Go to main content

PDF

Description

Obtaining timely and accurate information about the low-level characteristics of disk drives presents a problem for system design and implementation alike. This paper presents a collection of three disk microbenchmarks which combine to empirically extract a relevant subset of disk geometry and performance parameters in an efficient and accurate manner, without requiring a priori information of the drive being measured. Novel among the benchmarks is the utilization of linearly increased stride to glean a spectrum of low-level details including head-switch and cylinder-switch times while factoring out rotational effects. A bandwidth benchmark extracts the zone profile of disks, revealing that the previously preferred linear model of zone bandwidth is less accurate than a quadratic model. A seek profile is also generated, completing a trio of benchmarks. Data is collected from a broad class of modern disks, including five SCSI, two IDE, and two simulated drives.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS