Description
The analog front end implements a novel trainable feature extraction algorithm for metal-oxide gas sensor arrays. The algorithm extracts one composite feature of all analytes and transforms the sensor responses into concentration-invariant spike patterns. This composite feature is extracted by performing the gradient decent algorithm during training. This 6-channel analog frond end consumes 519 nW/channel in the training mode, and 463 nW/channel in the recognition mode.
The spike pattern classifier consists of a transformation of the input spikes into high-dimensional sparse vectors and a cortical memory model. The transformation is based on a random sampling scheme that can be efficiently performed with circuits exhibiting large parametric variations. Moreover, sparse representations allow fast and robust pattern storage and retrieval with associative memories such as the correlation matrix memory. It’s realized today that hyper-dimensional computing architectures like this may be a perfect match to the emerging nano-scale devices. We show how this classifier can be densely and efficiently implemented in a 3-D CNFET-RRAM technology.