code (where variable is the tainted value):

(int) ((axis_array[axis]. term_lower) \

+ ((variable) - axis_array[axis].min) \

* axis_array[axis]. term_scale + 0.5)

Taint is still propagated. The resultant values are
then passed to the terminal driver.

If using X11, commands for graphing lines or plot-
ting points are stored in a buffer, in well-defined for-
mats, featuring the potentially tainted data directly.
For example, a point would be retrieved as follows:
sscanf(buffer + 1, "%d-%d-%d", &point, &x, &y);

which would then be stored into a pixmap using the
X11 function: XDrawPoint. This pixmap is later
rendered using the X11 drivers. Advanced point
representations such as diamonds and crosses are
handled using simple arithmetic to create a series
of segments, which are then stored in the output
pixmap. Cairo performs its graphing functions
similarly.

One might consider the information leaked by dy-
namic axes, but we find that the axes are expanded
or contracted based on tracking the max and min
values for each axis. As such, taint is maintained
throughout. We find no instances where branching
is essential to the flow of data through gnuplot.

7.2 Problematic programming
paradigms

In our evaluation of commodity off-the-shelf applica-
tions, we discovered that some common programming
paradigms severely inhibit our ability to perform use-
ful information flow tracking. If our tolerance for er-
rors (be they false positives or false negatives) is low,
these paradigms will be found to be too common to
enable correct and useful information flow tracking.

7.2.1 Shared libraries and components

For example, when exploring text editors, such as
gedit, medit, and AbiWord, we discovered that
merely loading a tainted file into memory would cause
any subsequent file written by any other program
in that set to be marked with the same taint la-
bel. What we discovered was that each of these pro-
grams used the glib+ libraries, and in particular, the
message bus of glib had become tainted. All files
written or loaded into memory by glib would gain
that taint label, including user-level state files such
as ~/.recently-used.xbel, ~/gtkfilechooser.ini, as
well as several other metadata or session files. The
use of common libraries and constructs such as a mes-
sage bus is not that uncommon, and in fact is related
to a general lack of isolation between distinct compo-
nents. We believe that the GUI (and even GPU) will
also be a place where IFT semantics can be abused.

18

for(y=0; y<ptr ->h; y++) {

for(x=0; x<ptr ->w; x++) {

if (ptr ->data[pos]>0) {

pixelgrey=gammatable [(int)ptr ->data[pos]/2];

bgColor = gdImageGetPixel(page_imagep , hh + x, vv + y);

// snip set color of pixel

gdImageSetPixel(page_imagep , hh + x, vv + y, pixelcolor);

}

pos++;

}

}

Figure 6: Case study: TEX and dvipng

7.2.2 Branching

Another common programming paradigm is that of
using switch statements. Unicode translation is such
an example of branching that evades taint propaga-
tion. Mentioned as early as 2004, the researchers who
developed TaintBochs discovered that the Windows
2000 kernel uses this form of branching to translate
keyboard scancodes into unicode [6]. As such, they
discovered that a tainted password would appear in
memory in both a tainted form (scancode) and an un-
tainted form (unicode). Researchers continued to ex-
perience this particular problem in Taint Eraser [76]
and [30], among others. As of yet, this problem has
not been resolved in any dynamic analysis system.
Panorama [69] addressed this exact problem in Win-
dows XP by specially instrumenting an instruction
within the function xxxInternalToUnicode.

While we used the technique of taint scrubbing or
whitelisting specific system calls that we manually
verified to not mandate the propagation of taint la-
bels, since this pattern appears in the desktop appli-
cations as well, we find that we are at an impasse.
Since we asserted that we are not allowed to change
the desktop applications in order to provide IFT, we
are unable to proceed, and consequently any tech-
nique with similar goals will also remain fruitless.

7.3 Lack of GUI isolation

The lack of GUI isolation has been known to be a se-
curity concern for many years [41, 42]. An example of
this particular concern can be explored by the reader
through xinput. A short recipe is as follows:

1. Install xinput.
2. As user, attach and run xinput to the system’s

keyboard
3. Open a terminal window as root

4. Type into the root-owned terminal window

The user terminal running xinput will reveal all
keys entered in that root-owned terminal window.

The general theme of lack of isolation is a troubling
one. The lack of isolation enables attackers to cross
these boundaries between systems with potentially
differing policy demands.

7.4 Additional threats

As the above examples demonstrate, information
leakages happen because current systems provide a
myriad number of channels through which data can
be easily pilfered or lost. PIFT aims to prevent such
leakage by allowing administrators to tag sensitive
data, track it, intercept and enforce security poli-
cies on all exchanges between principals. However,
we do not expect users to be malicious. An adver-
sarial insider can always photograph a screen with
sensitive data, an attack that any software based ap-
proach cannot defend against, yet we allow users to be
careless. Users can access untrusted sites, download
potentially unsafe external applications, and use all
the normal means of communication they have come
to expect (email, peripherals, etc).

PIFT treats the hypervisor, emulator and backend
drivers as part of the trusted computing base, but it
makes no assumptions about the operating systems or
applications. Second, we assume that at startup, the
hypervisor can be securely loaded before any other
code executes. With the advent and wide availability
of trusted computing hardware in computers, such an
assumption is feasible. Finally, we assume that the
existence of a key infrastructure within the trusted
boundary, so hypervisors can sign and verify mes-
sages from each other.

19

8 Conclusion

We began seeking to address the problem of data
exfiltration. Common approaches using informa-
tion flow tracking seemed to be promising, with the
biggest hindrance to adoption being the dramatic
overhead incurred due to the taint tracking tech-
niques used. We saw three possible areas for im-
provement: Track taint labels at a higher abstraction
level, namely at the native instruction level of the pro-
tected VM; Perform taint tracking asynchronously,
only evaluating the IFT metadata as needed accord-
ing to the policy demands; and eliminate kernel taint
explosion by separating the system calls into those
which should logically propagate the taint labels vs.
those that should not. These three changes proved to
be those which decreased our performance overhead
to a level that enabled real users to interact with
a IFT-aware GUI-based commodity applications and
operating system (with usable results), a feat we be-
lieve to be the first of its kind.

It is because of this new ability that we were able to
evaluate the technique of taint tracking as a means
to achieve information flow tracking on commodity
applications and operating systems. What we discov-
ered was that early results expressing concern about
taint explosion where founded, but not sufficient in
their scope. We discovered that our legacy appli-
cations and operating systems are imperfect compo-
nents that rely on techniques that fundamentally vi-
olate the notions of information flow, particularly as
revealed by dynamic analysis. If we seek to provide
information flow tracking or information flow control
to extant application binaries, we will most likely fail.

So what is a researcher to do? We need to think
about information flow tracking at all stages of our
design. Support for IFT needs to be built natively
into the programming languages, with the needs of
the programmer in mind, and IFT needs to be sup-
ported by the (trusted) hardware, and the operating
system. More importantly, we need to enforce and
support isolation. As our systems become more com-
plex, it becomes even more important to sandbox and
isolate foreign or untrusted code. Recent efforts to
natively support isolation in the operating system as
a security measure have shown great promise.

For future work, we recommend: Evaluating the
CPU changes with the most potential for assisting
with IFT; and exploring IFT only on the messages
sent between isolated virtual machines, each of which
enables legacy or suspect software to run unhindered
and unattended. In the latter case, it could be con-
ceivable to use programming language techniques to
implement the IFT between the isolated components.

We believe that isolation and programming language-
based techniques for information flow tracking will be
the correct path to achieving practical information
flow tracking on a daily basis.

9 Acknowledgements

With sincere gratitude to Scott Shenker, Sachin
Katti, Andrei Ermolinskiy, and James Murphy Mc-
Cauley, without whose advice and hard work this
would have been impossible; and to Kevin Jeffay for
his constant support and encouragement. This work
was funded in part by the National Science Founda-
tion and the University of California.

References

[1] G. R. Andrews and R. P. Reitman and. “An Ax-
iomatic Approach to Information Flow in Pro-
grams”. In: ACM Trans. Program. Lang. Syst. 2
(1 1980), pp. 56–76.

[2] H. Barwick. Identity theft, e-fraud top Australian
security concerns: Unisys. Computerworld. May
2011. url: http://www.computerworld.com.au/
article/385356/identity_theft_e-fraud_top_

australian_security_concerns_unisys/.

[3] T. Bradley. Sony Hacked Again: How Not to
Do Network Security. PCWorld Business Center.
June 2011. url: http : / / www . pcworld . com /

businesscenter/article/229351/sony_hacked_

again_how_not_to_do_network_security.html.

[4] S. Chen. “Defeating memory corruption attacks via
pointer taintedness detection”. In: In IEEE Inter-
national Conference on Dependable Systems and
Networks (DSN. 2005, pp. 378–387.

[5] E. Chin and D. Wagner and. “Efficient character-
level taint tracking for Java”. In: Proceedings of the
2009 ACM workshop on Secure web services. SWS
’09. Chicago, Illinois, USA: ACM, 2009, pp. 3–12.

[6] J. Chow. “Understanding data lifetime via whole
system simulation”. In: SSYM’04. San Diego, CA,
2004, pp. 22–22.

[7] J. Clause and A. Orso and. “Penumbra: automat-
ically identifying failure-relevant inputs using dy-
namic tainting”. In: Proceedings of the eighteenth
international symposium on Software testing and
analysis. ISSTA ’09. Chicago, IL, USA: ACM, 2009,
pp. 249–260.

[8] G. Cluley. University of Florida warns students and
staff of security breach. Sophos. Feb. 2009. url:
http : / / www . sophos . com / blogs / gc / g / 2009 /

02/20/university- florida- warns- students-

staff-security-breach.

20

[9] Common vulnerabilities and exposures (CVE)
database. The MITRE Corporation. url: http://
cve.mitre.org/data/downloads/.

[10] M. Dalton, H. Kannan, and C. Kozyrakis, and.
“Tainting is not pointless”. In: SIGOPS Oper. Syst.
Rev. 44.2 (2010), pp. 88–92.

[11] M. Dalton, H. Kannan, and C. Kozyrakis, and.
“Raksha: a flexible information flow architecture
for software security”. In: Proceedings of the 34th
annual international symposium on Computer ar-
chitecture. ISCA ’07. San Diego, California, USA:
ACM, 2007, pp. 482–493.

[12] D. E. Denning. “A lattice model of secure in-
formation flow”. In: Commun. ACM 19.5 (1976),
pp. 236–243.

[13] D. E. Denning and P. J. Denning and. “Certifica-
tion of programs for secure information flow”. In:
Commun. ACM 20.7 (1977), pp. 504–513.

[14] P. Dhoolia. “Debugging model-transformation fail-
ures using dynamic tainting”. In: Proceedings
of the 24th European conference on Object-
oriented programming. ECOOP’10. Maribor, Slove-
nia: Springer-Verlag, 2010, pp. 26–51.

[15] W. Enck. “TaintDroid: an information-flow track-
ing system for realtime privacy monitoring on
smartphones”. In: Proceedings of the 9th USENIX
conference on Operating systems design and im-
plementation. OSDI’10. Vancouver, BC, Canada:
USENIX Association, 2010, pp. 1–6.

[16] A. Ermolinskiy. Towards Practical Taint Track-
ing. Tech. rep. UCB/EECS-2010-92. EECS Depart-
ment, University of California, Berkeley, 2010. url:
http://www.eecs.berkeley.edu/Pubs/TechRpts/

2010/EECS-2010-92.html.

[17] L. Greenemeier and C. Q. Choi and. WikiLeaks
Breach Highlights Insider Security Threat. Scien-
tific American. Dec. 2010. url: http : / / www .

scientificamerican . com / article . cfm ? id =

wikileaks-insider-threat.

[18] A. Ho. “Practical taint-based protection using de-
mand emulation”. In: SIGOPS Oper. Syst. Rev.
40.4 (2006), pp. 29–41.

[19] S. R. Hunt. Symantec leaks credit card data. APC
Magazine. Mar. 2009. url: http://apcmag.com/
symantec-says-credit-card-data-could-have-

leaked-from-india.htm.

[20] Indian companies find data loss biggest security
concern. CXO today. Nov. 2009. url: http://www.
cxotoday.com/story/indian- cos- find- data-

loss-biggest-security-concern/.

[21] H. Kannan, M. Dalton, and C. Kozyrakis, and.
“Decoupling Dynamic Information Flow Tracking
with a dedicated coprocessor”. In: Dependable Sys-

tems Networks, 2009. DSN ’09. IEEE/IFIP Inter-
national Conference on. 2009, pp. 105 –114.

[22] M. Krohn and E. Tromer and. “Noninterference
for a Practical DIFC-Based Operating System”. In:
Proceedings of the 2009 30th IEEE Symposium on
Security and Privacy. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 61–76.

[23] M. S. Lam and M. Martin and. “Securing web
applications with static and dynamic information
flow tracking”. In: In ACM Symposium on Partial
Evaluation and Semantics-based Program Manipu-
lation. 2008, pp. 3–12.

[24] H. Max and T. Ray and. Skype: The Definitive
Guide. Que, 2006.

[25] More than half of ex-employees admit to stealing
company data according to new study. Symantec
Corp and the Ponemon Institute. Feb. 2009. url:
http://www.symantec.com/about/news/release/

article.jsp?prid=20090223_01.

[26] Y. Mundada. Practical data-leak prevention for
legacy applications in enterprise networks. Tech.
rep. GT-CS-11-01. Georgia Tech, 2011.

[27] A. C. Myers. “JFlow: practical mostly-static in-
formation flow control”. In: POPL. San Antonio,
Texas, United States, 1999, pp. 228–241.

[28] A. C. Myers and B. Liskov and. “A decentral-
ized model for information flow control”. In: SOSP.
Saint Malo, France, 1997, pp. 129–142.

[29] S. K. Nair. “A virtual machine based information
flow control system for policy enforcement”. In:
Electron. Notes Theor. Comput. Sci. 197.1 (2008),
pp. 3–16.

[30] J. Newsome and D. X. Song and. “Dynamic Taint
Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity
Software”. In: NDSS. 2005.

[31] J. Newsome. “Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Genera-
tion of Exploits on Commodity Software”. In: 2005.

[32] A. Nguyen-tuong. “Automatically Hardening Web
Applications Using Precise Tainting”. In: In 20th
IFIP International Information Security Confer-
ence. 2005, pp. 372–382.

[33] E. B. Nightingale. “Parallelizing security checks on
commodity hardware”. In: ASPLOS XIII. Seattle,
WA, USA: ACM, 2008, pp. 308–318.

[34] D. A. Norman. “When security gets in the way”.
In: interactions 16 (6 2009), pp. 60–63.

[35] I. Papagiannis. “PrivateFlow: decentralised infor-
mation flow control in event based middleware”. In:
Proceedings of the Third ACM International Con-
ference on Distributed Event-Based Systems. DEBS
’09. Nashville, Tennessee: ACM, 2009, 38:1–38:2.

21

[36] Perl Security. Perl. url: http://perldoc.perl.

org/perlsec.html.

[37] Personal information: data breaches are frequent,
but evidence of resulting identity theft is limited;
however, the full extent is unknown. US Govern-
ment Accountability Office. June 2007. url: http:
//www.gao.gov/products/GAO-07-737.

[38] L. Phifer. Top 10 data breaches of 2010. eSe-
curity Planet. Jan. 2011. url: http : / / www .

esecurityplanet.com/features/article.php/

3921656/Top-10-Data-Breaches-of-2010.htm.

[39] T. Pietraszek. “Defending against Injection Attacks
through Context-Sensitive String Evaluation”. In:
In Recent Advances in Intrusion Detection (RAID.
2005.

[40] M. Pistoia. TAJ: Effective Taint Analysis of Web
Applications. 2009.

[41] A. Pretschner. “Usage Control Enforcement with
Data Flow Tracking for X11”. In: Proc. 5th Intl.
Workshop on Security and Trust Management
(STM). 2009.

[42] Qubes OS. Invisible Things Lab. 2011. url: http:
//qubes-os.org/.

[43] F. Y. Rashid. Most websites regularly leak sensitive,
personal data: survey. eWeek.com. June 2011. url:
http://www.eweek.com/c/a/Security/Most-Web-

Sites - Regularly - Leak - Sensitive - Personal -

Data-Survey-640359/.

[44] D. Raywood. University College Berkeley hit by
second data breach in six months as details of
almost 500 applicants are hacked. SC Magazine.
2009. url: http : / / www . scmagazineuk . com /

University-College-Berkeley-hit-by-second-

data-breach-in-six-months-as-details-of-

almost-500-applicants-are-hacked/article/

146593/.

[45] T. Ristenpart. “Hey, you, get off of my cloud:
exploring information leakage in third-party com-
pute clouds”. In: Proceedings of the 16th ACM
conference on Computer and communications secu-
rity. CCS ’09. Chicago, Illinois, USA: ACM, 2009,
pp. 199–212. url: http://doi.acm.org/10.1145/
1653662.1653687.

[46] O. Ruwase. “Parallelizing dynamic information
flow tracking”. In: Proceedings of the twentieth an-
nual symposium on Parallelism in algorithms and
architectures. SPAA ’08. Munich, Germany: ACM,
2008, pp. 35–45.

[47] H. J. Saal and I. Gat and. “A hardware architecture
for controlling information flow”. In: Proceedings of
the 5th annual symposium on Computer architec-
ture. ISCA ’78. New York, NY, USA: ACM, 1978,
pp. 73–77. url: http://doi.acm.org/10.1145/

800094.803030.

[48] E. J. Schwartz, T. Avgerinos, and D. Brumley, and.
“All you ever wanted to know about dynamic taint
analysis and forward symbolic execution (but might
have been afraid to ask”. In: In Proceedings of the
IEEE Symposium on Security and Privacy. 2010.

[49] Sensitive TSA manual posted on web. USA To-
day. Dec. 2009. url: http : / / www . usatoday .

com / travel / flights / 2009 - 12 - 08 - airport -

security_N.htm.

[50] N. Shachtman. “Under Worm Assault, Military
Bans Disks, USB Drives”. In: (2008). url: http:
//www.wired.com/dangerroom/2008/11/army-

bans-usb-d/.

[51] A. Slowinska and H. Bos and. “Pointless tainting?:
evaluating the practicality of pointer tainting”. In:
EuroSys ’09. Nuremberg, Germany, pp. 61–74.

[52] K. Z. Snow. “SHELLOS: enabling fast detection
and forensic analysis of code injection attacks”. In:
Proceedings of the 20th USENIX conference on Se-
curity. SEC’11. San Francisco, CA: USENIX Asso-
ciation, 2011, pp. 9–9.

[53] G. E. Suh. “Secure program execution via dynamic
information flow tracking”. In: Proceedings of the
11th international conference on Architectural sup-
port for programming languages and operating sys-
tems. ASPLOS-XI. Boston, MA, USA: ACM, 2004,
pp. 85–96.

[54] B. Sullivan. Government agency exposes day-care
data. 2010. url: http://www.msnbc.msn.com/id/
4186130/.

[55] Survey: SMBs are getting serious about informa-
tion protection. Symantec. 2010. url: http://www.
symantec.com/about/news/resources/press_

kits/detail.jsp?pkid=smbsurvey2010.

[56] K. Thomas. Microsoft Cloud Data Breach Her-
alds Things to Come. 2010. url: http://www.

pcworld.com/businesscenter/article/214775/

microsoft_cloud_data_breach_heralds_things_

to_come.html.

[57] T. Thorsen. PSN data leak cost could top $24 bil-
lion. Gamespot. Apr. 2011. url: http : / / www .

gamespot.com/news/6310436.html.

[58] M. Tiwari. “Complete information flow tracking
from the gates up”. In: Proceeding of the 14th in-
ternational conference on Architectural support for
programming languages and operating systems. AS-
PLOS ’09. Washington, DC, USA: ACM, 2009,
pp. 109–120.

[59] Trend Micro hit by massive Web hack. InfoWorld.
2008. url: http : / / www . infoworld . com / d /

security-central/trend-micro-hit-massive-

web-hack-212.

22

[60] J. Tucek. “Sweeper: a lightweight end-to-end sys-
tem for defending against fast worms”. In: SIGOPS
Oper. Syst. Rev. 41.3 (2007), pp. 115–128.

[61] University of California hit by data breach that
may affect 160,000 past and present students. SC
Magazine. 2009. url: http://www.scmagazineuk.
com/University-of-California-hit-by-data-

breach- that- may- affect- 160000- past- and-

present-students/article/136499.

[62] N. Vachharajani. “RIFLE: An architectural frame-
work for user-centric information-flow security”.
In: In MICRO 37: Proceedings of the 37th annual
IEEE/ACM International Symposium on Microar-
chitecture. IEEE Computer Society, 2004, pp. 243–
254.

[63] S. Vandebogart. “Labels and event processes in the
Asbestos operating system”. In: ACM Trans. Com-
put. Syst. 25.4 (2007).

[64] G. Venkataramani. “FlexiTaint: A programmable
accelerator for dynamic taint propagation”. In:
High Performance Computer Architecture, 2008.
HPCA 2008. IEEE 14th International Symposium
on. 2008, pp. 173 –184.

[65] T. Wang. “TaintScope: A Checksum-Aware Di-
rected Fuzzing Tool for Automatic Software Vul-
nerability Detection”. In: Security and Privacy,
IEEE Symposium on 0 (2010), pp. 497–512.

[66] M. Weiser. “Program slicing”. In: Proceedings of
the 5th international conference on Software engi-
neering. ICSE ’81. San Diego, California, United
States: IEEE Press, 1981, pp. 439–449.

[67] C. Willems, T. Holz, and F. Freiling, and. “To-
ward Automated Dynamic Malware Analysis Us-
ing CWSandbox”. In: IEEE Security and Privacy
5 (2007), pp. 32–39.

[68] W. Xu, E. Bhatkar, and R. Sekar, and. “Taint-
enhanced policy enforcement: A practical approach
to defeat a wide range of attacks”. In: In 15th
USENIX Security Symposium. 2006, pp. 121–136.

[69] H. Yin. “Panorama: capturing system-wide infor-
mation flow for malware detection and analysis”.
In: CCS ’07. Alexandria, Virginia, USA, pp. 116–
127.

[70] A. Yip. “Improving Application Security with Data
Flow Assertions”. In: SOSP. Big Sky, Montana,
2009.

[71] A. R. Yumerefendi, B. Mickle, and O. P. Cox, and.
“TightLip: Keeping applications from spilling the
beans”. In: In Proc. 2007 NSDI. 2007.

[72] N. Zeldovich. “Hardware Enforcement of Applica-
tion Security Policies Using Tagged Memory”. In:
OSDI. 2008, pp. 225–240.

[73] N. Zeldovich. “Making information flow explicit
in HiStar”. In: OSDI. Seattle, Washington, 2006,
pp. 263–278.

[74] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières,
and. “Securing distributed systems with infor-
mation flow control”. In: Proceedings of the 5th
USENIX Symposium on Networked Systems Design
and Implementation. NSDI’08. San Francisco, Cal-
ifornia: USENIX Association, 2008, pp. 293–308.

[75] Q. Zhang. “Neon: system support for derived data
management”. In: VEE ’10. Pittsburgh, Pennsyl-
vania, USA, 2010, pp. 63–74.

[76] D. Y. Zhu. “TaintEraser: protecting sensitive data
leaks using application-level taint tracking”. In:
SIGOPS Oper. Syst. Rev. 45 (1 2011), pp. 142–154.

23

