
Exploring a New IoT Infrastructure

Paul Bramsen
Sam Kumar
Andrew Chen
Dibyo Majumdar

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-56
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-56.html

May 11, 2017



Copyright © 2017, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.



Exploring a New IoT Infrastructure

by

Paul Bramsen

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor John Kubiatowicz, Chair
Professor John Wawrzynek

Spring 2017



The thesis of Paul Bramsen, titled Exploring a New IoT Infrastructure, is approved:

Chair Date

Date

University of California, Berkeley



Exploring a New IoT Infrastructure

Copyright 2017
by

Paul Bramsen
Sam Kumar

Andrew Chen
Dibyo Majumdar



1

Abstract

Exploring a New IoT Infrastructure

by

Paul Bramsen

Secure channel work from paper originally by Paul Bramsen & Dibyo Majumdar

GDPFS work from paper originally by Paul Bramsen & Sam Kumar & Andrew Chen

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor John Kubiatowicz, Chair

Internet-connected devices are rapidly becoming ubiquitous. This so called Internet of
Things (IoT) carries significant security implications thanks to all the sensors, actuators, and
computers that make up the devices. If they are not properly secured, IoT devices enable
malicious actors to spy on, digitally attack, and even physically harm victims. Unfortunately,
many IoT devices are currently chock-full of security holes. We believe that this is largely
the result of traditional network abstractions being a bad fit for the IoT. The Global Data
Plane (GDP) is a new architecture for global IoT storage and communication that makes
data the network’s “narrow waist” by presenting users with secure single-writer append-only
logs.

In this report, we present some improvements to the GDP and show that the append-only
log is an abstraction that can underpin powerful applications which operate on mutable data.
First, we present changes to some of the GDP protocols to improve the performance and
security of the GDP. We describe these changes in detail and argue for their merit based on
empirical data. Next, we present the Global Data Plane File System (GDPFS), a distributed
filesystem that expresses mutable files on top of append-only logs and provides efficient data
access within files. Because it is built on top of the GDP, the GDPFS has the potential to
scale very well and run securely while giving application developers a traditional interface
for managing data.



i

To Mom Bramsen, Dad Bramsen, Cory Bramsen, Maki Bramsen, Bedstemor Bramsen,
Uncle Rich Prohaska, Nathaniel Barlow, Josh Ricafrente, Grace Han, Heather Caughell,

Nardeen Dawood, Rebekah Inouye, Evan Pope, Risa Balcom, The Workshop men, Dan &
Deb Goodson and all the other Berkeley Cru students and staff, The Berthas, The Bakers,
The Strykers, and all my other friends and family—in Berkeley, Santa Barbara, and around

the world—who have encouraged and supported me through my time as a UC Berkeley
student and helped shape me into who I am today. Lastly, Leo the cat Bramsen for his

uplifting playfulness and fluffiness and Chad the cat Bramsen for his affectionateness (when
he is in his basket).

I can do all things through Christ who strengthens me. —Philippians 4:13 NKJV



ii

Contents

Contents ii

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 The Rise of Ubiquitous Connected Devices . . . . . . . . . . . . . . . . . . . 1
1.2 IoT: Internet of Troubles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 The Global Data Plane: A New Architecture . . . . . . . . . . . . . . . . . . 3
1.4 This Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Secure Channels 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Global Data Plane Network Protocol . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Security & Performance Architectural Enhancements . . . . . . . . . . . . . 10
2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 GDP Secure Channel Related Work . . . . . . . . . . . . . . . . . . . . . . . 21

3 Global Data Plane File System 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Overview of the GDPFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 GDPFS Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Wrapping Up 43
4.1 Future Work & Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



iii

List of Figures

1.1 Global Data Plane Architecture [33]. Sensors actuators connect can connect to
the GDP directly although often they will be lower power and connect through a
gateway. Applications can live anywhere (often this means they are local however
they can also be pushed to the cloud) and read from/write to GDP logs in order
to communicate and store data. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The GDP operates above the network layer. Applications can be built either on
the raw GDP using the GDP client library or on top of so called Common Access
APIs (CAAPIs) that offer traditional data storage and access abstractions to the
user (e.g. GDP file system which is presented in chapter ??). [40] . . . . . . . . 5

2.1 Illustration of circuit establishment procedure . . . . . . . . . . . . . . . . . . . 12
2.2 Overhead ratio (new version / old version) vs. circuit timeout value for different

percentages of flows using circuits, and different signature frequencies (calculated
based on trace). A ratio of 1 means no increase or reduction in overhead. . . . . 16

2.3 Overhead ratio (new version / old version) vs. circuit lifetime for different fre-
quency of writes, and different signature frequencies (calculated based on trace).
A ratio of 1 means no increase or reduction in overhead. . . . . . . . . . . . . . 18

2.4 DTLS channel establishment [38] . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Basic layout of a GDPFS file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Overview of the GDPFS structure. Data flows between vertical boundaries. . . . 26
3.3 Interface to a FIG Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Example insertions into a FIG Tree. . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Macrobenchmark results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Distribution of times to create a file over 3000 files. . . . . . . . . . . . . . . . . 39
3.7 Distribution of times to write 32 blocks (128 KiB) over 100 writes. . . . . . . . . 40
3.8 Distribution of times to read 32 blocks (128 KiB) over 100 reads. . . . . . . . . 41



iv

List of Tables

2.1 GDP Version 3 Protocol Data Unit (existing format) . . . . . . . . . . . . . . . 9
2.2 Circuit Establishment Request/Response optional header field. . . . . . . . . . . 10
2.3 GDP Version 4 Protocol Data Unit. This is the new version of a GDP PDU.

Changes are in bold. Note that the order of some of the fields has changed. . . . 13
2.4 GDP trace data. Note: we analyzed approximately 1.5 hours worth of data for

gdp-01 and 41 hours of data for gdp-{02,03,04}. All three 41-hour traces were
collected during the same time window. To avoid combining apples and oranges,
we exclude the gdp-01 data from the Total column. . . . . . . . . . . . . . . . . 17



v

Acknowledgments

We would like to thank the Swarm lab Global Data Plane group for their support through-
out this work. In particular, we would like to thank Professor John Kubiatowicz for his ar-
chitectural guidance as well as Eric Allman and Nitesh Mor for their help in understanding
the current GDP implementation and architecture as well as providing us with GDP trace
data. Eric and Nitesh were always happy to spend time resolving our confusions and we are
indebted to them for their helpfulness. Additionally, we would like to thank Eric for aiding
in the process of debugging and patching the GDP C client library and log daemon whenever
we ran into bugs that we could not work around. We are thankful to Ken Lutz for helping
us review our work and determine which results were most significant. We would also like to
thank Professor Vern Paxson for his feedback on the network security portion of our work.
Sam Kumar and Andrew Chen joined the GDP filesystem effort at an early stage. They
co-designed and co-implemented many of the GDPFS features presented in this report. They
also co-wrote the initial GDP filesystem paper that the filesystem chapter of this report is
based on. Dibyo Majumdar co-designed GDP secure channels. He also co-wrote the initial
GDP secure channel paper that the secure channel chapter of this report is based on. We are
thankful for Sam, Andrew, and Dibyo’s contributions and very much appreciate that they
allowed us to reuse the material in this report. Finally, we would like to thank our faculty
readers, Professors John Kubiatowicz and John Wawrzynek, for taking time to review this
report.



1

Chapter 1

Introduction

1.1 The Rise of Ubiquitous Connected Devices

Over the course of the last decade, the number of devices connected to the Internet has
exploded, surpassing the global population in 2012 and doubling over the next few years
[24]. Cisco believes this number will be as big as 50 billion in 2020 [19]. Much of this growth
is the direct result of the rise of the Internet of Things (IoT): the massive network of small
Internet-connected sensors, actuators and processors that are rapidly becoming ubiquitous.
Everything from your watch to your toaster can now Tweet [1].

This level of hyper-connectedness means that tomorrow we will be able to widely de-
ploy systems that are in their infancy—if they exist at all—today. Systems like university
campuses that can automatically detect and alert police to violent crime, energy efficient
buildings that automatically learn when they can cut lights and HVAC systems, or cities
that efficiently route traffic and automatically detect infrastructure failures. The list goes on
and on. The IoT is fundamentally transforming how we think about how we interact with
the digital world. No longer is your washer a device that cleans clothes with a small micro-
controller attached. Your washer is a computer with a clothes-cleaning device attached. To
paraphrase security expert Bruce Schneier: through sensors, actuators, and processing (i.e.
the cloud), we are giving the Internet eyes and ears, hands and feet, and a brain. Essentially,
we are building a world-size robot [11].

1.2 IoT: Internet of Troubles

Security Woes

This paradigm shift has significant implications in regards to the effects that misbehaving
Internet-connected devices can have, particularly when those devices are misbehaving as
a result of adversarial intervention. Not too long ago, Internet exploits would, at worst,
disgruntle some academics and disrupt their research. Shortly later, the stakes got higher



CHAPTER 1. INTRODUCTION 2

as multi-billion dollar companies were built with the Internet at their core. The effects of
Internet failures and attacks could now have significant economic impact. With the advent
of the IoT, such attacks become far more likely and the consequences much more grave.
Cheaply made IoT devices can often easily be hacked in great numbers and assembled into
massive botnets which can be used to cause significant economic damage [28]. With its vast
sensor network, this world-size robot has the ability to eliminate any shred of privacy we
have in our modern world . Worst of all, it even has the ability to inflict physical harm—
even death—with its actuators. When you think about the consequences of, say, an attacker
finding an exploit in your Tesla and taking control of your car while you fly down the freeway
at 70mph it is not hard to see just how high the stakes are.

Unfortunately, these issues are not simply the wild prophecies of academic doomsayers
eager to dramatize their research. Every week now it seems we see new ways in which the
IoT is used to cause harm [16, 27, 30, 37, 29]. Most of these attacks cause economic damage,
however, we have also seen cases of physical harm. For example, attackers have taken down
critical hospital systems—disrupting the hospital’s ability to treat patients—in hopes of
exacting a small ransom from the hospital in exchange for ending the digital onslaught [50,
52]. And this is just the tip of the iceberg. The IoT is in its infancy. As the IoT grows, so
does the opportunity to perform increasingly sinister attacks.

Given the dangers we have outlined, it is of the utmost importance that our IoT devices
are robust and secure. But, unfortunately, they are not. There are a number of reasons why
this is the case.

For starters, the market incentives are wrong. There is ever increasing demand for smaller,
cheaper devices. This leads to manufacturers churning out new devices at a frenzied pace
which requires cutting corners—particularly in software—when developing devices. The end
result is devices that have had little thought put into security. Currently, distributed denial-
of-service (DDoS) attacks are one of the most common things done with hacked IoT devices.
And, as of right now, consumers do not care. And why should they? As long as John and
Jane Doe can watch the show they recorded on their Acme DVR there is little incentive for
them to do anything about the fact that their device is part of a botnet attacking servers
all over the world (they probably do not even know this is happening). Consequently, the
Does continue to buy and use Acme DVRs. The Does are much more likely to care if their
DVR is used to spy on them. However, it is still fairly uncommon for the average person
to actually get burned by such an attack (attackers usually extort the rich and/or famous).
Consequently, most people are unwilling to pony up the extra cash for a higher quality more
secure device [12].

Even if Acme Corp does get flamed by the media for a security screw up, they have much
less to lose than traditional Internet companies. Often, they do not have the same brand
value to protect that drives companies like Apple and Google to go to great lengths to make
products like iOS and Android secure for fear of losing users should a high profile exploit
occur. IoT devices are often produced on thin margins by obscure companies that are not
well recognized.



CHAPTER 1. INTRODUCTION 3

The Cloud’s Failures

Another issue with today’s IoT is the lack of proper infrastructure for storing and communi-
cating data. Today, most companies developing IoT devices turn to large cloud providers like
Amazon [2], Google [3], and Microsoft [4] to support their needs. There are many drawbacks
to pure cloud IoT solutions [53]. We highlight a few of them here.

First of all, as we discussed in the previous subsection, the Internet is a scary place when
it comes to security and privacy. Transferring data across the Internet for it to sit somewhere
in the cloud, nearly always on a server controlled by another party, increases attack surface
and the probability that data gets leaked. Another issue is data durability management.
There is no way to be 100% sure that anything sent to the cloud will ever be completely
destroyed. Thus, whenever possible, data that does not need to be sent across the Internet
should not be.

Furthermore, as mentioned previously, the IoT is already huge and rapidly growing so
scalability is a big concern. At the end of the day, the cloud puts all data at the edge of
the network. As the volume of IoT data grows, so will the bisection bandwidth necessary to
support the cloud. IoT application data is often ultimately consumed very close to where it
is generated (e.g. Thermostat controlling HVAC system). Additionally, the current Internet
was built to optimize downlinks in consumer connections. So far, this has made sense because
most consumer Internet use consists of data consumption, not production (e.g. streaming
video, downloading software, accessing image-heavy social media, etc.).

On a similar note, latency is an issue that has unique implications in the IoT. Actuators
affect the physical world, possibly in irreversible ways, and when they are acting on sensor
data it is critical that they get up to date information. Sending sensor data to a cloud server
for processing, waiting for computations to happen, then waiting for the actuation command
response to come back adds delay to the control loop that should be avoided if at all possible.
Yet another reason that the cloud is not a good fit for the IoT.

1.3 The Global Data Plane: A New Architecture

The Global Data Plane [10, 40] (GDP) is a system being developed by the UC Berkeley
Swarm lab. The GDP addresses the issues discussed earlier in this chapter by offering
IoT developers a standardized authenticated time-series single-writer log abstraction that
can run on top of untrusted hardware. GDP logs have globally unique flat names called
GUIDs which are SHA-256 hashes of each log’s metadata. This flat name structure gives
the GDP implementation total freedom to optimize performance and provide durability by
moving and/or duplicating data at will. Furthermore, location independence means that
IoT devices can seamlessly switch from network to network, a valuable property for small
lightweight devices that are likely to move.

GDP logs offer end-to-end object security on all log entries. To achieve this, GDP writers
sign each new entry with an asymmetric key. The public key is included in the log metadata



CHAPTER 1. INTRODUCTION 4

Figure 1.1: Global Data Plane Architecture [33]. Sensors actuators connect can connect to
the GDP directly although often they will be lower power and connect through a gateway.
Applications can live anywhere (often this means they are local however they can also be
pushed to the cloud) and read from/write to GDP logs in order to communicate and store

data.

(recall that a log’s name is the hash of its metadata). Thus, with just a log’s name, whenever
we read from a log we can cryptographically verify that the data we got back was in fact the
data that the log’s owner wrote. To protect confidentiality, data can also be encrypted before
being written to a log. The GDP can be thought of as having two primary components:
a network component that handles moving data between clients and servers with opaque
SHA-256 and an application component that handles all of the actual data storage and log
management. Note the uniqueness and importance of the end-to-end security. When using
cloud-based IoT solutions, security is usually only available to/from clients and the cloud;
unfortunately, not from client to client. That is, cloud providers (who are also vulnerable
to attacks as well as government sleuthing) have the opportunity to inspect and modify all



CHAPTER 1. INTRODUCTION 5

Figure 1.2: The GDP operates above the network layer. Applications can be built either on
the raw GDP using the GDP client library or on top of so called Common Access APIs

(CAAPIs) that offer traditional data storage and access abstractions to the user (e.g. GDP
file system which is presented in chapter 3). [40]

data. In the world of the GDP, this is not the case. Security is achieved from the client
writing the data to the client reading the data with no gaps in the middle, even if the read
happens much later than the write.

The core components of the current GDP implementation are readers and writers, log
servers, and routers. Readers and writers are client applications that read from or write to
logs. Log servers are in charge of actually storing the data. And routers are responsible for
moving requests around within the GDP (i.e. between a reader or writer and a log server).
Figure 1.1 offers a sketch of this architecture. Further architectural details are covered in
section 2.2. At the moment, the GDP is used by a number of research institutions around
the world.

GDP log servers can be hosted anywhere; locally, in the cloud, or anywhere else a UNIX-
style machine is available. This means that not all data has to be stored in the cloud which
reduces attack surface and helps mitigate some of the aforementioned scalability issues.
GDP data can be stored locally and then replicated to the cloud as necessary. Cisco proposes
something similar in their work on “Fog” computing [14]. Keeping data local also gives users
tighter control over the data’s life. That is, if the data does not leave a user’s possession and
he wants to destroy it then he can do so and have real confidence that the data is actually
gone. The moment anything goes to the cloud, it is impossible to know for sure whether
it was ever destroyed. Tight data durability control is a big advantage for storing possibly
sensitive IoT data.

Essentially, the GDP makes data the new “narrow waist” for IoT application developers.
This is illustrated in figure 1.2. While some of the aforementioned IoT issues may require
political and social solutions, the GDP provides a technical solution to others. By being



CHAPTER 1. INTRODUCTION 6

free, open-source software that offers a simple easy-to-use abstraction, the GDP eliminates
the need for IoT application developers to come up with one-off solutions to achieve their
goals. While it may be hard to change market pressures to favor security, the GDP’s ease
of use has the potential to get developers to start using a system that is secure by design.

1.4 This Report

In this report, we build on the GDP. First, in chapter 2, we look at improving GDP per-
formance and security at the network level. Currently there is significant network overhead
incurred when using the GDP, particularly when performing small log writes as will many
IoT devices. We believe we will have achieved our goal if we can show that our protocol cuts
GDP header overhead to a small fraction of what it is now.

Next, in chapter 3, we attempt to build a Unix filesystem using the GDP as the underlying
data store. By doing so, our goal is to show that non-trivial applications can be built on
top of the GDP. Furthermore, the Unix filesystem is a very well-known API that has the
potential to make the GDP easily accessible to a range of application developer. If we can get
our filesystem to perform complex tasks—for example, “make”-ing a significant codebase—
with performance similar to that of the native filesystem, then we will consider our effort a
success.



7

Chapter 2

Secure Channels

2.1 Introduction

As discussed, the GDP already has a significant userbase made up of researchers. Currently,
there are a number of organizations currently looking at either trying out the GDP or
upping the level of their involvement in GDP development. That said, the GDP is still
quite new and is under active development. Consequently, there are a number of areas
in which there are opportunities for performance enhancements to the GDP by rethinking
certain protocols. Some GDP users would like to see certain aspects of the GDP improved.
For example, Intel’s IoT research division is quite interested in a version of the GDP with
less header (details below). We addresses this issue and a number of related security issues
in this chapter. In particular, we examine how ephemeral secure channels can enable log
servers to maintain current security guarantees while reducing the number of asymmetric
cryptographic operations required by end devices while also reducing side-channel attacks
by developing a strategy for controlling access to log data even though this data is already
protected by strong encryption.

2.2 Global Data Plane Network Protocol

In this section, we present the details of parts of the Global Data Plane architecture and
protocols–particularly focusing on the portions that deal with the networking component of
the GDP–with the aim of facilitating the subsequent sections in this chapter which describe
the changes we have made to the architecture. Particularly the GDP router architecture
which operates as an overlay network on top of TCP/IP and is described in a previous
masters thesis [20].

The basic GDP data structure around which everything else is built is that of an append-
only log. For the purposes of this chapter, however, we will focus on how data flows through
the GDP. GDP communication is built around 256-bit globally unique IDs. Every GDP
endpoint has a GUID that is the hash of the metadata of the log it names. This metadata



CHAPTER 2. SECURE CHANNELS 8

includes the log’s public key which means that the GUID can be used to bootstrap the
verification of various cryptographic authenticity and integrity guarantees. GUIDs exist in
a flat namespace which allows separation between a log’s locality and its name. An external
naming service can be used to map more practical names onto log GUIDs. Such a structure
allows for clean separation of mechanism and policy.

Since GUIDs are used as addresses for communication between endpoints and they exist
in a flat namespace, GDP routing is tricky. The current implementation of the GDP router
simplifies the task by forming a fully connected network. Endpoints (log servers, log readers
and log writers) connect to the GDP by connecting to one of these routers. Routers let other
routers know about what endpoints can be reached through them through advertisements
of new endpoints and notification of withdrawal of endpoints. When an endpoint, say a log
writer W , wants to talk to another endpoint, say a log server S, W sends its message to the
router it is connected to, say R1. Now, one of three things may happen:

1. S is connected to R1. In this case, R1 sends the message directly to S.

2. R1 has received an advertisement for S from another router, say R2. R1 forwards the
message to R2, which then forwards it to S.

3. R1 does not know about S. It responds to W with a negative acknowledgment to that
effect.

Due to the fully connected nature of the routing layer, messages between endpoints must
make at most 3 hops, as illustrated above. However there are plans to design a new router
based on distributed hash tables since the current implementation is clearly not scalable.
Fortunately, our modifications to the GDP protocol are agnostic to the underlying routing
algorithms and should work just as well with the new router as they do with the current
one.

GDP Protocol Data Unit

All communication on the Global Data Plane is related to either the writing/reading of
records to/from a log (hosted by some log server) or else advertising the entry or exit of some
log or client endpoint (advertisements are sent exclusively to/between routers in the routing
layer). Log readers request specific records and log servers respond with acknowledgments
that include the requested record. Log readers might also ask to subscribe to a log, in which
case a log server sends log records as they become available. Log writers write signed records
to log servers, and log servers send back write acknowledgments.

Since communication on the GDP has limited expressiveness, the GDP Protocol Data
Unit has a fairly rigid format (Table 2.1). The Header contains the source and destination
GUIDs along with a command or an acknowledgment. For instance, a log reader might send
a CMD_READ to a log server requesting to read a particular log record, and the log server
might respond with an ACK_CONTENT PDU with the corresponding record. When the log



CHAPTER 2. SECURE CHANNELS 9

0x03 (1 byte) TTL (1 byte) Reserved (1 byte) Cmd/Ack (1 byte)

Destination (32 bytes)

Source (32 bytes)

Request Id (4 bytes)

Signature Info (2 bytes)
Optionals Length
(1 byte)

Flags (1 byte)

Data Length (4 bytes)

Record Number (8 bytes, optional)

Sequence Number (8 bytes, optional)

Commit Timestamp (16 bytes, optional)

Additional optional header fields (variable length)
Log Record (variable length)
Signature (variable length)

Table 2.1: GDP Version 3 Protocol Data Unit (existing format)

reader connects to a GDP router, the router sends a CMD_ADVERTISE to all the other routers
and when the reader disconnects, the router sends a CMD_WITHDRAW to all other routers.

We observe that the limited communication expressiveness of PDUs is a security advan-
tage. It can be used to isolate weak IoT endpoints from the Internet at large by having the
last hop of the GDP protocol run over some non-IP network such as Bluetooth LE or Zigbee.

Threat Model

One of the GDP’s primary design goals is to be able to securely operate on untrusted
hardware. That is, anyone should be able to host a router or log server. Log owners may
choose to host their logs on their own log servers, but may also choose to host them on other
log servers. Logs may be replicated over multiple log servers to improve availability.

Log records are encrypted when they are sent over the network in a PDU. The log server
stores it in this form. Therefore, any reader must have the decryption key to read the
contents of log records. Optionally, log writers sign the records they send, thus allowing a
log reader or the log server to verify the authenticity of records. By storing a record number
or timestamp with the record (that is signed over), log writers can protect against replay
attacks.

However, the network is susceptible to a variety of side-channel attacks. A malicious
router or log server could extract substantial information from the timing and length of
records being written and read. We discuss this further in Section2.4.

Moreover, the network is highly susceptible to a number of Denial-of-Service attacks. A
malicious endpoint could read any and as many logs as they wish from a log server, thus



CHAPTER 2. SECURE CHANNELS 10

Return
Flow Id.

Timeout
ECDH
Half-Handshake

Timestamp Nonce Signature

4 bytes 4 bytes 64 bytes 4 bytes 4 bytes 78 bytes

Table 2.2: Circuit Establishment Request/Response optional header field.

Channel establishment parameters are colored in gray and are only consumed by endpoints.

• Return Flow Identifier is the flow identifier this entity expects on the flow in the
opposite direction. That entity will send this flow identifier on a return PDU for this
circuit.

• Timeout is the timeout that the PDU sender is setting for this circuit. If the circuit
is left unused for Timeout seconds, it will expire. An entity does not change this field
if it is equal to or lower than its own supported maximum timeout.

• ECDH Half-Handshake refers to the two 256-bit point coordinates on the elliptic
curve used for the ECDH handshake. (The curve used is decided in advance.).

• Timestamp is the time at which the circuit establishment request expires, and Nonce
is a random value. These are used by endpoints to protect against replay attacks.
An endpoint only accepts Circuit Establishment Requests if the time is earlier
than Timestamp, and drops any request with the same Timestamp, Nonce, and
endpoints as a previous request. Thanks to the Timestamp, endpoints need only keep
track of the requests they’ve seen until the time is later than Timestamp.

• Signature is over the Half-Handshake, Nonce, Timestamp, and endpoints (source
and destination). It prevents a man-in-the-middle attack on the shared secret exchange
and is part of the replay protection mechanism when immediate-authentication is used.

overloading a log server. A malicious log server, on the other hand, could stop serving
requests for reads and writes to the logs it stores. A malicious router could blackhole all
PDUs sent to it, thus taking down that part of the GDP network. We address some of these
threats in our design.

2.3 Security & Performance Architectural

Enhancements

In this section, we discuss the changes we made to various GDP mechanisms and the rationale
behind each change. Our goal is to improve both the security and the performance of the
GDP for what we expect to be the common use case.



CHAPTER 2. SECURE CHANNELS 11

PDU Compression using Virtual Circuits

One of the major GDP use cases is to support low-powered devices and sensors writing their
readings to a log as records (to be consumed at a later time). Each record may only be a few
bytes long. However, each GDP PDU has at least 80 bytes of header information (see Table
2.1 for non-optional header fields). A major chunk of that is the destination and source name
fields which take up 64 bytes together. Moreover, for verification of authenticity, all records
must be signed. This signature is 78 bytes (assuming the default elliptic curve signature and
SHA-256 digest are used). There are a number of ways we cut down on the PDU size.

We can avoid sending long endpoint names by creating a virtual circuit between source
and destination. Essentially readers, writers, routers and log servers associate a per-hop flow
identifier with a particular connection and send the flow identifier instead of the source and
destination names. GDP routers store flow information as temporary state in lookup tables.
When future PDUs come in that are part of that flow, the router simply looks up the flow
ID in the lookup table and sends the PDU out the corresponding port. This is much like
the way that IP routers store routing information in lookup tables.

Secure Channels

In addition to establishing a virtual circuit, the two endpoints can also choose to establish
a secure channel by deriving a shared secret and using that to authenticate and encrypt the
body and record number of all future PDUs (using something like AES-GCM [48] which
is an efficient authenticated-encryption protocol). The log server can then be sure that all
communication it receives over the circuit is from the original writer/reader. That is, it is
not spoofed.

We need to make a number of changes to the current PDU header format to enable cir-
cuits. Source and destination fields are now optional. We add a flow identifier optional field.
For establishment of a circuit, we require a few different parameters which we pull together
into a circuit establishment request/response optional field (Table 2.2). We demonstrate the
circuit establishment procedure in Figure 2.1. Lastly, Table 2.3 shows what the GDP PDU
looks like after our changes. Essentially, this is a new version of the protocol/PDU (version
4) with breaking changes.

We note that having per-hop flow identifiers instead of one for each half of the circuit
complicates our circuit establishment procedure. We decided to do this because with the
per-hop approach, entities choose what flow identifiers they want on their hop for a circuit,
and therefore there’s no chance of conflict between flow identifiers for different circuits.
Furthermore, note that the entire circuit establishment process piggybacks on top of what
was previously the only way to communicate. This means that if, say, a client is talking to
a log server that doesn’t want to establish a circuit or the client is making a one-off request,
then it does not make sense to establish a circuit. The communication can continue in the
old way with minimal to no extra overhead.



CHAPTER 2. SECURE CHANNELS 12

Figure 2.1: Illustration of circuit establishment procedure

The maximum timeout value supported by each entity is shown below their name. The
flow tables used to maintain circuit state are shown below the entities. Flow table entry cre-
ations and PDU send operations (arrows) are grouped together and their order is noted in
the blue and red colored boxes. We describe these operations below. Some of the Circuit Es-
tablishment Request/Response fields and flow identifier are shown alongside the PDU sends.
(White: Requested Flow Identifier, Timeout / Gray: Secure Channel Setup Parameters /
Black: Flow Identifier)

Consider a log writer W that wants to establish a circuit with a log server S.

1. W selects a random value, 68 as the flow identifier it wants for the return flow, places
that in its flow table, and sends that along to its router, R1, along with the secure
channel setup parameters. Note that at this point, source and destination addresses
still need to be sent.

2. R1 first ensures that it can get to Log Server S. It then selects its own random return
flow identifier, 123, and associates it with the half-circuit S → W in its flow table.
When it receives a PDU with flow identifier 123, it will know that it is for this half-
circuit, and will know to forward it with the flow identifier 68. R1’s maximum timeout
value is 15 seconds, so it sends that along with the return flow identifier 123 to S’s
router, R2.

3. R2 sees that it is directly connected to S. It follows the same procedure as R1. Its
maximum timeout value is 25 seconds which is more than the timeout value on the
PDU, and so it does not change that value.



CHAPTER 2. SECURE CHANNELS 13

4. S decides that it does want to establish a circuit with W , takes note of the secure
channel setup parameters, and places 49 in its flow table. It selects a random value,
259 as the return flow identifier and places it in its flow table. S then sends that with
its own half of the secure channel setup parameters back to R2. Since its maximum
timeout value is less than that on the incoming PDU, it sends its maximum timeout
value as the timeout value on the PDU. It also knows to send 49 as the flow identifier.
Note that at this point, source and destination names can be dropped.

5. R2 sees 49 in its flow table and knows how to route it. It selects a random return flow
identifier, 63, and associates that with the half circuit W → S in its flow table. R2
then sends that over to R1 along with the flow identifier 123 it has stored in its flow
table for this half circuit. It does not change the timeout value since its already below
its maximum timeout value.

6. R1 follows the same procedure.

At this point, the circuit has been created. W and S can send PDU’s to each other without
including the source and destination names. Their PDU bodies are also encrypted with the
shared secret they established.

0x04 (1 byte) TTL (1 byte) Reserved (1 byte) Cmd/Ack (1 byte)
Request Id (4 bytes)

Signature Info (2 bytes)
Optionals Length
(1 byte)

Flags (1 byte)

Data Length (4 bytes)

Destination (32 bytes, optional)

Source (32 bytes, optional)

Flow identifier (4 bytes)

Circuit Creation Params (158 bytes, optional)

Record Number (8 bytes, optional)

Sequence Number Number (8 bytes, optional)

Commit Timestamp (16 bytes, optional)

Additional optional header fields (variable length)
Log Record (variable length)
Signature (variable length)

Table 2.3: GDP Version 4 Protocol Data Unit. This is the new version of a GDP PDU.
Changes are in bold. Note that the order of some of the fields has changed.



CHAPTER 2. SECURE CHANNELS 14

Note that while we believe that most of the time it makes sense to establish a secure
channel and a virtual circuit together, it is possible to create one or the other independently.
A secure channel can be established without a virtual circuit by setting the timeout in the
establishment request to 0. A virtual circuit can be established without a secure channel by
setting the signature to 0.

Handling Replay Attacks

Let us consider the security implications of the one way handshake. For a moment, ignore
replay attacks (we will come back to them). Without replay attacks, a client can easily
authenticate with a secure channel establishment request. As the protocol requires, they
just sign the request. The key used to sign the message is either 1) the key of the owner
of the log that is being accessed or 2) the key of some other client along with a certificate
showing that the log owner has granted access to the client establishing the secure channel.

Now we consider how replay attacks change things. We argue that it turns out replays
actually dont matter for idempotent log operations such as reads and writes. This is be-
cause, by definition, idempotent operations do not cause any state change when replayed.
Furthermore, even if the idempotent operation causes data to be returned, fate sharing tells
us the attacker does not learn anything new by replaying the operation. In order to capture
the sequence of messages they plan to replay in the first place they had to be eavesdropping
on the network. Any information they can gain through replays has already flowed by so
the attacker learns nothing new.

To make this clearer, let us think about how this comes in to play with reads and writes.
First, consider writes. Thanks to the idempotent nature of a GDP log write, it doesnt matter
if the write is replayed by an attacker. In fact, the attacker is helping us out by doing the
job of the log migration/consistency/durability service and filling holes. Now consider reads.
As with writes, reads are idempotent. The difference is that with reads what matters is
the response, not the request. It is true that with single message authentication protocol
an adversary can replay a read and get back the encrypted response. However, fate sharing
indicates that this does not matter. An eavesdropper who can record a read request can
also record the servers response to that request (which must be encrypted if confidentiality
is required). So the eavesdropper doesnt learn anything new by replaying the read request.

For non-idempotent operations, however, things are different. For example, subscriptions.
If an attacker can replay a sequence of messages to get a subscription to a log, then they
can get timing data which essentially leaks information to the attacker. To handle non-
idempotent operations, we require what we call immediate-authentication. What immediate-
authentication means is that the log-server knows that they are talking to a live client and
not an attacker replaying a previous sequence of messages. A client requests immediate-
authentication from a log server with a new command, CMD_IMMEDIATE_AUTHENTICATION.
This command can only be sent as part of a secure channel (either within a secure channel
construction message or else in an existing secure channel). The server responds to this
command with a nonce. The client must include the MAC of this nonce with the shared



CHAPTER 2. SECURE CHANNELS 15

secret as an additional optional header field in their next message. Once the log server verifies
the MAC, it sets a flag indicating that immediate-authentication has been established and
allows non-idempotent operations to proceed.

Cumulative signatures

Secure channels also allow us to reduce the number of signatures that have to be generated
by allowing a log writer to avoid signing every record. By signing the first record they send
over during/after circuit creation, a log writer verifies its identity to the log server. The
server no longer needs to verify subsequent signatures it receives over that circuit since the
PDUs are sent encrypted with the shared secret established during circuit creation.

However, a potential reader might still want to verify the authenticity of the records
without having to trust the log server. So, the writer must keep sending signatures periodi-
cally, say, every 100 records. And, the signature must be over all records written since the
last signature.

Essentially, this means that the log server can buffer a set of writes that are not yet signed
without being concerned about denial of service attacks. Without a secure channel providing
identity and authenticity, buffered unsigned writes would be an obvious resource exhaustion
attack vector. Again, it is important to note that the data only becomes officially committed
to the log once the log server receives a signature over the chain of thus far unsigned log
records.

We achieve this through iterative hashing. Given records r1..rn, our choice of hash
function H and signing function S, the algorithm we use to obtain our signature s is

h0 = “”, hk = H(rk||hk−1) ∀k ∈ 1..n

s = S(hn)

The size of n used above is a function of the frequency at which new records are created
and written. If records are sent infrequently, n should be small so that a subscriber does not
have to wait long to verify the authenticity of the most recent records.

The writer must also necessarily sign the last record it sends over the circuit, so there
exists a cumulative signature for every record. Note that since a fixed-length hash function
is used, there is no need to worry about ambiguity due to the concatenation.

Access Control

The creation of a secure session during circuit establishment means that all future commu-
nication on the circuit is authenticated. It also means that the log server can verify the
identity of the reader or writer (henceforth, accessors) from the signature sent as part of the
circuit establishment request. But how can the log server verify that the accessors should
be allowed to access the log? As we discussed earlier, all data in the log is encrypted, but a
number of side- channel attacks are possible.



CHAPTER 2. SECURE CHANNELS 16

Figure 2.2: Overhead ratio (new version / old version) vs. circuit timeout value for
different percentages of flows using circuits, and different signature frequencies (calculated

based on trace). A ratio of 1 means no increase or reduction in overhead.

If the accessor is also the log owner, this is trivial. The owner has the private key
corresponding to the log’s public key which is stored in the log metadata. The log server
can verify the circuit establishment request signature against this.

Otherwise, we require that the log accessor obtain a certificate from the log owner certi-
fying that the accessor (ie. the entity with the accessor’s public key) may read from or write
to the log. The certificate may optionally have an expiry date set by the log owner. The
log accessor can then send this certificate as part of their circuit establishment PDU (and
include it as part of what is signed over).

We note that a log owner may choose to disable this check and essentially make the log
public.

2.4 Evaluation

We evaluated our proposed modifications to the GDP architecture using 3 approaches: an-
alyzing a trace of existing GDP traffic, considering our modifications from a theoretical
perspective, and by working on a prototype. In the following section we describe our find-
ings.



CHAPTER 2. SECURE CHANNELS 17

gdp-01
(1.5h)

gdp-02
(41h)

gdp-03
(41h)

gdp-04
(41h)

Total
gdp-{02,03,04}

Total Bytes
(L2 traffic and up)

885 MB 93.1 MB 194 MB 391 MB 678 MB

Total GDP Bytes 829 MB 87.8 MB 182 MB 312 MB 582 MB
Total GDP Bytes
% (of total bytes)

93.6% 94.3% 93.8% 79.7% 85.8%

GDP
Client/Server Data
Bytes

557 MB 1.04 MB 10.3 MB 132 MB 144 MB

GDP
Client/Server Data
Bytes %
(of total GDP bytes)

67.2% 1.32% 5.66% 42.3% 24.7%

# GDP PDUs 1.58m 31.7k 74.1k 760k 866k
Average PDU size
(including header)

525 B 2,367 B 2,456 B 411 B 672 B

# GDP log reads 1.31m 2.76k 1.53k 316k 321k
% GDP log reads
w/ signature

99.9% 0.00% 2.48% 99.6% 98.3%

# GDP log writes 1.15k 2.99k 23.8k 1.42k 28.2k
% GDP log writes
w/ signature

92.7% 50.6% 99.3% 0.56% 89.2%

Reads per write 1,140 0.922 .0643 223 11.4
Client ↔ client
traffic %

98.8% 2.38% 9.36% 72.0% 41.9%

Client ↔ router
traffic %

0.138% 2.06% 10.8% 0.182% 3.79%

Router ↔ router
traffic %

1.02% 95.6% 79.8% 27.8% 54.3%

Table 2.4: GDP trace data. Note: we analyzed approximately 1.5 hours worth of data for
gdp-01 and 41 hours of data for gdp-{02,03,04}. All three 41-hour traces were collected

during the same time window. To avoid combining apples and oranges, we exclude the
gdp-01 data from the Total column.

Trace Analysis

GDP log servers, routers, and clients are currently-deployed in and used by several research
labs around the world. Consequently, there is already a fairly large amount of GDP traffic
being generated. We were able to collect a trace of the network traffic flowing through several



CHAPTER 2. SECURE CHANNELS 18

Figure 2.3: Overhead ratio (new version / old version) vs. circuit lifetime for different
frequency of writes, and different signature frequencies (calculated based on trace). A ratio

of 1 means no increase or reduction in overhead.

currently-deployed GDP routers, designated gdp-{01,02,03,04}. We analyzed 1.5 hours of
traffic data from gdp-01 and 41 hours from gdp-{02,03,04}. The purpose of this analysis
was 2-fold: 1) to get a sense of what the current GDP traffic profile looks like (summary in
Table 2.4) and 2) determine what sort of impact we could expect our modified version of the
GDP protocol to have on the observed traffic (results in Figure 2.2). Below we describe our
procedure for analysis and highlight some of the interesting things we found.

Analysis Data Generation Methodology

The GDP trace data was collected using tcpdump and stored in a pcap file. We pulled the
dump in to Python using Scapy [5], an open-source library for manipulating and decoding
network data. Since the current version of the GDP is implemented as on overlay network
on top of TCP, we reassembled the TCP streams and then parsed them in to Python object
representations of PDUs. This made extracting data (see section 2.4) and analyzing our
findings as easy as manipulating a collection of Python objects. In particular, this allowed
us to reconstruct PDU flows and analyze the impact of our modified protocol.

One challenge we faced when parsing PDUs was determining where the PDUs started.
Since we captured data live, some of our TCP streams started in the middle of a PDU. To
deal with this, we ended up coming up with a heuristic to match the start of PDU headers



CHAPTER 2. SECURE CHANNELS 19

which included looking at the PDU version number and the zeroed out reserved byte. All in
all the flexible, user-friendly nature of Python made developing and debugging our analysis
code easy. When there was a problem, it was very easy to drop into the Python REPL and
quickly identify the issue. While not polished, we believe someone doing a similar study of
the GDP network layer could learn from and possibly reuse chunks of this code. It can be
found on Github [6].

Yet another issue we had to overcome was the limited computational resources we had
at our disposal. We had conflicting goals of trying to process a large amount of data and
not wanting to spend more time than necessary optimizing our data analysis code. Ideally,
all data from a single trace could be stored in memory at once. The in-memory data rep-
resentation used by Scapy added to our challenge by further bloating the data size. None
of our computers were going to be able to handle this large volume of data. Thankfully, we
ended up finding a solution in Google Cloud Platform [7]. We were able to rent an Ubuntu
machine with 52 GB of memory. This was sufficient for our needs. While we were able to
get $200 of student credit for free, we only actually used a few dollars. It is amazing how
cheap it is to rent computational resources today!

Observed Trends

Table 2.4 shows a summary of some of the interesting data that came out of our analysis.
Before trying to extract meaning from the data, it’s important to observe that there is a high
level of variation in the data from router to router (e.g. overhead, log reads per write, average
PDU size). Most likely, this is a result of the GDP currently having a fairly small number
of users. Since there is a limited amount of traffic flowing through each router, observed
behavior can easily be influenced by a couple dominant clients (e.g. a flaky log server that
regularly joins and leaves the network generating a large number of advertisements and,
consequently, proportionally more routing traffic). As a result, any inferences made from
this data must be taken with a grain of salt. That said, there are a few trends that stood
out clearly enough that we felt they were worthy of mention.

First of all, it is clear that using the GDP incurs significant network overhead. In the
best case scenario (gdp-01), we see a cost of 28.2% over a standard TCP/IP stream. This
makes it clear that work must be done to reduce overhead if the GDP is to be scalable.

We also found it interesting that each of the routers tend to be dominated by either
read traffic or write traffic. This lends credence to our theory that each router’s traffic
characteristics are dominated by a small number of clients.

Traffic Replay Results

Our primary reason for collecting a trace of GDP traffic was to determine how our modified
version of the protocol would have impacted overhead for existing GDP traffic. To this end,
we took the Python PDU objects that we had reconstructed and reassembled them into
GDP communication flows. We then replayed the flows, calculating proportional header



CHAPTER 2. SECURE CHANNELS 20

overhead vs circuit timeout for various PDUs per signature rates. We limited our evaluation
to the top X% of flows that benefited most from our changes for various levels of X. We feel
justified in doing so because our changes only benefit flows with consistent traffic and were
never intended to be applied to, say, one-off reads or irregular massive writes. The results
are presented in Figure 2.2.

Theoretical Analysis

As discussed in Section 2.3, our protocol modifications bring security advances over the
previous version.

Primarily, we greatly reduce the opportunity for side-channel attacks. Currently, there
is no access control on logs. Data protection relies completely on encryption. This opens
the door to attacks that glean information from timing or traffic volume. For example, an
attacker might learn the name of a log that, say, actuates a user’s bedroom lights, subscribe
to the log, and infer when the user was home/leaving/going to bed based on observed traffic.
Since our access- control method requires that the log owner give people permission to fetch
data from a log, such attacks will no longer be possible.

Additionally, we further increase overall system security by adding channel security on
top of object security. Once a channel has been established a client or log server might
consider sending no-ops down the channel to further throw off anyone who might be trying
to snoop on GDP traffic timing.

Importantly, we gain these security advances while increasing performance (discussed in
2.4) without giving up on any of the existing security guarantees. It’s still possible to get a
proof of integrity for any log entry (albeit at the price of a slightly increased delay).

Simulation Results

Of course, we also hope that our modifications will reduce the required overhead to use the
GDP, increasing appeal for end users. To help us better understand how our changes might
affect various traffic patterns, we present a plot showing the relative overhead of relevant
headers vs. the lifetime of a channel (i.e. how much time passes before the channel needs
to be reestablished). We consider various traffic patterns by plotting several levels of write
frequencies (i.e. how many writes are performed per second) and signature rate (i.e. once
a channel has been established, how often must a client compute an asymmetric signature).
Figure 2.3 shows our results. Encouragingly, the results in Figure 2.3 seem to correspond
with what we saw in Figure 2.2. It’s also interesting that savings converge to their asymptotes
fairly quickly. This supports the notion that flow state can be treated as soft state with a
fairly small timeout and without giving up significant benefit.



CHAPTER 2. SECURE CHANNELS 21

2.5 GDP Secure Channel Related Work

Zhang et al. made the case for why the cloud model doesn’t fit IoT applications [53]. Mor et
al. also make a similar argument that also provides a justification for an initial analysis of
the Global Data Plane in particular [40]. These serve as motivating arguments for our work.

The Global Data Plane has a unique architecture. This means that our contributions
are comparable to previous work done on other projects but adapted to work for the GDP’s
unique set of properties and constraints. In this section we discuss these other works.

Figure 2.4: DTLS channel establishment [38]

Datagram TLS (DTLS) [44, 38], a ver-
sion of TLS with the minimal number of
changes necessary to operate over a data-
gram protocol, is similar to our secure
channel establishment protocol. However,
by taking advantage of domain specific
knowledge—for example the idempotent na-
ture of certain operations as discussed in the
subsection on handling replay attacks that
can be found in section 2.3—we are able
to establish channels with fewer message
exchanges than possible with DTLS which
needs to be more general. The DTLS chan-

nel establishment protocol is illustrated in figure 2.4 and can be compared to figure 2.1 which
illustrates GDP secure channel and circuit establishment.

We look at alternate approaches using symmetric cryptography. TinySec [25] is a link-
layer security architecture specifically built for low-powered devices, but it requires that keys
are exchanged ahead of time. Eschenauer et al. [18] discuss an intricate scheme for the offline
distribution of keys to low-powered devices ahead of time that are later used for symmetric
encryption between devices. This provides authentication, but requires that a large number
of keys be stored on the sensors (and replenished periodically). The µTESLA protocol
presented by Perrig et al. [41] requires that each device is issued only one key initially, and
keys don’t have to be replenished. Periodically, a new key is generated by applying a pseudo-
random function on the previous key making this scheme more computationally expensive
than the previous scheme. We note that in each of these cases, the key exchange problem
still remains. Since we require that any log writer or reader be able to access a log on a
log server without prior communication on other channels (provided they are authorized to
access the log), distribution of keys ahead of time is not feasible.

Kerberos [54] is a protocol that allows nodes communicating on an insecure network to
prove their identity to one another by obtaining tickets to access various network services
from a centralized trusted Key Distribution Center (KDC) service. Such a service does not
make sense for the Global Data Plane since it’s completely decentralized and all entities on
the GDP are, by design, untrusted.

We look to the asymmetric cryptography space to solve the key exchange problem. The



CHAPTER 2. SECURE CHANNELS 22

Sizzle architecture [22] brings end-to-end encryption and authentication using an elliptic
curve cryptography-based scheme instead of RSA which requires significantly less computa-
tion than RSA [21]. This is the least computationally intensive among asymmetric cryptog-
raphy schemes. We therefore go with this approach in our work.

One other approach that we considered is offloading encryption and authentication to a
more powerful network gateway device such as a desktop computer that can then perform
asymmetric encryption [13, 17]. However, device communication with this gateway device is
in the clear. This is not ideal.



23

Chapter 3

Global Data Plane File System

3.1 Introduction

The Global Data Plane (GDP) [10] provides a substrate for storing data that can run securely
on untrusted hardware. The basic primitive that it exports to applications is a verifiable,
append-only, single-writer log. With such a log interface, it is possible to provide atomicity
and consistent replication with little overhead (where a log entry is the basic atomic unit).
Traditionally, systems that aim to provide rich data semantics first build the functional-
ity that they need, and then layer schemes to enforce such data semantics on top of the
functionality. Database Management Systems are a good example of this. First the system
implements its main functionality, namely allowing the creation of relations and the retrieval
of data from them. Then, to achieve the desired data semantics, it may employ schemes
such as Write-Ahead Logging [39], Two-Phase Locking [42], Key-Range Locking [32], etc.
on top of the existing functionality in the system.

In contrast, the GDP provides a primitive, namely a single-writer log, for which these
desirable properties can be supported more easily than in a database. Because the logs are
append-only, replicas can be kept consistent without a write-ahead logging scheme. Fur-
thermore, it is easy to verify authenticity of the logs because each entry will have a fixed
signature at write time.

As data-collecting sensors become pervasive, the GDP is obviously much more well-suited
to storing their data than a traditional DBMS, for the simple reason that a DBMS must
support much richer data semantics than are needed for this task. Beyond being more
efficient, the GDP enables a new paradigm for building complex distributed data systems;
rather than first building the system and then adding locking or logging schemes to achieve
the desired consistency and durability properties, one may choose to build a system on top of
GDP, which can cheaply achieve these properties, in such a way that some of these properties
shine through in the final system.

The main difficulty in this approach is one of the advantages mentioned earlier: the
append-only nature of logs in the Global Data Plane. In addition to being well-suited for



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 24

Figure 3.1: Basic layout of a GDPFS file

use cases in which data is only added, and never removed, the GDP is aimed more generally
at providing secure data transport for cloud services. One natural way the GDP could
be used to this end is as support for a log-based messaging scheme. Apache Kafka [31],
for example, is a publish-and-subscribe messaging service based on a log. However, it is
also desirable to provide richer semantics such as data mutability on top of the GDP. In
particular, we wish to provide the abstraction of a shared file that can be written by its
owner, and read by other entities1. The append-only nature of logs in the GDP makes this
a nontrivial task; while adding new data to a file is easy, our goal is to record mutations
to data in an append-only log while simultaneously providing a means to efficiently retrieve
that data.

In this chapter, we present the Global Data Plane File System (GDPFS)2, a traditional
distributed filesystem built on top of the GDP log abstraction. Our motivation to do this is
twofold. First, we would like to open the atomicity and security properties of the GDP to a
wider variety of use cases. Second, we would like to evaluate the effectiveness of the GDP
as a primitive for building complex distributed systems, based on both the performance of
the resulting filesystem and our experience in creating it.

3.2 Overview of the GDPFS

As with most filesystems, the basic unit of storage in the GDPFS is a file. All other filesys-
tems constructs—such as directories, symbolic links, etc.—can be built on top of basic files.

1The single-writer restriction stems from the fact that the GDP provides a single-writer log as its main
abstraction.

2The GDPFS code is open-source and available on Github [8].



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 25

Thus building a basic file which could be efficiently read from and written to in a way that
guaranteed desired ACID semantics was our primary focus when building the GDPFS. The
design we settled upon is described in this section. The implementation details of this design
are described in Section 3.3.

Each file in the GDPFS is backed by a single log in the GDP. Files are modified by
appending entries to the log specifying a range of bytes and the new bytes that that range
is to take on. This means that new writes can eclipse old writes simply by specifying an
overlapping offset and size. Since the GDP accepts appends to logs atomically, all writes to
files are guaranteed to be atomic.

Reads are satisfied by scanning the log backwards and retaining bytes that fall within
the range of bytes being read as they are seen. Note that it is essential that the log be
scanned backwards. The same logical byte may have been written multiple times but we are
interested in the most recent version. See Figure 3.1 for a depiction of how this works.

While the previously described system is correct, it is not efficient. Writes can be done
in time constant in the number of log entries and logical file size. Unfortunately, it may be
necessary for a read to examine every log entry (for example when the read needs data that
is in the first log entry) so reads can take time proportional to the length of the log. In order
to solve this issue, we implemented a number of caching and indexing strategies.

As a first step toward performance, we cache reads and writes on the local filesystem.
This gives us gains on reads, in two ways. First and most importantly, if we have a cache
hit we can avoid going to the GDP at all, which completely eliminates the need to hit the
network even once. This advantage is magnified if multiple network accesses would have
been necessary in order to locate and retrieve relevant blocks. Second, we no longer spend
CPU time reconstructing blocks based on log entries. We use a write-through asynchronous
policy, allowing readers to be kept up-to-date without incurring the network latency on the
writes. See Section 3.3 for additional details.

If the bytes of interest are not in the cache, then clearly we have to hit the GDP to
retrieve the necessary data. This once again brings up the problem of reads taking time
linear in the size of the log, which is not acceptable performance. We solve this through use
of a special tree index structure called a FIG Tree, described in detail in section 3.3. A FIG
tree allows bytes to be found in time logarithmic in the size of the file, much better than
linear in the size of the log. The FIG tree is updated on writes and periodically3 pushed
to the GDP in a special checkpoint log entry. Updating the FIG tree adds a small cost to
writes, no worse than logarithmic in the size of the file. Since we expect frequent access of
FIG tree indexes for files in active use, we keep an in-memory partial representation, pulling
in subtrees as they are accessed. Furthermore we cache the checkpoint log entries as they
are read in since it is likely that related subtrees will live in the same checkpoints. Figure
3.2 illustrates how the system fits together.

3Due to time constraints, our current implementation does not checkpoint files periodically; rather it
writes the checkpoint entry when the in-memory representation of the file is discarded.



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 26

Figure 3.2: Overview of the GDPFS structure. Data flows between vertical boundaries.

3.3 Implementation

Since our goal was to build a working performant prototype of the GDPFS while being
efficient with our time, we had to carefully choose tools to speed development while incurring
minimal performance overhead (e.g. FUSE). This section describes the process we went
through in selecting these tools and gives an in-depth explanation of the techniques we used
to achieve our performance goals.

FUSE

The implementation of the GDPFS is entirely built upon the Filesystem in Userspace library
(FUSE) [43]. This library enables programmers to implement entire filesystems in userspace
and works by redirecting all syscalls issued to a FUSE mounted filesystem to a special user
level process.



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 27

For example, when a user tries to open a file, the FUSE library in kernel space will
forward this syscall to the handler running in our user level process. In this handler for
open we first enforce the permissions on this file and then tell FUSE to make all subsequent
requests to this specific file with a file handle that we specify. Finally, FUSE will return the
results of a successful open with a process specific file descriptor that is different than the
file handle that we have specified. Later, when that same process makes another syscall with
this file descriptor, the FUSE library will recognize this (PID, FD) pair and call the correct
user level handler with the appropriate file handle which we specified on the open. Upon
returning from this user level handler, the results of that syscall will be shuffled back into
the kernel and then finally to the process which issued that syscall.

We chose to build our filesystem on top of FUSE ultimately because it allowed us to avoid
writing any kernel level code. This way it was much easier rapidly iterate on our filesystem
without worries of a bad line of code bricking our computer. However, building a filesystem
this way is not without its limitations. For example, in FUSE each filesystem syscall incurs
an additional pair of user space to kernel space transitions. This makes FUSE inherently
slower than filesystems built in the kernel. Also, because our FUSE-based implementation
is running in userspace, it is impossible to directly access the block-store. Instead, any
sort of disk accesses we make must go through a separate filesystem. Although our current
prototype of the GDPFS is built using FUSE due to its ease of use, a more stable and
permanent version would foreseeably be written directly in the kernel.

File Caching Layer

Reads to files in the GDPFS first check a cache stored on the local disk. The underlying
implementation of this cache is a file on the local filesystem which mirrors the logical view
of the file on the GDPFS.

The way the cache works is very simple. Each read first checks to see if it can be satisfied
by the file cache. If this is not possible then we must go to the remote log to find out the
contents of this range. Upon reading from the remote log we would populate the appropriate
parts of the file cache. On writes, we simply populate the appropriate portion of the cache
and issue an asynchronous write to the GDP before returning. Because of this, all writes
can return without waiting for any network I/Os4.

An alternative caching scheme that we could have used to locally store data in files is
to treat the local disk as a general cache for log entries read from the GDP. However, we
believe that materializing files directly, as described above, is strictly better for two reasons.
First, storing the log entries directly would also store stale data (i.e., data that has since
been overwritten), wasting space in the local disk. Second, it let us use the local filesystem

4The correctness of this scheme depends on asynchronous requests being processed in the same order that
they are made. For the current implementation of the GDP we believe this to be the case. If this changes, we
could create a bounded buffer of requests, and a worker thread that processes them synchronously. Rather
than making a request to the log daemon asynchronously, we would just enqueue the request into the buffer,
achieving the desired semantics.



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 28

(ext4), which is well-optimized for performance, to store parts of the same file close to each
other on disk.

Sparse Caching

Because we only cache portions of a file that have been accessed, the cached version of a file
may be incomplete and have portions which are not valid.

Originally, each per-file cache was implemented through two files on the local filesystem.
One file would be responsible for storing the actual contents of the file whereas the other
would be a bitmap which could be used to tell which bytes in the cache were actually valid.
The nth bit of the bitmap and the nth byte of the locally cached file correspond to the nth
byte in the logical view of the file. Thus, reads to the cache would first check the bitmap
to make sure the cache was valid and then would read that range of bytes in the mirrored
cache file. Because it is possible to write past the end of the file in ext4 without actually
allocating the blocks for the empty regions, this method was an acceptable way for us to
create partially cached copies of GDPFS files without paying the space for the entire file.

However, having a bitmap for every file adds a significant amount overhead to the space
of our cache. Specifically, for every n cached bytes, we pay an additional

⌈
n
8

⌉
bytes to keep

track of the bitmap. To avoid this overhead, we attempted to use a feature of modern
filesystems intended for use on sparse files. In addition to not allocating blocks for holes
created by writing past the end of the file, ext4 also keeps track of the positions of these holes
internally. For example, using the SEEK HOLE option with lseek will move the file offset
to the next hole greater than or equal to the argument offset. Because of this functionality,
finding out if a range [a, b) in our cache is valid should theoretically be reduced to checking
if the result of lseek(a, SEEK HOLE) is greater than or equal to b. However, the granularity
to which ext4 tracks these holes is at the blocksize level so holes inside a partially filled in
block will not be reported using lseek(SEEK HOLE).

Throughout our testing, we have not yet run into any issues with this bug since it is
unusual for a process to write a part of a block on a cold cache and then read a different
part of this block later. Because of time limitations, we have decided to revert to keeping a
bitmap for each file because our performance is not bound by checking ranges on the bitmap.

For future work, it may be desirable to combine the bitmap and the SEEK HOLE func-
tionality in order to proverbially get the best of both worlds. For example, one simple way
to use both is to first check using SEEK HOLE if the block we are reading is valid. If it is
not, then we can entirely avoid having to check that portion of the bitmap. Otherwise, we
must still check the bitmap since there may be portions of this block that are invalid.

File Cache Coherency

One other aspect that we considered is the consistency of our file cache. Because we the
single-writer semantics of the underlying GDP through to the GDPFS, we avoided dealing
with a majority of adversarial cases that would leave our cache inconsistent. However, it is



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 29

possible that a single private key could be used on two separate hosts. In this case, although
there is one entity in the security sense of the word, we must maintain a pair of consistent
caches across two separate hosts. One idea that we are considering for future work is to
create a service that provides the filesystem to multiple users, and serializes the writes to
the logs as a single writer (because the GDP logs are single-writer). Many of the same
consistency issues we would see in such a setting also arise in the case of a single writer
mounting the same GDPFS in multiple places and interacting with the separate mounts
concurrently. Therefore, we provide in this section a discussion of some of the difficulties
that arise in such a case.

Suppose Alice and Bob both open a file, as writers, on the GDPFS. Consider, as a simple
case, the scenario where Alice and Bob concurrently write different values to the same range
of byte in the file. To make the example concrete, consider the case where Alice writes byte
sequence A to the first 100 bytes of the file, and Bob writes the byte sequence B to the first
100 bytes of the file. The standard way in which the GDP allows one entity to be informed
of new writes to a log is via a subscription to the log. In the example, Alice first writes
A to her cache, and Bob first writes B to his cache; meanwhile, they both asynchronously
make requests to the GDP log server. The log server will then choose some serial ordering
for these writes and append both entries to the log; then, Alice and Bob will be informed of
each other’s writes via the subscription. Alice will write B to her cache, and Bob will write A
to his cache. After this is finished, Alice will think that the first 100 bytes of the file contain
B, whereas Bob will think that the first 100 bytes of the file contain A. In particular, either
Alice’s cache or Bob’s cache will be incorrect until he or she remounts his or her filesystem.

One way to achieve consistency is to treat the order in which updates are sent due to
the subscription to a file as describing the ground-truth ordering of writes to the file. After
making an asynchronous request to append to a log, a client receives first an application-layer
ACK from the log server, and then the same log entry in response to the client’s subscription
to the log. Upon receipt of the ACK, Alice would check its record number to see if it is what
she would expect if she were the only writer; if it is what she expects, then she can be sure
that no writes happened in between. If the record number is higher than expected, then
Alice can conclude that a separate writer made a write to the file before her write. Alice then
must replay all writes starting from the first write made by another writer when she receives
the datum from the subscription. Although this method maintains a strongly consistent
view of the cache it has very poor performance.

Another way to solve this problem is to use a weaker consistency model in return for
better performance. For example, we could have that the file’s cache is only up to date when
the file is first opened as part of the semantics of our filesystem. Implementing this would
be as simple as maintaining a separate cached version of each file for each process instead of
treating all processes open file as the same entity.

We currently do not support the case of having two separate hosts writing to the same
file since such a use case is somewhat rare. However such a system could be built using the
methods discussed above.



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 30

In-Memory Caching

The GDPFS does not maintain an explicit in-memory cache of file contents. The reason why
we chose to forego any caching layer in memory is that local filesystem’s buffer cache will
maintain an in-memory copy of commonly accessed parts of a file’s disk cache. Leveraging
this fact allowed us to not worry about the details of memory management of cached files.
However, we do maintain an in- memory copy of part of the index because we felt that it
is unlikely for the buffer cache of the local filesystem to be well-optimized for the read and
write patterns required to maintain B Tree structure (more details in Section 3.3).

Efficient Data Retrieval with a Cold Cache

Indexing Strategy

Although a file cache allows efficient access to recently read data, or data written during the
current session, reads are still inefficient when the cache is cold. There are multiple reasons
why reads, in the case of a cold cache, ought to be optimized. First, if a reader mounts the
filesystem to read a large file, it is unacceptable for the reader to have to read through the
entire log backing the file. Second, a writer (represented by a single keypair) may mount
the file system from multiple computers, meaning that they may read a file on a computer
where the cache is out-of-date.

Our solution is to checkpoint files, by writing a log entry that does not contain any new
data, but rather is a tree that allows efficient retrieval of data from the log. In particular, our
index solution guarantees that the log entry number at which a byte is stored can be retrieved
in O(log n) time, where n = min {number of entries in the log, number of bytes in the file}.
For very large files, this tree could grow quite large. Therefore, each checkpoint log entry
contains either (1) the entire tree, if the file has never been checkpointed before, or (2) the
diff of the tree from the previous checkpoint, containing only new and modified nodes in
the tree, referencing nodes in previous checkpoints that are still in the current tree. In that
sense, the tree is copy-on-write; if one node is modified, then all nodes in the path to the
root need to be rewritten in the next checkpoint.

An important advantage to only storing part of the checkpoint in each log entry is that
the entire checkpoint need not be stored in memory for any given file. In particular, if only
part of a file is accessed, only the nodes relevant to that part of the file may be stored by
the client at all. The remaining parts of the tree are loaded lazily as they are needed.

When a file is first opened, the client first reads the underlying log backwards until the
first checkpoint log entry. The tree nodes in that log entry are stored in memory as the
index for that file. Then, the log entries after the checkpoint entry are applied as diffs to
the index, allowing the index for the current version of the file to be materialized. Note that
the entire tree need not be stored by the client at this time! In particular, nodes in the tree
that were not written in the last checkpoint, and which were not touched when the later
log entries were applied to the index, will not be stored by the client, and will be loaded
lazily by the client as they are needed. Because reading the log backwards, and applying the



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 31

later log entries as diffs can be cumbersome and time-consuming, our implementation makes
the optimization that every file is checkpointed before its in-memory state is discarded. This
means that as long as the client terminates normally, the last entry in a file’s backing log
will be a checkpoint.

Because each checkpoint entry contains multiple nodes, it makes sense to locally store
checkpoint nodes in case they are needed again, for a different node in the same checkpoint.
This may be quite common, because each checkpoint contains an earlier snapshot of a subtree;
if one node needs to be loaded, its children are likely to be needed soon. Therefore, we
maintain an on-disk cache of recently read checkpoint log entries. Note that we do not
maintain such a cache for recently read data log entries! If a log entry containing data is
read, all of the relevant data in that log entries is read into the File Cache and will never
be requested from the log server again; therefore a log entry cache for data-containing log
entries would provide absolutely no benefit.

Possible Index Implementations

In this section we describe possible designs for an indexing strategy that achieves the above
properties. Then we explain the design that we finally chose for our implementation.

One indexing scheme used by many file systems is that of an inode. Files are split into
fixed-size blocks (often the size of a block on an underlying hard disk), and are stored in
a tree, where the data blocks are leaves. However, we decided against such a scheme for
two reasons. First, it requires all writes to be block-aligned. In particular, a small write, of
just a few bytes, would require the entire block to be copied as a new log entry so that it
can be referenced as a leaf in the inode tree. This adds a significant overhead in network
bandwidth for all readers, since the entire log entry must be read, even though most of it
is common with the previous state of the file. We view the block-granularity of leaves in an
inode tree to be an artifact of block storage such as disks, not an advantage in and of itself.
The only possible advantage to performing block-aligned writes is to decrease fragmentation
of file data; however, there are better ways to achieve this5.

Furthermore, while an inode-based index guarantees logarithmic time lookup in the size
of the file, it does not take advantage of cases where the log itself is much smaller. We
observed, when running compilation jobs on our filesystem, that writes were often much
bigger than the block granularity of a disk. Although the log could be much larger than the
file it backs, so that in the worst case the indexing scheme should scale with the size of the
file, not the size of the log, it is desirable for the indexing scheme to take advantage of cases
where the size of the log is actually small.

A vanilla B Tree, that maps a single byte index to a log entry number is not a desirable
index either. To write a range of k bytes would require k insertions into the tree, one for
each byte in the range. Some file systems use a B Tree with fixed-size blocks. OceanStore
[45] uses such an indexing scheme, with a block size of 8 KB. Although OceanStore uses a

5One such way would be to periodically defragment files; this does not incur the overhead of reading and
copying parts of file on every write.



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 32

/∗ I n i t i a l i z e s a Fig Tree . ∗/
void f t i n i t ( struct f i g t r e e ∗ t h i s ) ;

/∗ Se t s the b y t e s in the range [START, END]
∗ to correspond to VALUE. ∗/

void
f t w r i t e ( struct f i g t r e e ∗ th i s ,

b y t e i nd ex t s ta r t ,
b y t e i nd ex t end ,
f i g t r e e v a l u e t value ,
g d p f s l o g t ∗ l og ) ;

/∗ Returns an i t e r a t o r to read over the
∗ s p e c i f i e d range o f b y t e s . ∗/

struct f i g t r e e i t e r ∗
f t r e a d ( struct f i g t r e e ∗ th i s ,

b y t e i nd ex t s ta r t ,
b y t e i nd ex t end ,
g d p f s l o g t ∗ l og ) ;

/∗ D e a l l o c a t e s the r e s o u r c e s f o r THIS . ∗/
void
f t d e a l l o c ( struct f i g t r e e ∗ t h i s ) ;

/∗ Fi le−Indexed Group (FIG) ∗/
struct f i g {

struct i n t e r v a l i r ange ;
f i g t r e e v a l u e t va lue ;

} ;

/∗ Gets the next FIG from the Fig Tree
∗ I t e r a t o r and p o p u l a t e s NEXT with t h a t
∗ r e s u l t . Returns t r u e i f t h e r e are
∗ a d d i t i o n a l FIGs in the i t e r a t o r . ∗/

bool
f t i n e x t ( struct f i g t r e e i t e r ∗ th i s ,

struct f i g ∗ next ,
g d p f s l o g t ∗ l og ) ;

/∗ D e a l l o c a t e s the s p e c i f i e d Fig Tree
∗ I t e r a t o r . ∗/

void f t i f r e e ( struct f i g t r e e i t e r ∗ t h i s ) ;

Figure 3.3: Interface to a FIG Tree.



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 33

B Tree rather than an inode, the fact that it uses fixed-size blocks means that it has similar
problems to those discussed above.

A quick fix would be store in the B Tree one key-value mapping for each range, rather
than one key-value mapping for each byte. For each range that is written, an entry is added
to the B Tree mapping the first byte in the range to the record containing data for that
range. However, writing a large range would still require the removal of all of the ranges it
overlaps with, which could be linearithmic (O(n log n)) in the size of the range.

FIG Tree Index

In this section we explain the type of index we used in our final implementation. We first
introduce some terminology. Each write by the client corresponds to one additional log entry
added to the log backing the file; we call this log entry a file group because it represents a
group of bytes that can be found by reading the same log entry. A file group may partially
overlap with previous file groups; the values of these bytes in old entries are said to be stale.
Abstractly, the job of our index is to efficiently find, for any byte index, the most recent file
group containing that byte, avoiding stale entries.

We call our data structure a File-Indexed Group (FIG) Tree. The principle of a FIG
Tree is to map ranges to records, instead of individual bytes to records. When a range of
bytes (a file group) is written, an entry representing that file group is added to the FIG Tree.
An entry consists of a range of bytes [a, b] mapped to an identifier of the immutable record
containing those bytes. A FIG Tree does not delete the stale intermediate ranges contained
within the range of bytes written; instead it puts the entry describing the newly written
range higher in the tree so that any queries for bytes in the range will find the new range
entries first, and will never find the stale mappings.

While simple in principle, this results in some edge cases when reading and writing data,
that are addressed below.

FIG Tree Query Algorithm

Querying a single byte is done in the same way as is done in a B Tree. Starting at the
root, we check if the queried byte is in one of the entries at that node. If it is, the record
containing the byte has been found. Otherwise, we recurse on the appropriate subtree.

This method can be extended to range queries; traverse the subtree normally, making
sure to avoid stale entries. This can be done by keeping track of an interval containing
the bytes that are valid at each node. Initially, this range is (−∞,+∞). When entering
a subtree between entries containing intervals [a, b] and [c, d], the interval gets restricted to
[b + 1, c − 1]. We backtrack up the tree either when we have finished traversing a node, or
when we reach the end of the valid interval.



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 34

FIG Tree Insertion Algorithm

To do an insert, we begin by performing the Query Algorithm, with the following modifi-
cations. We keep track of the interval containing valid bytes at each node. At each node,
we prune the node by “trimming it” to the valid range: this means removing all entries and
subtrees that lie completely outside the range, and trimming entries that lie partially within
the range (if a subtree lies partially outside the range, then we do not bother trimming it;
we never have to traverse any of a node’s subtrees in order to prune it). It is important
to prune each node as described above in order to prevent stale entries from being pushed
up the tree on an insert. Furthermore, we stop early when we find a node where at least
one entry in the node overlaps with the range that we are inserting. If we reach a leaf node
without this happening, then we just insert the new entry normally and split and push up
entries normally as in a B Tree.

If we stop at a node early, then the entries that overlap with the range we are inserting
are consecutive entries in that node (since the entries in each node are in sorted order). Let
[x, y]→ Z be the group that we are trying to write, and let [a, b]→ C, [d, e]→ F , [g, h]→ I,
and [i, j] → K be the entries that overlap with it. First, we replace all four of the entries
in the node with a single entry [x, y]→ Z, whose left subtree is the subtree that used to be
to the left of [a, b]→ C, and whose right subtree is the subtree that used to be to the right
of [i, j] → K. The subtrees between [a, b] → C and [d, e] → F , [d, e] → F and [g, h] → I,
and [g, h] → I and [i, j] → K, are completely deleted. If x > a, then let the new group
[a, x−1]→ C be the left continuation. If x < j, then let the new group [y+1, j]→ K be the
right continuation. We then insert the left and right continuations, if they exist, into the tree
normally; these insertions will be done at the leaves of the tree, and not at some intermediate
node (remember to use a and j, rather than x− 1 and y + 1, to compute the valid intervals
when pruning the left and right subtrees of the newly inserted group [x, y]→ Z).

See Figure 3.4 for concrete examples of the above rules.

Additional Optimizations

Besides materializing files on the local disk and checkpointing files with FIG tree indices, we
perform additional optimizations to improve performance of the GDPFS.

Precreation of Logs

One performance aspect that we quickly noticed when working on the filesystem is that file
creation has high overhead. This stems from the fact that reads from a file are generally
fast due to caching, and that writes to the GDP can be done asynchronously; in contrast,
log creation must be done synchronously and is a bottleneck for workloads that create many
files. Furthermore, logs cannot be created concurrently in the current version of the GDP,
exacerbating this problem.



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 35

(a) A FIG Tree constructed by creating an empty file and then extending it with 11 writes of 50
bytes each.

(b) When a write of bytes 120 to 319 (inclusive) is performed, it replaces all entries in the root
node that it overlaps with. The leftmost entry only partially overlaps with the range, so bytes 100

to 119 form a left continuation that is inserted separately into the tree.

(c) The final FIG tree, after bytes 120 to 319 are written.

(d) The final FIG tree after the additional write of bytes 340 to 369. Observe that the leaf node is
pruned to the valid interval when it is written.

Figure 3.4: Example insertions into a FIG Tree.



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 36

To alleviate this issue, we precreate logs ahead of time and add them to a queue, so that
files can be created without having to wait for a synchronous remote procedure call to the
log server to return. We implemented this as a synchronized bounded buffer, with a worker
thread spawned on initialization of the filesystem that creates new logs and adds them to
the bounded buffer whenever it is not empty. Threads that create files remove an element
from the bounded buffer, or wait for the worker thread in case it is empty.

Second-Chance List for Files

One artifact of our file system is that opening a file for the first time is an expensive operation
that requires multiple reads from the log server. In particular, it requires a synchronous read
of the most recent log entry, which becomes a bottleneck when all reads are satisfied by the
cache and all writes are done asynchronously. Therefore, we would like to mitigate this delay
where possible.

One pattern that, on the surface, seems reasonable, is to checkpoint a file and deallocate
the in-memory state of a file when all processes have closed it (it reaches a reference count of
zero). However, we found that during compilation jobs, it is common for a file to be opened
and closed many times. It is inefficient to deallocate a file when it is closed, only to perform
a synchronous remote procedure call to rebuild that state when it is opened again.

Our solution to this problem was inspired by the demand paging algorithm used by the
VAX operating system. Because the VAX operating system did not have hardware support
for detecting when pages are used, it maintained “hot” pages in memory in a FIFO list
and a second-chance list in memory as an LRU list of pages marked “invalid” in the page
table. Pages that reach the end of the FIFO list of “hot” pages are given a second chance
in the LRU list before they are paged out to disk; a page that is accessed very rapidly will
periodically enter the second-chance list before the “hot” pages are in a FIFO list, but will
never be paged out to disk because it will be “revived” from the second-chance list on the
next access.

Similarly, rather than deallocating the in-memory file structure when its reference count
hits zero (i.e., when it is closed by all threads that opened it), we place the file on a second-
chance list and maintain its in-memory state. If the file is opened soon after it is closed,
then we no longer have to make synchronous remote procedure calls to rebuild its state, as
we can simply “revive” it from the second-chance list. To eventually reclaim resources, we
stipulate that the second-chance list has a maximum size, and deallocate the in- memory
state of a file when it reaches the end of the second-chance list. While we were developing
the filesystem, we found that this optimization gave us a 100% speedup for compilation jobs.

3.4 Performance Evaluation

Benchmark measurements were made on two hosts on the same LAN. The log server was run
on a set of 2 Intel(R) Xeon(R) E5-2667 2.9GHz CPUs (6-Core, HT, 15MB Cache, 130W)



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 37

(a) Time to
compile Redis in
given filesystem.
Results averaged

over 3 trials.

(b) Time to cp
zipped Redis tar

into given
filesystem. Results

averaged over 3
trials.

(c) Time to unzip
and untar Redis in
given filesystem.
Results averaged

over 3 trials.

(d) Time to make
Redis in given

filesystem. Results
averaged over 3 trials.

Figure 3.5: Macrobenchmark results.

with 64 GB (8 x 8GB DDR3-1600) of memory and 5 × 1 TB Seagate Constellation.2 (6Gb/s,
7.2K RPM, 64 MB Cache) 2.5” SATA drives in a RAID 6 configuration on a MegaRAID SAS
9260-16i controller. The remote client of the GDPFS was run on an Intel Core i7 processor,
with 8 GB of memory and a 5400 RPM hard drive. The average latency between the two
hosts is about 5 ms. In order to simulate running our file system in a Wide Area Network,
we also ran experiments where we used the Linux’s netem (Network Emulation) utility to
artificially inject latency into our system. For these experiments, we added a latency of
10± 2 ms.

First, we discuss a macrobenchmark which tests our filesystem as a complete system and
then we dive into microbenchmarks on file creation, sequential read, and sequential write
performance. For each of our benchmarks, we compare against NFS a popular distributed
filesystem. The NFS server is configured on the server with default settings and also mounted
with default settings.

Macrobenchmark: Redis

The macrobenchmark we ran was to compile a popular key value store called Redis. There
are three steps to this benchmark: copying the tar file to the file system, untaring the archive,
and finally making Redis. As a whole, we believe that these three steps accurately mimic a
large proportion of use cases for our file system.



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 38

cp

In Figure 3.5b, we present the results for first copying the compressed tar into both the
GDPFS and NFS. We found that in both the normal and the simulated WAN case, the
GDPFS copied the tar in faster. We suspect that the cause is that the GDPFS returns from
writes as soon as they hit the local filesystem, pushing them to the GDP asynchronously,
whereas NFS may have to do some network I/Os to maintain cache coherency. That said,
this is not a fair comparison because NFS supports more general semantics than the single-
writer GDPFS. Because we assume a single writer, it is easier for the GDPFS to maintain
cache coherence.

tar

NFS significantly outperformed the GDPFS in the tar step. This is because untarring re-
quires creating many small files and the GDPFS is particularly bad at file creation, primarily
for two primary reasons. First, since the GDPFS maintain a global mapping of file handles
to file structs, the GDPFS must lock this structure when opening files. Thus when a large
number of files are created and opened, there is a great deal of contention around the lock.
Second, a bug in the current GDP implementation prevents us from creating logs concur-
rently so we are forced into synchronous creation of logs and we need one for each new file.
We attempted to solve this problem by precreating a bounded buffer of logs, but we found
that due to lock contention on the buffer we weren’t using up the precreated logs. For further
discussion, see Section 3.4.

make

Redis make times are comparable on NFS and the GDPFS in the simple case. However, in
the simulated WAN case, we found that the GDPFS is significantly better than NFS. This
led us to suspect that NFS was making more network round trips than the GDPFS, possibly
to maintain a consistent cache.

We also tested make times for the GDPFS with a cold local cache. In this benchmark,
the files were copied and untarred as normal, but then the GDPFS had its cache cleared
before making. In all the other tests, reads and writes could be satisfied by the local cache.
This benchmark was run in order to test the effectiveness of the FIG tree. The results
demonstrate that the FIG tree keep the times for make at an acceptable level even with a
cold cache. For more detailed results, see Figure 3.5d.

Total Times

In total, we found that the time it takes to run all three stages (cp, tar, and make) on the
NFS is slightly faster than on the GDPFS. However, when we added network latency into
the benchmark we found that the GDPFS was significantly faster. This is due to the stricter
single writer semantics of the GDPFS.



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 39

Figure 3.6: Distribution of times to create a file over 3000 files.

In summary, this macrobenchmark concludes that it is plausible to build a performant
file system on top of append-only logs if enough caching and indexing layers are put in.

Microbenchmarks

In order to get a more fine-grained view of the performance of the GDPFS we also ran three
tests each of which stressed a main feature of file systems. These are: file creation, sequential
writes, and sequential reads. These three tests were done in the same client and server as
the macrobenchmarks. In addition, each of the tests also measures the performance in face
of additional simulated latency.

Creation Test

In the creation test, we created a sequence of 3000 files and timed each call to the “open”
function, which we used to create files. We found that in both the normal and the delayed
case, the NFS was faster at creating files. Because we are sequentially creating files in this
microbenchmark, the earlier discussion about the file table lock is not applicable.

We originally hypothesized that the explanation for this result was that we were running
through the logs from our buffer of precreated logs. However, when we measured the size of



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 40

Figure 3.7: Distribution of times to write 32 blocks (128 KiB) over 100 writes.

our buffer we found that this was not the case. In fact, in all cases the buffer was either full or
one away from being full. We suspect that this is because of lock contention on the bounded
buffer. In the presence of multiple threads creating files (for example, in a compilation job),
precreation of logs would likely improve performance.

Write Test

On each iteration of the write microbenchmark, we opened a file, appended 128 KiB of data,
and closed the file. This process was repeated sequentially 100 times. We opened and closed
the file on each iteration was to ensure that the filesystems were persisting the data and
not just storing updates in an in- memory buffer. The reason we chose this chunk size is
that FUSE prefetches reads in chunks of this size, and we wanted to make sure that the
prefetching did not cause irregularities in our results.

Our results for this microbenchmark, which can be seen in figure 3.7, reflect those seen in
the cp macrobenchmark displayed in Figure 3.5b. As stated in the section on cp, we believe
this phenomena to be a result of the GDPFS returning from writes as soon as they hit the
cache and then persisting them to the GDP asynchronously. In contrast, NFS must hit the
network cache consistency before returning from a write.



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 41

Figure 3.8: Distribution of times to read 32 blocks (128 KiB) over 100 reads.

Read Test

In the read test, we unmounted and then remounted the filesystem in which we ran the write
test. We then sequentially read the same 100 blocks from the file we wrote in the previous
microbenchmark ensuring that each read still had the same data which was written.

In both cases, where we added network delay case and where we did not, the NFS
significantly outperformed our GDPFS. There are two reasons for this. First, it seems that
the NFS may have cached all of the data for the file upon opening it whereas the time to
access the file is spread out across each read in the GDPFS. Second, because the NFS is
working on top of a mutable backing store it is much easier for it to fetch the appropriate
bytes. In the case of the GDPFS, since we had unmounted the file system earlier, each read
had to be satisfied by a tree traversal and GDP synchronous read.

3.5 GDPFS Related Work

Log based filesystems have been built before, most notably the Log-Structured Filesystem
(LFS) [47]. That said, we differ from LFS in a number of key areas. First, we are motivated
to use logs because the GDP gives them to us with network access, distributed durability,
atomicity and does this all with strong security guarantees over untrusted hardware. LFS



CHAPTER 3. GLOBAL DATA PLANE FILE SYSTEM 42

uses logs because they allow writes without seeks. Second, every file in the GDPFS exists
in its own log. Third, we do absolutely no modification in place. Everything is built around
append only logs. LFS uses modify-in-place semantics in several areas including the check-
point region. Fourth, we do away with traditional inodes and store file metadata in the log
entries for each file. This means that a file in our system has no tie to the filesystem that
it exists in and thus could theoretically be linked to in any other GDPFS mount. It also
means that each file in the filesystem could potentially be owned by a different user6.

Looking at file systems in general, the Network File System (NFS) [49] and the An-
drew File System (AFS) [23], being distributed file systems, bear great resemblance to the
GDPFS. One of the most interesting contributions of AFS is its relatively weak semantics for
concurrent modification of the same file. files are written back to the AFS server when they
are closed, and the last close wins. These weak semantics are motivated by the observation
that it is unlikely for multiple users to concurrently modify the same file. This same idea
partially justifies the single-writer nature of files in the GDPFS.

Because files are backed by logs, it is possible to “go back in time” and restore an older
version of a file. Our decision to use a separate log for each file allows files to be separately
reverted to older versions. Some filesystems, such as the B-Tree Filesystem [46], use a Copy-
on-Write strategy to cheaply snapshot files. However, the semantics of these snapshots are
weaker than the versioning semantics achieved with a log.

There are a few other similar filesystems such as TahoeFS [51] and the Fast Secure
Filesystem (FSFS) [15]. However, they lack the copy on write and versioning advantages that
our system provides. The GDPFS is novel because it is built solely on append-only logs, it
gives strong atomicity guarantees, and can guarantee strong data integrity and confidentiality
while running on a network at global scale and consisting solely of untrusted hardware.

Ultimately, we decided that of systems similar to the GDPFS, NFS was the best to do a
detailed comparison against. There were two primary factors that lead us to this decision.
First, NFS is very widely deployed and is well-known which makes the comparison interesting
and relatable. Second, NFS and the GDPFS implement most of the same features and serve
similar purposes but each with a slight twist. NFS’s unique feature is that it supports
multi-writer semantics. But the GDPFS is able to run over wide area networks on untrusted
hardware. In section 3.4 we show the results of our comparison benchmarks. The GDPFS
and NFS are neck and neck in terms of the total number of benchmarks won. However, the
GDPFS had the advantage when network delay is added (3/4 wins) while NFS has the edge
without added delay (3/4 wins) (see section 3.4 for a more detailed discussion). This is what
we would hope for given that the GDPFS is targeted at a wider area network than NFS.

6We did not implement this functionality and thus will leave it to future work.



43

Chapter 4

Wrapping Up

In this chapter we wrap up by highlighting what we learned and discussing opportunities for
building upon the work presented in this report. We go a bit beyond what is in this report
to touch on plans for the GDP Network layer as a whole. We then conclude.

4.1 Future Work & Lessons Learned

GDP Secure Channels & Network Layer

Bigger picture, there is currently a great deal of effort being put into redesigning the GDP
network layer as a whole due to the limited scalability of the current design. A new full time
staff member recently joined the Swarm lab GDP group largely for the additional manpower
required to implement these changes. The protocol changes presented in chapter 2 are part
of this redesign. Consequently, there are plans to continue to refine the protocol and begin
implementing it in the canonical GDP client and router libraries in the coming months (as
part of a wider set of changes, discussed below).

Since the GDP router will essentially need to be completely rewritten, we have the
opportunity to start with a clean slate for the GDP network layer technology stack. Thus a
good deal of consideration is being put into evaluating various technologies supporting the
layers of the network stack as well as the overall architecture. One important realization
is that the GDP router currently performs two duties: high level route calculation and low
level forwarding. In the next generation GDP network, these operations will be much more
decoupled than they are today. Therefore, for the rest of this section, we will refer to the
forwarding portion of the GDP router as the forwarder and the routing portion as the router.

The forwarder is of particular interest in this context as it will need to be able to efficiently
store temporary forwarding state as channels come and go. Initially, we thought a lot about
using SDN to support this functionality and looked into systems like OpenDaylight [36] and
OpenFlow [35]. Unfortunately, we found that SDN systems tend to be quite TCP/IP geared
and don’t give us the flexibility we need. This has caused us to return our focus to The



CHAPTER 4. WRAPPING UP 44

Click Modular Router [26] which is how the current GDP Router is implemented. One of
the problems with the current implementation of the GDP Router is that—although it was
built on top of Click—it was built in a very non-Click way. To the extent possible, Click
applications are supposed to be made up of small modules that are tied (“Click”-ed) together
to create more complex programs. If written properly, a Click program can be pushed form
user space down into Kernel space and be very performant. Click instances can even be
run as extremely lightweight efficient VMs thanks to ClickOS [9, 34], which offers further
scaling flexibility. We believe that a large part of what made the current Click-based GDP
router turn into a large monolithic user space program was that it tried to do everything.
By pulling out the higher level routing functionality, we believe a very efficient forwarder can
be implemented in Click which will pass queries up to a higher level routing system when
necessary. This will aid in integrating our chapter 2 work into the currently distributed GDP
package.

GDPFS

Our goals in creating the GDPFS were (1) to make the GDP accessible to more applications,
and (2) to evaluate the GDP as a useful primitive to create distributed systems.

We believe that we were fairly successful in achieving the first goal. Given that we only
had limited time, we were unable to create a bug-free filesystem that was fully featured (with
things such as hard links, symbolic links, etc.); however, we have made significant progress
towards this end—we have created a filesystem that is stable enough to run compilation jobs
of nontrivial systems. We believe that a few more months of development could turn the
GDPFS into a fully usable file system.

The second goal was to evaluate the usefulness of the GDP itself. First of all, it must not
be forgotten that the GDP is itself a research project under active development. Furthermore,
as far as we know our use case has put more stress on the GDP than anything anyone has
previously done. That is, compared to other GDP applications we create more logs more
quickly, do more frequent and larger batches of asynchronous reads and writes, and open and
close a greater number of logs at a greater rate. Given this new stress, it is not a surprise that
we found several new bugs. Much of our GDP-related friction was because of these bugs,
so an obvious first step in improving the GDP’s usefulness in building complex systems like
ours is to fix these issues. That said, the fact that with a semester and a half of part time
work we were able to construct a distributed filesystem that, with a few minor tweaks1, has
the ability to securely operate over untrusted hardware, speaks to the advantages of using
the GDP as a substrate for creating complex systems.

While the GDP enforces single writer semantics, there is no inherent reason why this
restriction must be elevated to the level of the GDPFS. It would be interesting to figure out
a way to restructure our system such that this limitation was removed. One could imagine

1We didn’t quite implement all the security features in the GDPFS due to time constraints however the
foundation is all there and we don’t expect any performance changes since the GDPFS is by no means CPU
bound.



CHAPTER 4. WRAPPING UP 45

a service, owned by a single entity (keypair), that was the “single writer” of the filesystem,
that provides the filesystem as a service to multiple logical writers. However, such a service
would have to solve the cache coherency problems with multiple writers mentioned earlier.
Furthermore, it would have to be replicated in order to be fault- tolerant, and, in order to
scale at the level of the backing GDP, it would need to be able to run securely on untrusted
hardware. In short, this system would have to implement much of the functionality provided
by the GDP in such a way as to support multiple writers. Given that it would have to
implement this functionality on its own anyway, we are unsure how it would benefit from
using the GDP. The problem here is the single-writer nature of GDP logs. While it provides
convenient security properties, it is a shortcoming in that a multi-writer system needs to
re-implement much of the functionality of the GDP to scale at that level.

The GDPFS could also be improved by implementing a system for accessing earlier
versions of files. It would also be interesting to devise a key-sharing permission scheme to
restrict which versions of a file are available to which readers.

4.2 Conclusion

By giving the Internet arms and legs, hands and feet, and a central brain to control it all,
the IoT is fundamentally transforming the Internet as we know it. Consequently, more than
every before, it is of vital importance that we take steps to make the computers, particularly
cheap IoT devices, secure. The Global Data Plane offers IoT app developers an easy to use
way to write secure IoT applications by making data the fundamental abstraction of IoT
applications.

In chapter 2, we proposed a number of changes to the Global Data Plane architecture
at the network level. The changes are intended to make the GDP network more secure and
performant. Our modifications include the addition of access control lists to reduce side-
channel attack surface by limiting who can read from logs. They also add secure virtual
circuits that allow headers to be compressed and fewer log records to be signed (albeit at
the cost of increased object security latency). Outside of what we improved, our changes
maintain existing GDP security properties. We evaluated our changes by looking at them
from a theoretical perspective, as well as by using a trace of current GDP traffic. The
trace evaluation demonstrates that our PDU header compression and signature reduction
techniques can lead to a significant reduction in overhead for applicable flows, which was our
goal. In doing so, we provide a protocol which improves GDP usability and opens the door
for additional researchers to start using the GDP and aiding in its development.

In chapter 3, we presented the GDPFS, which lifts the single-writer, append-only log
abstraction provided by the Global Data Plane to a single-writer filesysystem. Our filesystem
uses Unix semantics and is therefore a very well-known API. This makes the GDP much more
accessible to many application developers. We showed that non-trivial applications can be
built with the GDP as the storage core. We also showed that our filesystem is performant
and able to complete complex tasks such as “make”-ing Redis. We found that using the



CHAPTER 4. WRAPPING UP 46

GDP enabled us to create a filesystem that scales extremely well and runs on untrusted
hardware—assuming a bug-free and production-ready GDP. To our knowledge, no other
distributed filesystem has been designed with these objectives in mind.



47

Bibliography

[1] url: https://twitter.com/mytoaster.

[2] url: https://aws.amazon.com/iot/.

[3] url: https://cloud.google.com/solutions/iot/.

[4] url: https://www.microsoft.com/en-us/internet-of-things/.

[5] url: http://www.secdev.org/projects/scapy/.

[6] url: https://github.com/paulbramsen/gdp_virtual_circuit_simulator.

[7] url: https://cloud.google.com/.

[8] url: https://github.com/paulbramsen/gdpfs.

[9] Mohamed Ahmed, Felipe Huici, and Armin Jahanpanah. “Enabling dynamic network
processing with clickOS”. In: Proceedings of the ACM SIGCOMM 2012 conference on
Applications, technologies, architectures, and protocols for computer communication.
ACM. 2012, pp. 293–294.

[10] Eric Allman, Ken Lutz, and Nitesh Mor. The Global Data Plane Prototype. Poster
presented at the Berkeley EECS Annual Research Symposium (BEARS). Feb. 2015.
url: http://terraswarm.org/pubs/508.html.

[11] Amber Ankerholz and Bruce Schneier. Bruce Schneier on New Security Threats from
the Internet of Things. Mar. 2017. url: https://www.linux.com/news/event/open-
source-leadership-summit/2017/3/bruce-schneier-new-security-threats-

internet-things.

[12] Brian Barrett. How To Stop Your Smart TV From Spying on You. Feb. 2017. url:
https://www.wired.com/2017/02/smart-tv-spying-vizio-settlement/.

[13] R. Bonetto et al. “Secure communication for smart IoT objects: Protocol stacks, use
cases and practical examples”. In: IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM). June 2012, pp. 1–7. doi:
10.1109/WoWMoM.2012.6263790.

[14] Flavio Bonomi et al. “Fog computing and its role in the internet of things”. In: Pro-
ceedings of the first edition of the MCC workshop on Mobile cloud computing. ACM.
2012, pp. 13–16.



BIBLIOGRAPHY 48

[15] Nicola Cocchiaro. FSFS: The Fast Secure File System. http://fsfs.sourceforge.net/.

[16] John Costello. New Mirai Variant Leaves 5 Million Devices Worldwide Vulnerable –
High Concentration in Germany, UK and Brazil. https://www.flashpoint-intel.com/new-
mirai-variant-involved-latest-deutsche-telekom-outage. 2016.

[17] C. Doukas et al. “Enabling data protection through PKI encryption in IoT m-Health
devices”. In: IEEE 12th International Conference on Bioinformatics Bioengineering
(BIBE). Nov. 2012, pp. 25–29. doi: 10.1109/BIBE.2012.6399701.

[18] Laurent Eschenauer and Virgil D. Gligor. “A Key-management Scheme for Distributed
Sensor Networks”. In: Proceedings of the 9th ACM Conference on Computer and Com-
munications Security. CCS ’02. Washington, DC, USA: ACM, 2002, pp. 41–47. isbn:
1-58113-612-9. doi: 10.1145/586110.586117. url: http://doi.acm.org/10.1145/
586110.586117.

[19] Dave Evans. “The internet of things: How the next evolution of the internet is changing
everything”. In: CISCO white paper 1.2011 (2011), pp. 1–11.

[20] Nikhil Goyal, John Wawrzynek, and John D. Kubiatowicz. “Global Data Plane Router
on Click”. MA thesis. EECS Department, University of California, Berkeley, Dec.
2015. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-
234.html.

[21] Vipul Gupta et al. “Performance Analysis of Elliptic Curve Cryptography for SSL”.
In: Proceedings of the 1st ACM Workshop on Wireless Security. Atlanta, GA, USA:
ACM, 2002, pp. 87–94. isbn: 1-58113-585-8. doi: 10.1145/570681.570691. url:
http://doi.acm.org/10.1145/570681.570691.

[22] Vipul Gupta et al. “Sizzle: A standards-based end-to-end security architecture for the
embedded Internet”. In: Pervasive and Mobile Computing 1.4 (2005). Special Issue
on PerCom, pp. 425–445. issn: 1574-1192. doi: http://dx.doi.org/10.1016/j.
pmcj.2005.08.005. url: http://www.sciencedirect.com/science/article/pii/
S1574119205000568.

[23] John H Howard et al. An overview of the andrew file system. Carnegie Mellon Univer-
sity, Information Technology Center, 1988.

[24] IoT: number of connected devices worldwide 2012-2020. Statista, 2014. url: https:
//www.statista.com/statistics/471264/iot-number-of-connected-devices-

worldwide/.

[25] Chris Karlof, Naveen Sastry, and David Wagner. “TinySec: A Link Layer Security Ar-
chitecture for Wireless Sensor Networks”. In: Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems. Baltimore, MD, USA: ACM,
2004, pp. 162–175. isbn: 1-58113-879-2. doi: 10.1145/1031495.1031515. url: http:
//doi.acm.org/10.1145/1031495.1031515.

[26] Eddie Kohler et al. “The Click modular router”. In: ACM Transactions on Computer
Systems (TOCS) 18.3 (2000), pp. 263–297.



BIBLIOGRAPHY 49

[27] Brian Krebs. Akamai on the Record KrebsOnSecurity Attack. https://krebsonsecurity.
com/2016/11/akamai-on-the-record-krebsonsecurity-attack/. 2016.

[28] Brian Krebs. Krebs on Security. Oct. 2016. url: https://krebsonsecurity.com/
2016/10/ddos-on-dyn-impacts-twitter-spotify-reddit/.

[29] Brian Krebs. New Mirai Worm Knocks 900K Germans Offline. https://krebsonsecurity.
com/2016/11/new-mirai-worm-knocks-900k-germans-offline/. 2016.

[30] Brian Krebs. Researchers Find Fresh Fodder for IoT Attack Cannons. https : / /

krebsonsecurity.com/2016/12/researchers- find- fresh- fodder- for- iot-

attack-cannons/. 2016.

[31] Jay Kreps, Neha Narkhede, Jun Rao, et al. “Kafka: A distributed messaging system
for log processing”. In: NetDB. 2011.

[32] David B. Lomet. “Key Range Locking Strategies for Improved Concurrency”. In: Mor-
gan Kaufmann Publishers, Jan. 1993. url: http://research.microsoft.com/apps/
pubs/default.aspx?id=68374.

[33] Ken Lutz. url: https://swarmlab.eecs.berkeley.edu/projects/4814/global-
data-plane.

[34] Joao Martins et al. “ClickOS and the art of network function virtualization”. In: Pro-
ceedings of the 11th USENIX Conference on Networked Systems Design and Imple-
mentation. USENIX Association. 2014, pp. 459–473.

[35] Nick McKeown et al. “OpenFlow: enabling innovation in campus networks”. In: ACM
SIGCOMM Computer Communication Review 38.2 (2008), pp. 69–74.

[36] Jan Medved et al. “Opendaylight: Towards a model-driven sdn controller architecture”.
In: A World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2014 IEEE
15th International Symposium on. IEEE. 2014, pp. 1–6.

[37] Michael Mimoso. Mirai-Fueled IoT Botnet Behind DDOS Attacks On DNS Providers.
https://threatpost.com/mirai-fueled-iot-botnet-behind-ddos-attacks-on-

dns-providers/121475/. 2016.

[38] Nagendra Modadugu and Eric Rescorla. “The Design and Implementation of Datagram
TLS.” In: NDSS. 2004.

[39] C Mohan et al. “ARIES: a transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging”. In: ACM Transactions on
Database Systems (TODS) 17.1 (1992), pp. 94–162.

[40] Nitesh Mor et al. “Toward a Global Data Infrastructure”. In: IEEE Internet Computing
20.3 (2016), pp. 54–62.

[41] Adrian Perrig et al. “SPINS: Security Protocols for Sensor Networks”. In: Wirel. Netw.
8.5 (Sept. 2002), pp. 521–534. issn: 1022-0038. doi: 10.1023/A:1016598314198. url:
http://dx.doi.org/10.1023/A:1016598314198.



BIBLIOGRAPHY 50

[42] Nathan Goodman Philip A. Bernstein Vassos Hadzilacos. Concurrency Control and
Recovery in Database Systems. Microsoft Research, 1987.

[43] Nikolaus Rath. FUSE (Filesystem in Userspace). https://github.com/libfuse/libfuse.

[44] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Version 1.2. RFC
6347. http://www.rfc-editor.org/rfc/rfc6347.txt. RFC Editor, Jan. 2012. url:
http://www.rfc-editor.org/rfc/rfc6347.txt.

[45] Sean Rhea et al. “Pond: The OceanStore Prototype.” In: FAST. Vol. 3. 2003, pp. 1–14.

[46] Ohad Rodeh, Josef Bacik, and Chris Mason. “BTRFS: The Linux B-tree filesystem”.
In: ACM Transactions on Storage (TOS) 9.3 (2013), p. 9.

[47] Mendel Rosenblum and John K Ousterhout. “The design and implementation of a
log-structured file system”. In: ACM Transactions on Computer Systems (TOCS) 10.1
(1992), pp. 26–52.

[48] Joseph Salowey, Abhijit Choudhury, and David McGrew. AES Galois Counter Mode
(GCM) cipher suites for TLS. Tech. rep. 2008.

[49] Russel Sandberg et al. “Design and implementation of the Sun network filesystem”.
In: Proceedings of the Summer USENIX conference. 1985, pp. 119–130.

[50] Tom Spring. Conficker Used in New Wave of hospital iot device attacks. https://
threatpost.com/conficker- used- in- new- wave- of- hospital- iot- device-

attacks/118985/. 2016.

[51] Brian Warner, Zooko Wilcox-O’Hearn, and Rob Kinninmont. Tahoe: A Secure Dis-
tributed Filesystem. https://tahoe-lafs.org/ warner/pycon-tahoe.html.

[52] Kim Zetter. Why Hospitals Are the Perfect Targets for Ransomware. Mar. 2016. url:
https : / / www . wired . com / 2016 / 03 / ransomware - why - hospitals - are - the -

perfect-targets/.

[53] Ben Zhang et al. “The Cloud is Not Enough: Saving IoT from the Cloud”. In: 7th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 15). Santa Clara,
CA: USENIX Association, July 2015. url: https://www.usenix.org/conference/
hotcloud15/workshop-program/presentation/zhang.

[54] L. Zhu and B. Tung. Public Key Cryptography for Initial Authentication in Kerberos
(PKINIT). RFC 4556. RFC Editor, June 2006.


