We consider the problem of system identification of helicopter dynamics. Helicopters are complex systems, coupling rigid body dynamics with aerodynamics, engine dynamics, vibration, and other phenomena. Resultantly, they pose a challenging system identification problem, especially when considering non-stationary flight regimes.
We pose the dynamics modeling problem as direct high-dimensional regression, and take inspiration from recent results in Deep Learning to represent the helicopter dynamics with a Rectified Linear Unit (ReLU) Network Model, a hierarchical neural network model. We provide a simple method for initializing the parameters of the model, and optimization details for training. We describe three baseline models and show that they are significantly outperformed by the ReLU Network Model in experiments on real data, indicating the power of the model to capture useful structure in system dynamics across a rich array of aerobatic maneuvers. Specifically, the ReLU Network Model improves 58 percent overall in RMS acceleration prediction over state-of-the-art methods. Predicting acceleration along the helicopter's up-down axis is empirically found to be the most difficult, and the ReLU Network Model improves by 60 percent over the prior state-of-the-art. We discuss explanations of these performance gains, and also investigate the impact of hyperparameters in the novel model.
Title
Machine Learning for Helicopter Dynamics Models
Published
2014-12-16
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2014-219
Type
Text
Extent
23 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).