Description
This work presents key components of fully-featured SoCs that enable demonstration of FG-AVS. Integrated simultaneous-switching switched capacitor voltage regulators are presented that achieve high conversion efficiency when coupled with an adaptive clock generator. Power management is accomplished with programs run on a dedicated power management unit (PMU), and a pausible bisynchronous FIFO circuit that can achieve low-latency communication between asynchronous voltage domains is described. These components are integrated into systems that demonstrate the potential energy savings of FG-AVS. The Raven-3 testchip demonstrates efficient voltage regulation supplying a complicated digital load; the system achieves 26.2 GFLOPS/W while operating its processor under the generated supply voltage and adaptive clock. The Raven-4 testchip includes integrated power management circuits that allow fully integrated feedback for FG-AVS. The programmable PMU can run a wide variety of power management algorithms, including an AVS algorithm that saves 39.6% energy in a synthetic microbenchmark with minimal performance penalty. The Hurricane-1 testchip implements multiple independent voltage domains and hardware counters that can be used for power management. The Hurricane-2 testchip features finer spatial partitioning and more effective instrumentation for power management; simulation results show up to 13.3% energy savings for an algorithm exercising FG-AVS in time and 46.0% energy savings for an algorithm using FG-AVS in space. Together, these testchip implementations show the potential of FG-AVS to save energy in production SoCs.