Semiconductor materials are a constant limitation and avenue of improvement for the performance and efficiency of electronic and optoelectronic devices. Nowhere is this clearer than in the parallel fields of microelectronics and photovoltaics, where scaling and optimization of silicon-based systems has dominated tangible innovation in their respective markets for decades. While III-V materials have made inroads in both high efficiency photovoltaics and hybrid opto-electronic circuits, they are traditionally limited in terms of scalability and cost due to the expense of lattice-matched substrates for epitaxy.
However, in recent years, the thin-film vapor-liquid-solid (TF-VLS) growth method has been developed to allow scalable III-V growth on non-epitaxial substrates, eliminating this practical barrier. In this talk, I explore and expand the use of two variants to this method to enable new applications in photovoltaics and optoelectronics. First, large-area TF-VLS growth is utilized to explore InP photocathodes on metal substrates with a protective electron selective contact, and direct fuel generation from sunlight is demonstrated with this structure. Second, the templated variant of the TF-VLS method (TLP growth) is discussed, where locally defined crystals can be grown directly on amorphous substrates. Devised initially to expand the scalability of microscale optoelectronics, the TLP method is expanded here by use of a simple thermal growth technique with significantly lower thermal budget. Growth behavior at temperatures compatible with silicon CMOS, glass, and plastics is explored, and proof-of-concept light emitting and transistor devices are demonstrated.
Title
Expanding the Scalability and Applications of III-V Optoelectronic Devices by Evolution of Thin-Film Vapor-Liquid-Solid Growth
Published
2019-12-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2019-160
Type
Text
Extent
75 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).