We study the approach to near-equipartition in an N-dimensional FPU Hamiltonian. We investigate numerically the time evolution of orbits with initial energy in some few low-frequency linear modes. Our results indicate a transition where, above a critical energy, one can reach near-equipartition if one waits for a time proportional N2. Below this critical energy the time is exponentially long. We develop a theory to understand the time evolution and deformation of the actions of the oscillators based on a normal form treatment of the resonances among the oscillators. Our theory predicts the critical energy for near-equipartition, the time scale to near-equipartition and the deformation of the actions below equipartition, in qualitative agreement with the numerical results.
Title
TIME SCALE TO ERGODICITY IN THE FPU SYSTEM
Published
1993-11-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
ERL-93-92
Type
Text
Extent
46 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).