PDF

Description

This note discusses the relationship between the two problems of the title. We present probabilistic polynomial-time reductions that show:
1) To factor n, it suffices to be able to compute discrete logarithms modulo n.
2) To compute a discrete logarithm modulo a prime power p^(e), it suffices to know it mod p.
3) To compute a discrete logarithm modulo any n, it suffices to be able to factor and compute discrete logarithms modulo primes.

To summarize: solving the discrete logarithm problem for a composite modulus is exactly as hard as factoring and solving it modulo primes.

Details

Files

Statistics

from
to
Export
Download Full History