Data Structures and Destructive Assignment
in Prolog

Patrick C. McGeer
Alvin M. Despain

Report No. UCB/CSD 87/356

July, 1987

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Data Structures and Destructive Assignment in Prolog

Patrick C. McGeer
Alvin M. Despain

Computer Science Division,
University of California,
Berkeley, CA 94720

1. Abstract

Two slgorithms are copsidered for implementation in Prolog. It is saown that these algorithms cannot be
implemented in pure Prolog and retain their nominal time complexity. It is shown that a generalization of
Lisp's rplaca/rplacd construct suffices for these algoritbms. We give a method for the implementation of -
the new construct, rplacarg, on s structure-copying Warren Abstract Machine and discuss implementation
for a structure-sharing Warren Abstract Machine. We show bow rjlacarg may be implemented in CPro-
log ueing only pure Prolog constructs and the var construct. We thow that var can be implemented in
terras of the Prolog not primitive. We show that rplacarg can be used to implement multidimensional

arrays efficiently in Prolog.

3. Introduction

The Aquarius Project [Desp;inBSz] at Berkeley is developing high-performance computers

_[Despain85b] for the execution of Prolog. Part of the evaluation efort that we are making is to under-

>stand the advantages and disadvantages of Prolog for the implemeLtation of programs to solve challeng-
ing problems in difficult domains of discourse. In particular, we bave engaged in the design and unplemen--
tation of a suite of Prolog CAD tools for VLSI design [Despain86] [Pincus86] [Bush87| [Cheng87]
[McGeer87].

In the course of implementing a VLSI layout program in Prolog during the summer and fall of 1985,
we experienced difficulties in implementing standard routing and transistor placement algorithms. After
dmcumons with other groups that had used Prolog for Computer-Ailed Design of Integrated Circuits pro-
grams, we concluded that the difficulties we experienced were comn.on among Prolog CAD programmers.
We investigated the nature and source of our difficulties, and concluded that the principal problem lay in
Prolog's lack of a destructive assignment operator akin to Lisp's rzlaca or rplacd. We then investigated

the addition of such an operator to Prolog. This paper presents the results of that study.

This paper is organized into seven sections. Section II gives examples of the algorithms that we
could not implement in nominal time in pure Prolog. Section Il gives a general graph-theoretic argument
to explain the difficulty of data-structure manipulation without dest: n;ctive assignment. Section IV defines
the destructive assignment operator rplacarg that we require and its operational and semantic characteris-
tics. Section V describes an method for implementing the rplacarg ia C-Prolog, or any implementation of
Prolog that supports the var builtin. Section VI describes the featires that must be added to a Warren
Abstract Machine (WAM) [Warren83] to implement rplacarg for both the structure-sharing and structure-
copying case. In particular, we show that a highly-efficient O(1) rplacarg primitive may be added to our
WAM-based Programmed Logic Machine (PLM). Section VII desciibes 3 multidimensional array imple-

mentation based on the rplacarg construct. In an appendix, we show~ that any implementation of Prolog

that supports the . fail implementation of negation supports var as well; bence we conclude that rplacarg

is semantically implied by cut and fail.

8. D-Algorithms We Couldn't Implement Efficiently In Prolog

The central art of computer science is performing computations in the most time-efficient manner

possible. Without efficiency concerns, all of computer science is trivia.

14

Concern for efficiency leads us to create-data structures. Dats structures are ways of storing inter-

= -l

mediate results of computation, so that these computations need not be re-performed. Indeed, one might
argue persuasively that all of computer science is the design of data ctructures that have the property that

the amount of computation required to solve a given problem is minimized.

The core of our argument is that the implementation of some operations over some data structures
is difficult and inefficient in Prolog, that these data structures are relatively familiar objects in some appli-
cation domains, and that these difficulties arise precisely because of the applicative nature of Prolog. We
have a general argument to explain this phenomenon, but our casc can best be understood in light of a
few examples.

We have not been able to implement the algorithms given bclow in pominal time in pure Prolog.
By pure Prolog we mean Prolog without the well-known assert /retr3ct primitives, which are known to be
pon-applicative (or, in the Prolog parlance, pon-logical) or the var § rimitive, which we can show below is
semantically equivalent to the non-:ppl'icative r};lacarg primitive we advocate. .Furtber, we can show that
the well-known cut, fasl construction for negation is equivalent to vur, so we do pot consider implementa-

tions using cut, fail.

3.1. Kernighan-Lin Min-Cut Algorithm

The Kernighan-Lin min-cut algorithm [Ullman82] is a greedy procedure to partition hypergraphs into
two equal-sized sets so that the cut — the number of hyperedges tha. connect the two sets — is minimized.
It bas been shown that the min-cut problem for hypergraphs is NP-complete [Garey79]. However, the
Kernighan-Lin algorithm is an excellent approximation procedure.

The Kernighan-Lin algorithm begins with the nodes of the graph partitioned arbitrarily into the two

sets, called left and right. On each iteration, a pair of nodes (1, r)is selected for interchange; the pair

selected is that creating the greatest decresse or smallest increase ia the cut. The' pair are not immedi-
ately interchanged; but are merely marked as selected, treated as interchanged, and removed from left
and right. When left and right are empty (there are no more unselccted nodes), the total summed cost of)
the interchangeq;re neéxpu’ted in order. :I‘he largest negative total is taken, if there is any, those paris of
nodes are interchanged, and the selection proc;ss begins on the new Teft and right; if o negative total is
found, the algorithm terminates.

The minimum requirement cf this algorithm is that the cost of each interchange be rapidly com-
puted. This in turn implies that each byperedge bave a pointer to each node upon which it is incident.
Similarly, once a node is selected, it must be marked as selected; the selection, or not, of a node affects
future cost computations on byperdges incident upon that node. If marking a node as selected involves
regenerating the node (as it does if neither var mor some form of destructive assignment is used), each
byperedge incident upon that node must be regenerated. There arc potentially 2" such hyperedges on
an n node hypergraph, and hence this is quite an expensive operution. Similarly, when the nodes are

interchanged, if an interchange requires regeneration of each node, then every hyperedge must be regen-

erated. There are st most 2* hyperedges on an n-node hypergraph.

We provide our Prolog implementation in an appendix, using cur rplacarg primitive, to be discussed

in section IV.

3.2. O(n) Average-Case Sorting

Jon Bentley [Bentley84] has posed a puzzle in sorting. Given two integers N, M, with N< M, gen-
erate N distinct random numbers in the range [0,M] and print tlem out, sorted, in average-case time
O(N).

Clearly this problem cannot be solved in worst-case time bet(er than O(NlogN). However, Knuth
[Knuth86] has posted a solution to this puzzle with average-case bel.avior O(N), and worst-case behavior

o(N?).

The core of Knuth's method is the use of » huix table of size N, which is simply » vector. lmple-
mentation of vectors in Prolog bas proven quite troublesome, and there have been a number of proposals.

In section VII we show that the central difficulty in the implementation of vectors is the avoidance of

: copying the-entire vector when a single argument is set. This is precisely thé problem that we are trying

to solve, and so Tt is unsurprising that-our proposal here makes the implementation of arrays quite easy.
For the moment, we just note that we can use the builtin functor to get storage, and assume that in any

rational Prolog implementation aryg is O(1), snd hence can be used for indexing.

Knuth uses a3 monotone-increasing function to hash each random number into the bash table, and
uses an insertion-sort to resolve collisions. Clearly the hash table remnains sorted; if there are a very small
number of collisions, then time of the algorithm is O(N}; in fact, the probability of collision is very small.

It is possible, however, for all pumbers to hash to the same bucket, in which case Kouth'’s time is O(N?).

We bave devised a Prolog algorithm, using var,which matches Knuth's performance. Instead of
maintaining only ope item per bucket and using an insertion sort to avoid collisions, we maintain a

bucket as a list and sort the list on output. In order to avoid having to replace the entire array, we main-

tain an unbound cdr on each bucket. The algorithm appears here.!

- consult(rand_int).

table(Seed)- M = 24, N = 06, M2 is 2*M, functor(S,s, M%), % Initialize.
fil:_table{M,N,S,Seed, M),
S =.. [.155],
print_sort(SS)nl,
print(' DONE ! ’)nl.

/* fill the hash table */

ﬁll_table(MN,S,Sccd,O}.
fill_table(M,N,S,Seed,I) -
rand_ int(Seed,Snew,I,N,T),
H is 1+2*M*(T-1)//N,
arg(H, S, V), insert(T,V,1,J),

Nf we use a random pumber generator with period > M, then all genersted samples are distinct and we need pot check for
duplicates. I there are no duplicates, then the only entry in & bucket which might unify to a list containing » new entry s the un-
bound cdr, and hence we do not peed ver N

ﬁll_tablc(MMS,Snew,J).

/* Insert on element in.o the table, maintaining the unbound cdr */

insert(X, Y, 1, J) - var(Yj, Y = [xi_) Jis I-1. % Insert element.
insert(X, X1} .,) - A 9% eliminate dups
insert(X,[HIT|,1,J) - insert(X,T,1,J). % Skip down list.

>

7* If a bucket ia empty, it is unbound, and hence unifies to kruft (or, for
that matter, any atom). If it is nonempty, it ia a list, and hence won !

unify */

print_sort([]).

print_sort(fkruft|T]) - print_sort(T). ©% Strip empty lists

print_sort([H\T]) - sort(H,C),lprint(C),pr_at(T). %% Print 1th bucket

prst(f]) :-print("), nl % Terminate the printout

pr_st(fkruft|T]) -}, pr_st(T). 9% Strip out empty liste

pr_st([H\T]) - print(}’), sort(H,C), %% Sort the bucket
lprint(C) , pr.st(T). 9% Print the bucket

lprint([H]) = print(H). % Print last item

lprint([H\TJ) - print(H)print(, print(T). % Print liet element

Now, in the average case there are a small number of collisions, and bence our algorithm, like
Knuth's, is O(N). In the worst case, where every number bashes to the same bucket, the cost of sorting

the bucket is O(NlogN) but the worst-case time is determined by the cost of adding items to the end of

N
the list. This, of course, is J'i = O(N?)
(=l

Of course we could do somewhat better than this if either we could prepend to the list or maintain a
form of balanced tree rather than a list with an unbound cdr. Unf>rtunately, either balancing a tree or
prepending items to the list involves generating a mew tree or list, and thus changing the appropriate
entry in the hash table. But changing the appropriate entry in the hash table without copying the entire
hash table (an O(NV) cost for every new random number, giving us a worst-case time of O(N?)) requires
some form of destructive assignment. It is quite easy to see that if some form of destructive assignment is

employed, the worst-case time of the algorithm goes to O(NlogN), v.hich is nominal for this problem.

If we did not use var, then this hash-table algorithm would 1equire copying the hash table in the

event of a collision. This gives a worst-case time complexity of O(N?), which is the same as the

implementation using var. The space complexity of the algorithm using var is O(N), however, and the

space complexity without var is O(N?)).

4. III — A Graph-Theoretic View ,

-

=

In order to understand why the above examples_are difficult to solve efficiently in a purely applica-
tive manper, we need an abstract view of the data structures created and used by programs. We picture a
program’s data structure as a dynamic graph, whose nodes are the records used to instantiate the struc-
ture and the atoms and constants in use by the program, and whose edges represent pointers to substruc-

tures. For example, the data structure f00(1,2,3) is represented as tle graph:

Atoms and constants are nodes of outdegree 0. Upbound variables have indegree==outdegree=1,
and their sole edge points to themselves.

Ogly nodes with indegree=0 are accessible at the top level of the program; we call these nodes the
roots of the program’s data structure.

In general, we assume that it costs no more to generate a node and set its outbound edges than it

does to visit it. Hence, we are concerned with the number of visits tliat we must make to a node.

We may create or destroy nodes, but the nodes themselves hcld no value; here we are unconcerned
with the internal value of a node (in the case of an internal node, it: type — eg the name of its functor; in
the case of an atom or constanf, its name or value). All we are concerned with here is reassignilig the

edges of the graph. If a constant field changes in a structure, ve depict this by changing the edge

representing the feld from the old constant node to the new.

4.1. Principles of Modifieavicn

Now that we have a grapb-theoretic model of data structures, we cab turn our atteption to the prin-
ciples that ‘we wish 3 mo:iiﬁcation operation to have. f‘iut, weiave:ﬁiﬁdple of Covm'atensy: if a node
in the graph is modified, then either the modification must be invisible to all ancestors in the grapl;a or
those ancestors must be modified to be ancestors of the modified node. Second, we have a Principle of
Atomic Modification: if a clause C modifies a node N, it should not have to modify any other node in the

graph solely to maintain the principle of consistency.

The principle of consistency is clearly just correctness in s more specific guise. The principle of
atomic modification is a consequence of various principles of structured programming and language design,
principally abstraction and information hiding.2 There is no reason to believe that an arbitrary program
data structure graph is homogenous (in other words, all nodes are of the same type). Clearly, then, if a
clause is forced to modify an arbitrary number of nodes in the greph, it is potentially forced to modify
podes of any type. Clearly this contradicts any reasonable definitiot. of modularity or information hiding.
Indeed, one can argue that an important consequence of the structured programming revolution is the
potion that a procedure should operate on only 3 ﬂnite‘number of types, independent of the r;umber of
types defined by the entire program.

A weaker form of the principle of atomic modification may te derived on complexity grounds. In
general, the pumber of nodes in a program’s data structure graph at any time is polynomial in the size of
the input. We can certainly devise programs in which the number of reassignments of graph edges is of
the same order as the complexity of the program. Hence if the number of modifications a clause must
make m order to maintain the principle of consistency is not bcunded above by some integer k20
independent of the size of the input, then the complexity of the program will not be nominal. From these

considerations we derive the Principle of Bounded Modification:if a clause C modifies a node N, it should

+ %por a thorough discussion of such principles, see, g, [Mscl.ennl.nss]

pot have to modify more than k other podes in the graph, for k an integer >0, independent of the ui'ze of
the input.

It is very unlikely that any modification discipline that guaraitees consistency over s range of pro-
grams and data structures may iiolatk’ r’ttxe"principle of atomic mcdification and pevertheless uniformly
respect the ﬁrincipie of bounded modification. Hence it seems :ery likeiy that these two principles are in
fact equivalent.

The only form of assignment permitted by Prolog is that an unbound variable's sole edge may be
assigned to point to anything (or, equivalently, the variable's node may be replaced in the graph by any
subgraph). A more geperal form of assignment, not permitted by pure Prolog, permits edges to be reas-
signed once assigned.

Prolog's form of assignment raises the possibility of conflict between the principle of consistency and
the principle of atomic modification. If a node N is to be modificd in Prolog, then the node must be
regenerated, and 3 new pode N' created. All ancestor nodes to N must be modified to point to N’ in
order to maintain the principle of copsistency; the principle of stoniic modification forbids the procedure

that generates N' from modifying the ancestor nodes.

We immediately observe that there is no conflict between th'e two principles under Prolog’s form of
assignment if the program’s data structure graph is a forest of trees. Let N be modified by clause C to
N'. Now, either N is a root or it is pot. If N is a root, then it has no ancestors and bhence no other nodes
peed be regenerated in order to maintain the principle of consistency, and hence the principle of atomic
modification is not violated. If N is not a root, thep it has a set of ancestors say N}, . .. , N, and the set
has been traversed by a set of clauses Cy, . . . ,Cy, where clause C; traversed node N;, N, is the parent of
N4 in the program’s data structure graph and C; is the parent of Cy4, in the program’s proof tree (or, if
you prefer, calling tree). Hence C; may generate N/, where N/ is identical to N; save that it is the

parent of Ny’ rather than Ny, Since each clause modifies one and only one node in the data structure

graph, the principle of atomic modification is upheld.

If the program’s data structure graph contains networks or more'general graphs, then the principles
are in conflict indeed. The difficulty is that node N in a petwork has several parents, only one of which is
known to be ap argument to a clause in the program's proof tree. In the case of a tree abovg, the graph
could be-efuily modified sin;e the set of nodes which had to be rejenerated were visited in the natural
course of satisfying the pro;rzm's. proof tree. In the casé of a petwork, this is not the case. The principle
of consistency cannot be maintained simply by upward traversal of the program’s current proof tree.
Ratber, the set of parents must be found by explicit traversal of the program’s data structure graph and
directly modified. Since this procedure is recursive, potentially the program 's entire dota structure graph

must be immediately regenerated, which is a clear, and serious, violation of the principle of atomic

modification. It is also, in general, a violation of the principle of bouaded modification.

Prolog programmers therefore have three choices. First, we may use only trees or simplifications of
trees (such as lists, simply 3 special case of a binary tree); second, we may violate the principle of atomic
modification, which in practice makes many programs expensive and difficult to write; or we may choose

to embrace a more general form of modification.

§. IV - Requirements for a General Form of Modification

The preceding argument shows the general requirements for a general form of modification. First,
any such operation must follow the two principles laid down in the preceding section. Second, such an
operation permit atomic traversal of any edge in the program data structure graph. Third, values of vari-
ables and structure components form part of the state of the progrum at any time; backtracking restores
program state, and hence must restore variable values. Therefore assignments must be undone automati-
cally on backtrack. Fourtb, fully geperal assignment such as Lisp's aq is not required; all that is required

is some method of manipulating arguments of structures atomically.

5.1. Methods of Representation of Data Structures.
For obvious reasons, the method of modifying data structures is bound up in their representation.

We examine three options:

5.1.1. Use of the Prolog Database, and Modifications using Assert /Retract

This has been a popular choice among Prolog CAD programmers [Hil184], but we find it unsatisfac-
tory for several reasons. First, we find that one of the strengths of Prolog is its ability to equate several

variables without assigning any of them to values; an assignment— to any one therefore assigns to them all.
Aaa:rt destrbys such links between Iogicai variables. Second, links between nodes in the data structure
graph must be maintained through some form of keys, and the Prolog database search mechanism
employed to search for the successor nodes. This search may appear to be O(1) to the programmer, but
an actual O(1) search on a procedure that changes during the coursc of a program’s execution requires an
adaptive hashing scheme beyond that employed by most Prolog cxecution environments. On another
level, the use of such keys is really s form of explicit pointers, and one of the major motivations for sym-
bolic programming languages bhas historically been the desire to avoid explicit pointers. Third and most

important, such modifications are pot undone on backtrack, which we (and most Prolog programmers) find

unacceptable.

5.1.2. Use of Secondary Storage Structures with Explicit Keys

In this method, rather than storing the actual pointers to successor nodes, nodes store keys and
search a secondary structure which may be easily modified for the value.? We have two objections to this.
First, structures which may be modified easily are trees, and hence the cost of any modification is bounded
below by logn, and above by n. Second, the objection to explicit pointers cited above applies here.

Third, additional storage structures unnecessarily complicate the code.

§.1.3. Use of Implicit Polnters and an Explicit Asslgnment Mechanism, rplacarg

We prefer to manipulate pointers implicitly, in the manner of classic Prolog and Lisp programs. In

order to do this, we need an explicit mechanism to reset pointers.

Yee, eg, [Bratkoss] B

Thbe mechanism we choose is 3 generalization of Lisp's rplaca snd rplacd mechanisms. Our mechan-
ism, rplacarg(Term, ArgNum, Value), sets the ar;ufnent ArgNum of term Term to Value. No unification
is done on Term, other than to determine that it has at least Arghum arguments, and to determine the
address of ArgNum. ’.I'he value Vc;lue is then written into the appropriate location, and the old value and

the address trailed. .

Notice that rplacarg when called on 3 list with ArgNum=2 is equivalent to rplacd, when Arg-
Num==1 it is equivalent to rplaca.

When rplacarg is used to manipulate edges, both the principles enumerated in the previous section
are respected; consistency is maintained, since the assignment is transparent to all other nodes in the
graph, and atomic modification is maintained since only one memory location (and hence only one node) is
aflected. Further, structures are represented naturally, without explicit indices; no secondary data struc-

tures are required, and hence pointer traversal is O(1).

6. V - Implementation of Rplacarg in Quasi-Pure Prolog

Quasi-pure Prolog is Prolog code that does not use assert, reiract or write, but that does use cut,
fail and other built-in meta-logical primitives such as var. In this section, we demonstrate an implemen-

tation of rplacarg using the var primitive. i

Conceptually, what we want to do here is permit programs written in Prolog to behave as if Prolog
was a language that permitted multiple assignments, when in fact it permits only a single assignment. In
order to do this, we must store rather more thap the value of some component of a structure in its slot;
we must store a data structure, containing at least the current value of the slot and an unbound variable;
the unbound variable is reserved to be bound to future values of the component. Both an inductive view
of this requirement and the need to save old values against backtracking indicate that all old values of the

component mus tbe stored in this structure.

The simplest structure which performs these tasks for us is a list, whose last element is an unbound

variable and whose remaining elements are past values of the component, in order; the first element of the

1

list is the first value of the component, and the last (but one) is the current value of the component.
Accessing the current value involves traversing the list until the last bound element is reached, and return-
ing that value; setting the current value involves traversing the lis: until the last element is found, and

then binding that element to a list consisting of the current value folowed by an unbout_xrd;variable.

To svoid semantic confusion when either unbound variables or lists become values of the component,
we use an equivalent data structure, which we call a valStruct; » valStruct has two components, value
and futureValues. The equivalence of a valStruct to 3 list is easily seen if it is remembered that the Pro-

log list operator is merely sybtactic sugar for the binary operator . , which was the list operator in early
Prolog implementations.
We formalize these notions in two procedures: accessVal and sVal. accessVal accesses the current

value of such a nested valStruct; setVal sets a nested valStruct to a new value.

accessVal(valStruct(X, U), X) -
var{U).

acccaaVal{valStructi_, Y) X) -
accessVal(Y, X).

setVal{U, X) -
var(U),
U = valStruct(X, _). .

setVal(valStruct(_, Y), X) -
setVal(Y, X).

Once this construct is adopted it is relatively easy to write rplacarg:

rplacarg(Term, ArgNum, Value) -
arg(Term, ArgNum, Arg)
eetVal(Arg, Value).

It is relatively easy to see that this implementation of rplacarg meets our criteria; in particular, old
values are restored on backtrack. It does, however, create three problems:

(1) Since components of data structures no longer contain only the value of the component, programs

canpot use the unification mechanism of Pralog to examine structurzs directly; rather, they must use the

analog to rplacary:

accessarg(Term, ArgNum, Value) - R
arg(Term, ArgNum, Arg), -
- aiccuVal(Arg, Value).
This is not 3 major problem for us, since we prefer access prozedures and type definition code to
upification in any case: it makes modification of the defipition of data structures easier during program
development. Many Prolog progra:.ime«s, bowever, find the unificati>n mechanism extremely helpful.
(2) Access times can no longer be bounded by O(1); rather, each access (or set) consumes time propor-
tional to the pumber of times a component is set during the course of an algoritbm; of course, this pumber
may be proportional to the time complexity of the algorithm, though in general it is O(1). Hence this
jmplementation can in a pathological case square the running time of an algorithm.
(3) This method stores all old values of every component, which is extremely space-inefficient. We shall
show below that an old value need be stored only in 3 subset of the cases where the address of the com-
ponent would need to be stored if bound as an unbound variable. As shown by Warren and others|Tick86]
experimentally, this is only a small percentage of the cases. Hence mnost of the storage used by this algo-

rithm is garbage, and, worse, garbage that caninot be collected by mcst garbage collection algorithms.
In sum, this method permits the development of programs using networked data structures in
current Prolog implementations; it also serves to show that rplacarg is po worse 3 corruption of pure Pro-

log than var.

7. V1 - Implementation in & Warren Abstract Machine
The Warren Abstract Machine [WAM] is a three-stack architecture for the execution of Prolog. Vir-
tually every Prolog implementation assumes some variapt of the WAM, or implements one, all the way

from interpreters through dedicated hardware.

In most respects, the WAM is 3 conventional stack-based Voo Neumann uchitectur'e. The WAM's
local stack resembles the stack on most conventional machines. The stack contains two types of data
structures, environments (analogous to and closely resembling stack frames in conventional architect.pres),
and choice points. Th_gse ase "fequired to suppo;t the non-determinacy of Prolog programs. They save the
register values and form a "cap” on the stack which cannot be removed @ntil this choice’ point is either
exercised or removed by a cut. The second stack, the heap, is precis:ly analogous to the beap in Algol-60,
and performs the same function. The third stack, the trail, has no analogue in pon-WAM machines. Its
purpose is to save the addresses of variables which have been set, so that these variables may be unset
upon backtrack.

Clearly not all values peed be reset upon backtrack. In particular, variable Jocations above the top of
the heap when the last choice point was laid down will disappear un backtrack, and hence need not be
teset; similarly, variables above the top choice point on the stack n.ed not be reset. WAM architectures

perform both these optimizations.

7.1. Structure-Copying Machines

On structure-copying machines, rplacarg is an extremely simple operation to implement. In such
machines, an n-field structure takes up n+1 consecutive locations on the heap. The first location contains
the functor and arity information; the remaining b contain the n arguments, in order. Hence implement-
ing rplacarg requires only finding the base address of the structure cn the heap, indexing to the argument

to be written, and writing it directly; no unification is involved.

Of course, the rplacarg operation must be undone on backtra:k, so if the location written must be
trailed as if written originally, and its original value trailed with it. The usual optimizations apply; if this

location will disappear in any case on the next backtrack, then the trailing need not be done.

The need to trail values as well as locations means that trail eutries must become 3 pair rather than
» single entry. Strictly speaking, trail entries need only be a pair if the previous entry was a value, rather
than the special value unbound, however, we suspect that the penalty for making each entry on the trail a

pair rather than discriminating on this basis is too small to warrapt the additional implementation

complexity.
On a side note, this implementation adds some garbage to the trail. Suppose some location k is writ-
ten twice after some choice point has been laid down and before the next one is laid down; k will be writ-

-

- ‘ten twice on the trail, and on backtrack will have two values restored, only the sécond of which is at all

relevant to future computation. Touati[TouatiSG], however, has demonstrated that it is a small matter to

garbage-collect the trail.

7.3. Structure-Sharing Machines

Structure-sharing implementations of the WAM do not directly represent a structure on the heap in
the straightforward manner of structure-copying implementations. Rather, a structure is represented on
the heap by k+1 consecutive locations, where k is the number of variables appearing in the skeleton of the
structure, that is, the instance of the structure appearing at some location in the program. This practice
saves some heap space when constants appear in structures in the program, since the structures’ constant
arguments are not copied onto the heap.

In a structure-sharing implementation|Warren77], the first of the k+1 heap locations contains 2
pointer to the skeleton in code space, and the remaining k arguments provide values of the variables refer-

enced in the skeleton. For example, the structure foo(l, X, &, Y) would be represented as:

foo

Heap Entry Skeleton

foo(1, X, 2, Y): Structure-Sharing Implementation

_n in the diagram refers to an offset of n locations from the base of the heap entry.

Space-saving is achieved since the skeleton, which is at least as large as the heap entry, appears only
once, while the heap entry is created as often as the structure based on this skeleton is instantiated. Ina

structure-copying implementation, the beap entry is the same size as the skeleton.

Unification is more complex in 3 structure-shariog environment, and for obvious reasons. rplacaryg is
more complex in a structure-sharing environment as well. First, the skeleton must be referenced to deter-
mine which beap location must be written. It may be that the appropriate argument in a structure-
sharing environment is not 3 beap location (for example, arguments 1 or 3 in the above example), in which
case the replacement should pot take place, since the replacement would occur in every instance of this

skeleton on the heap; clearly not what is desired. rplacarg must fail, or, better, signal an error.

More subtle bugs may occur in 3 structure sharing environment. Consider the skeleton foo(X, X)

The diagram appears below

Y

foo

Heap Euntry Skeleton

foo(X, X): Structure-Sharing Implementation
Now, suppose it was desired to replace the first argument of some instance of this structure: if it bad
been 1, suppose it was written to 2. rplacarg would access the first argument in the skeleton, find that it
was 2 heap offset (offset of 1), would find the location in the heap and then write it with the value 2. Sub-
sequent accesses to the second argument would also find that its value was 2, because the first and second

argumnent reference the same memory location.

Note, incidentally, that this bug afflicts the implementation of rplacarg given in the previous section.
This bas not aflected the progr-ams we have written using this mechanism (including a 3000-line circuit
layout package) since our data structure definition packages do not create skeletons containing either con-
stants or repeated variables.

The solution to this bug is to attach a pon-writeable protection flag (it need only be 2 single bit) to
each argument of 2 skeleton in Prolog. If the flag is FALSE, then the argument can be written; if it is
TRUE, then the argument cannot be written. This is not a difficult task, since the writeability of any
argument is determined when the skeleton is created, and is quite easy to determine: the only writeable

arguments are those which are variables which only appear once in the skeleton.

8. VII — A Note Concerning Arrays

A number of array implcmentaiions have been proposed for Prolog in recent years.* Most such-

See, ef [Cobensal, iTouatise]

implementations use the assert/retract primitives of Prolog, or propose pew data areas to contain the
array, or some combination of these effects.

If rplacarg is admitted, arrays fall quite paturally into standard Prolog as just another form of struc-
ture. The principle difficulty that people have in forming arrays is that the pécessary relationst;ip between
the addresses of the various elements means that the graph of the array data structure is, in someense,
complete; each element of the array has an implicit pointer to every other element of the array. Hence
any modification of any element of an array under s purely applicative model of computation requires
copying the entire array, as discussed in section IIl. Once the applicative model is disposed of — and in

section IV we see it does not apply to Prolog, in any case — array implementation becomes quite easy.

An array is merely a data structure with two fields — a dope vector, which describes how a given ele-
ment may be found, and 3 one-dimensional vector of storage which we call a hunk, which contains the ele-
ments. Now, under any reasonable Prolog implementation data structures will be stored contiguously in

memory, so we use the built-in CProlog primitive functor, which creates a term of arbitrary size.

We give the code to make and access arrays here. Note that arrays here are structures of four com-

ponents; the fields Dimension and DimenasionVector are included merely for error-checking.

The code is relatively straightforward, and should be easy to follow. makeArray(DimensionVector,
Array) makes a multi-dimensional array of size indj.ated by bimenaionVector, which should be a list of
positive integers; accessElement(Array, IndezVector, Value) returns the appropriate element of Array in
Value; of course, IndezVector should be a list of positive integers of the appropriate size of appropriate
values. setElement(Array, IndezVector, Value) sets the appropriate element of Array to Value. The other

routines appearing here are required for support.

The actual implementation of arrays in CProlog 1.5 was a little more complex than this, since CPro-
log only permits terms of size 100; readers who wish the array package should write the authors. The
point of this section is merely to demonstrate that, once rplacarg is admitted in Prolog, then the imple-

mentatiqn of arrays is quite patural in Prolog, and requires no other extension to the language.

/* Code to make an array. the dimension and Dimenaion vectors are
unnecessary; in fact, dimension is 80 far unused. Dimension vectors are
good for error checking during access... 2/

makeArray(DimensionVector, array(Dimension, DimensionVector, DopéVector, Elements)) -
makeDopchctor(Dn'menu'onVedar,pimcnu'on,Size,DopeVedor},
allocateStorage(Size, Elements). o -

* . -

Make the dope vector for the array; the idea is to make address calculation
simple...ie., if the indez vector is i[1],5(2),i[8] and the dope vector is

df1), dfe), s, the addres: is:

if1]%af1] + ife]*dle] + i[sj*d(s/

-

makeDopeVector([,0,1,]) - 1. /* Sizeof 1isc hack for the usual caze..®/

makeDopeVector([Diml|_}, ., ., -) =

Dim <=0,
write('Error -- size <= 0 in o dimension of this array’) nl, J,
fail. :

makeDopeVector([Dim| Rest],Dimenaion,Size,[Sizel| DopeVect)) -
makeDopeVector(Rest,Dim1,51 zel,DopeVect),
Size 8 Dim * Sizel,
Dimension e Dim1 + 1, \.

allocateStorage(N,Storage) =
Junctor(Storage,hunk,N).

/* Dig the value of an element out */

.

accessElement(array(Dimension, DimensionVector, DopeVector, Elements),IndezVector,Val) -
calculateArg(DopcVect,DimenaionVcctor,Indcchctor,ArgB},
Argis Argf + 1,
accessarg(Arg,Elements,Val).

/* Set an Element %/

setElement(array(Dimension, DimensionVector, DopeVector, Elements)IndezVector,Val} -
cal culateArg(DopeVed,DimcmionVcctor,Indcchctor,AryE},
Argis Arg2 + 1,
rplacarg(Arg,Elements,Val).

/* Calculate the arg (offset) of an element [rom ite dope vector. The Indez
Vector is given merely for error-checking */

calculateArg([.[.0],0) = !
colculateArg([.f....) =)

write('error - too many dimensions in access’), nl, !,
fail.

var(X) - not(not_a(X)), not(not_b(X)j.

not(X) - X, 1, Jail.
not(_).

-

Of course, this variant of negation is somewhat controversial in the Prolog community; espescially

when it is applied to non-ground terms (as it is bere)|Flanagan86]. However, we suspect that we could
write a such a var procedure in most reasonable forms of negation; moreover, since we immediately back-

track over the bindings we make, we are pot troubled by inconsistent bindings.

11. Appendix - Implementation of Min-Cut Algorithm in Prolog Following is the code for the

min-cut algorithm, implemented using rplacarg in Prolog. We use setField and accessField as symbolic

synonyms for rplacarg and accessarg.

9% min-cut algorithm. Given o partition of the graph, find o new partition
% so that the cut is minimized.

min_cut(U, V, NewU, NewV) -
turn_off_selections(U),
turn_off_selections(V),
min_cut_loop(U, V, Selections),
min_cut_movelist(Selections, Moves),
min_cut_check(Moves, U, V, NewU, NewV).

turn_off_selections(f]) == !
turn_off_ sclections([Block| Blocka]) -
setField(Block, selected, Jalae),
turn_oﬁ_aelcdiona(Blocka).
%% End of algorithm, or try again? IJ Moves are [}, can improve placement.
min_cut_check([, U, V, U, V)L
min_cut_check(Moves, U, V, NewU, NewV) -
make_moves(Moves, U, V, NeztU, NeztV),
min_cut(NeztU, NeztV, NewU, NewV).

% make moves. Looks weird, but I swear it's faster this uay O(gn) instead
% of O(n"2). .

make_moves(f], U, V, NewU, NewV) :-
concat(U, V, L),
partitionOntoSides(L, NewU, NewV).

make_movea([coet (U0, V0, _) Moves], U, V, NewU, NewV) :-
setField(UO, side, right),
setField(V0, side, left),
make_moves(Moves, U, V, NewU, NewV).

partitionOntoSide:a(ﬂ, 5k

partitionOntoSidca([BlOckIBiocka], ['Bloclee[ta], Rights) :-
accessField(Block, side, left), .
A
partitionOntoSs’dea(Blocka, Lefts, Rights).

partih’onOntoSidea([’BlocklBlocka], Lefte, [BlocklRighta]) -
part itionOntoSides(Blocks, Lefts, Rights).

%% main loop. Trivial Cases.
min_cut_loop(f], ., [}) - !
min_cut_loop(_, [) =~ !.

min_cut_loop(U, V, [SclcctionlSelediona]} -
infinity(Inf),
min_cut_aelect(U, V, cost(., ., Inf), Selection),
Selection = cost(U1, V1, Coat),
(Cost = Inf -> write('Selection unbound!’), nl, break; true),
setField(U1, aelected, true),
setField(V1, selected, true),
delete(U, U1, Up),
delete(V, V1, Vp),
min_cut_loop(Up, Vp, Selections).

©% trim the selectione made by min_cut_loop down to ¢ movelist.

min_ cut_movelist(Selections, RealSelections) :-
ﬁnd_min,point(Selediona, 0,0, 0,0, N)
trim_aelections(Selections, N, RealSelections).

% find the point where the sum is minimum.
ﬁnd_min_point(ﬂ, N N)-L

ﬁnd_min-point([coct(_, _, Cost)\| Sels], Coastln, CurMin, LastPt, MinPt, N) -
ThisCost is CostIn + Cost,
ThisPt ie LastPt + 1,

(ThisCost < CurMin ->
find_min_point(Sels, ThisCost, ThisCost, ThisPX, ThisPt, N)

ﬁnd,min-point(Scla, ThisCost, CurMin, ThisPt, MinPt, N)
) :

%% Now trim aclectione, guided by N.

trim_selectiona(_, 0, []) - .

trim_ selectiona([Sel| Selectione], N, [Sell RealSelections]) -
NisaN-1,
!,
“trim_selections(Selections, N1, RealSelections).

©% Inner loop for the min-cut algorithnf. Select o pair to be interchanged.
9% Really a double do-loop. min_cut_select is outer do — 8uuz is inner do
min_cut_select(f], ., CostStruct, CostStruct) - I.

min_cut_select (U0 RestU], V, CostIn, Coat) --
min_cut_select_auz(V, UG, Costln, NeztCost),
min_cut_select(RestU, V, NeztCost, Cost)

min_cut_select_ouz(f], ., Cost, Cost)1

min_cut_select_auz([V1 ReatV], U, cost(_,_,Cost), CostOut) -
computeCost(U, V, Cost1),
Costl < Cost, !,
min_cut_eselect_ouz(RestV, U, cost(U, V, Cost1), CostOut).

min_eut_select_ouz(V| ReatV], U, Cost, CostOut) -
min_cut_select duz(RestV, U, Cost, CostOut).

computeCost(U, V, Coat) :-
accessField(U, nets, UNets),
accessField(V, nets, VNets),
ordered_set_intersection(UNets, VNete, netOrder, Nets),
set_difference(UNets, Nets, UNets1)
set_difference(VNets, Nets, VNetsl)
computeCostIncrement(UNets1, U, 0, CostU),
computeCostIncrement(VNets1, V, 0, CostV),
Cost is CostU + CostV.

% successful if name of X less than name of Y

netOrder(X, Y) -
sccessField(X, name, NomeX),
accessField(Y, name, NameY),
xXo<yY. :

computeCostIncrement(]], ., Cost, Cost)1

computeCostIncrement([Net | Nets], Block, CostIn, CostOut) -
partitionBlocks(Net, LeftBlocks, RightBlocks),
computeIncrement(LeftBlocks, RightBlocks, Block, Inc),
NeztCost is Costin + Inc,
computeCostIncrement(Nets, Block, NeztCost, CostOut).

partitionBlocks(Net, LeftBlocks, RightBlocks) -
accessField[Net, blocks, Blocks)
splitBlocks(Blocks, LeftBlocks, RightBlocks)

splitBlocks(f], []. [}) - 1.

splitBlocks([Block| Blocks], [Block| LeftBlocks], RightBlock.) -

- accessField(Block, side, Side), =
accessKield(Block, eelzcted, Selected), - -
(Side = left, Selected = false; Side = right, Selected = true),
I}

eplitBlocks(Blocke, LeftBlocks, RightBlocks).
eplitBlocke([Block| Blocks], LeftBlocks, [Block| RightBlocks)) -
eplitBlocks(Biocke, LeftBlocks, RightBlocks).

9% How to compute the increment? If either side is null, tlock must be on the
% other side and hence moving it to this side will increase cost by 1.

computelncrement(f], ., ., 1) == !
computelncrement(_, [, _, 1)1

0% If block is the only one on one side, moving it to the other removes this
©% net from the cut. Cost decreased by 1.

computelncrement(U], _, U, 1)1
computelncrement(_,{UJ, U, -1) -1

%% Otherwise no effect on cost.

computelncrement(_,_, ., 0) == L

12. References

[Bentley84] Bentley, J, "Programming Pearls”, CACM 27, December, 1984.
[Bntk086] Bratko, 1., Prolog Programming Jor Artificial Intelligence, Addison-Wesley, 1986.

[Bush87] Bush, W. snd Despain, A, "High-Level Synthesis Using Prolog”, submiltted to 24th Design Auto-
mation Conference, July 1987.

[Cheng87] Cheng, G., and Despain, A., "STICKS-PAC: A Case Study in the Use of Prolog as a VLSI
Design Environment”, submitted to VLSI 87, August, 1987.

[Cohen84] Cohen, S., "Multi-Version Structures in Prolog”, Fifth Generation Computer Systems 1884,
1084. .

[DespainBSa] Despain, A., snd Patt, Y., "Aquarius: A Higb-Performance Computing System for

Sy mbolic/Numeric Applications”, COMPCON Spring 1985, 1985.
[Despain85bl Despain A., "A High Preformance Prolog Co-Processor”, WESCON 1 985, 1685.

[Despain86] Despain, A., "A High-Performance Hardware Architecture for Design Automation” ,Aerospace
Applicationa of Artificial Intelligence, 1986.) ‘

|ﬁanagan86] Flanagan, T., "The Consistency of Negation as Failure”, Journal of Logic Programming

vol. §; no. &, July 1986. - -

[Hilgs] Hill, D., private communication

[Hills4] Hill, D, "..A Case Study in the Uses of Prolog”, ICCD 84, October, 1984.
[i@uthSG] Knuth. D., "A Small Work of Literature”, CACM £9, Ma), 1986.

[MacbennanBB] MacLennan, B., Principles of Programming Languc ges: Design, Evaluation, and Imple-
mentation, Holt, Rinehart, and Winston, 1983.

[McGeerS?] McGeer, P., and Despain, A. *The Topolog IC Layout Pickage”, submitted to VLSI 87

[PincusSﬁ] Pincus, J., and Despain, A., *Delay Reduction Using Sim.lated Annealing”, Proc. 25rd Design
Automation Conference, July, 1986.

|Tick86] Tick, E., "Memory Performance of Lisp and Prolog Piograms”, Proc. Third International
Conference on Logi~ Programming, Springer-Verlag, 1986.

[Touati86] Touati, H., private communication.

[Turk86] Turk, A., "Compiler Optimizations for the WAM”, Proc. Third International Conference on
Logic Programming, Soringer-Verlag, 1986.

[Warren77] Warren, D., "Implementing Prolog - Compiling Predicate Logic Programs”, Research Reports
89 & 40, Dept. of Al, Edinburgh Univ., 1977.

|Warren83] Warren, D., "An Abstract Prolog Instruction Set”, Technical Note 809, Al Center, SRI

