Copyright © 1993, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

INPUT DON’T CARE SEQUENCES
IN FSM NETWORKS

by
Huey-Yih Wang and Robert K. Brayton

Memorandum No. UCB/ERL M93/64

6 August 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Input Don’t Care Sequences in FSM Networks *

Huey-Yih Wang Robert K. Brayton
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

August 6, 1993

Abstract

We present an approach to compute all input don’t care sequences for a component in an FSM network with an arbitrary
topology. In a cascade FSM network, Kim and Newbomn’s (K-N) procedure [13] exactly computes all input don’t care
sequences for the driven machine. However, for a component in a general FSM network the exact computation of input don’t
care sequences is unsolved. We demonstrate that this problem can be reduced to one for a cascade circuit. This reduction
uses the notion of an abstract driving machine. In some cases, the exact computation and exploitation of these sequences may
be too expensive. We propose methods to compute subsets of input don’t care sequences. We discuss the implementation of
these algorithms using implicit methods. We also present approximate methods for managing the complexity of large FSM
networks. Finally, we give some preliminary results on small networks.

*This project was supported by DARPA under contract number JFBI90-073 and NSF under contract number EMC-84-19744.

___________________ i,
{ |
| : }
| h o) | 02

| — T ™ M, - - M2 | >0
: |
L |

Figure 1: V] : A cascade circuit of two FSM’s

1 Introduction

When one circuit is connected to another, the controllability of its inputs and the observability of its outputs are reduced.
This phenomenon has been studied thoroughly in combinational circuits in which'limited controllability can be represented
by don’t cares; on other hand, limited observability requires Boolean relations (observability relations) or symbolic relations
[6,2, 15, 22]. In many cases, better implementations can be obtained by exploiting this information.

Similarly, sequential don’t cares play an important role in the optimization of sequential circuits. Several approaches have
been proposed; for example, in [16], unreachable or equivalent states are used in the optimization of an isolated sequential
circuit. Damiani et al. [9] introduced synchronous relations to deal with the logic optimization of sequential circuits with
pipelined latches. In this approach a circuit implementation is given as the starting point. On the other hand, a transition
relation can be used to represent an isolated finite state machine (FSM); thus, symbolic information, i.e. unencoded machines, .
can be manipulated.

In sequential circuits, don’t cares sequences need to be considered. There are two kinds; output and input sequences.
In this paper, we deal with the latter. Consider the cascade machine in Figure 1, where M, is the driving machine and M,
the driven maclnnel Unger [26] observed that M3, when driven by M;, may possess more unspecified transitions than as
an isolated machine, and proposed a method to approximate and exploit a subset of this information. Recently, Devadas
(10] proposed a different but similar procedure. Kim and Newborn [13] proposed an elegant complete solution. However,
for a two-way-communication network of FSM’s, V3, as shown in Figure 2, the exact computation is not well known. Rho
et al. [20] suggested applying Kim and Newborn’s (K-N) procedure iteratively between M; and M, until a fixed point is
reached which represents the input don’t care sequences for both M; and M;. The upper bound on the number of iterations
is unknown.

In this paper, we survey previous related work, and provide an improved understanding of input don’t care sequences.
We propose a complete solution without iteration for the problem in general FSM networks. Then, we propose methods
to compute subsets of these sequences and discuss implementation details. using implicit techniques. We consider several
special situations which make the computation easy, and give implicit methods to check for these situations. We discuss
approximation techniques for managing the complexity in large FSM networks. Finally, we present some preliminary results
on small FSM networks.

2 Preliminaries

2.1 Finite Automata

A deterministic finite automaton (DFA), A, is a quintuple (K, Z, §, g0, ') where K is a finite set of states, X an alphabet,
go € K the initial state, F C K the set of final states, and é the transition function, § : K x £ — K. A nondeterministic
finite automaton (NFA), A, is a quintuple (X, X, 6, g9, F') where 4, the transition relation, is a finite subset of K x £~ x K,
and 2" the set of all strings obtained by concatenating zero or more strings from ~. An input string is accepted by A if it
ends up in one of final states of .A. The language accepted by A, L£(A), is the set of strings it accepts.

!n this paper, we only consider synchronous FSM networks with known initial states.

—reeee—————— e e T e ——— I
.

| y '
-

Figure 2: N3 : A two-way-communication network of FSM’s.

2.2 Finite State Machines

A finite state machine (FSM), M, is a six-tuple (I, 0, Q, 6, A, qo), where [is a finite input alphabet, O a finite output alphabet,
Q a finite set of states, é the transition function, A the output function, and gy the initial state. A machine is of Moore type
if A does not depend on the inputs, and Mealy otherwise. An FSM can be represented by a state transition graph (STG). A
machine in which transitions under all input symbols from every state are defined is a completely specified machine; in other
words, both 6 and A are complete functions. Otherwise, a machine is incompletely specified.

A distinguishing sequence for two states q1, 2 € Q is a sequence of inputs such that when applied to M, the last input
produces different outputs depending whether M started at ¢; or ¢>. In a completely specified machine M, two states q; and
q2 are equivalent if there is no distinguishing sequence. In an incompletely specified machine M, two such states q; and ¢;
are compatible. A sequence S is said to contain another S; if S, appears in S;.

A cascade of FSM’s M; and M, denoted M — M3, is shown in Figure 1. M, is called the driving machine, M, the
driven machine.

2.3 Set Computation and Operators
Let B designate the set {0, 1}.

Definition 1 Let E be a setand S C E. The characteristic function of S is the functionxs : E — B defined by xs(z) =1
ifz € S,and xs(z) =0, otherwise.

Definition 2 Let f : B® — B be a Boolean function, and ¢ = {z, ..., z} a subset of the input variables. The existential
quantification (smoothing) of f by z, with f, denoting the cofactor of f by literal a is defined as :

I f = f:t."‘l"f?r'.' .
3. f ey 3e, f .

Definition 3 Let f : B® — B™ be a Boolean function, S; C B™ and S, C B™. The image of S by fis f(S1) = {y €
B™|y = f(z),z € S1}. f(B™)is the range of f. The inverse image of S, by fis f~1(S,) = {z € B*|f(z) = y,y € $2}.

Definition4 Let f : B® — B be a Boolean function, only depending on a subset of variables y = {y,...,yx}. Let
z = {21, ..., xx} be another subset of variables, describing another subspace of B™ of the same dimension. The substitution
of variables y by variables z in f is the function of = obtained by substituting z; for y; inf :

By f)Y) = f(z) if zi=w; forall 1 <i<k

Definition 5 Let f : B® — B™ be a Boolean function. The relation (characteristic relation) associated with f, F -
B" x B™ — B, is defined as F(z,y) = {(z,y) € B® x B™|y = f(z)}. Equivalently, in terms of Boolean operations :

F(z,y)= [[= fi2).

1<i<m

We can use F' to obtain the image by f of S} C B™, by computing the projection on B™ of the set F'() (S; x B™):
f(S1)(¥) = 3:(F(z,9) - Si(=)).
Similarly, the inverse image by f of S; C B™ can be computed as :

FH(S)=) = 3y(F(z,9) - S2(v)) -

Reduced ordered binary decision diagrams (BDD’s) [3] are well suited to represent the characteristic functions of subsets
of a set, and efficient algorithms [1, 3] exist to manipulate them to perform all standard Boolean operations. As a resuit, the
above set operations can be done efficiently.

2.4 Multiple-Valued Functions

Let X;, X5, -+ X, be multiple-valued variables ranging over sets P, P, - - -, P, respectively, where P; = {0, ...,p; — 1},
and p; are positive integers. A multiple-valued function f is a mapping

f:Plegx...xP,.—->B.
Let S; be a subset of P;, and X,-s ‘ represent the characteristic function

S = 0 ifX;¢S;.
= 1 ifX;€85;.

X,.S * is called a literal of the variable X;. If |S;| = 1, this literal is a minterm of X;. A product term or a cube is a Boolean
product (AND) of literals. A sum-of-products is a Boolean sum (OR) of product terms. An implicant of a function f is a
product term which does not contain any minterm in the OFF-set (f~1(0)) of the function. A prime implicant of f is an
implicant not contained in any other implicant of f.

Let a symbolic variable s assume values from S = {sq, ..., Sm—1}. It can be represented by a multiple-valued variable,
. X, restricted to P = {0, ..., m — 1}, where each symbolic value of s maps onto a unique integer in P.

We can use multiple-valued decision diagrams (MDD’s) {23] to manipulate multiple-valued functions just like BDD’s for
Boolean functions. Furthermore, similar operations, such as existential, and universal quantification, and substitution, etc., are
well defined in the MDD framework [23]. In the sequel, we just use the term BDD to interchangeably refer to characteristic
functions of multiple-valued variables.

2.5 Implicit State Reachability Computation

The reachable states can be computed efficiently using implicit state enumeration techniques introduced by Coudert et al. [7].
These techniques are widely used in FSM verification (7, 8, 25], and in design verification [4, 24]. This approach is based on
representing a set of states by a characteristic function which can be manipulated effectively using BDD’s. In the following,
we represent a finite state machine implicitly by a characteristic function using BDD’s.

Definition 6 The transition relation of a finite state machine M = (1,0,Q,6, X, q) is afunctionT : I x Q x @ x O —
B such that T(i, p, n,0) = 1 if and only if state n can be reached in one state transition from state p and produce output o
when input i is applied.

A predicate transformer is a monotone function operating on the power set of a finite set. The set of states R(p) containing
the states reachable from a given set of initial states I(p) can be viewed as the least fixed point containing /(p) of the function

F 2 e(p) = ¢(p) + 0n,p3i p,o(T(i, p, 1, 0) - ¢(p)) -
At a fixed point, R(p) satisfies :
R(p) = R(p) + 0n,p3ip,o(T (3, p, n, 0) - R(p)).
The least fixed point of F can be computed [4] as the limit of the following sequences :

Ro(p) = I(p))
Rmyt(p) = Rm(p)+0n,p3ip,o(T(i,p,n,0) Ru(p)))]
Reo(p) = Rm(p) if Rumy1(p) = Rm(p). 3)

S
al

/

az 82
S Sq
Figure 3: A part of the STG of M,

2.6 Compatible Projection Operator
The compatible projection operator is defined in [14] and can be manipulated efficiently using BDD’s.

Definition 7 Let y, < - - - < yn be an ordering of Boolean variables. The distance between two vertices « € B" and 8 € B®
is defined as [7, 25] ’

n
d(a,B) = Z |l — Bi2" "
i :
Using the above distance metric, a total ordering of all the vertices of a Boolean space relative to some reference vertex
a can be defined; order(z) = d(e, z).
Definition 8 Given & € B™, C C B", the closest interpretation of a in C for a given variable ordering is defined as [14]
P(a,C) = argmin ccd(a,x).
The definition of closest interpretation P, relative to a reference vertex a, is unique for a given variable ordering.

Definition 9 For a relation, R C B" x B™, and o € B", the closest interpretation of « relative to R (called compatible
projection in [14]) is :
-L(a”R) = {(.’B, y)l(”! y) ER,y= 'P(a, RI)} .

Conceptually, the L operator selects a unique minterm y for each minterm z defined in the relation R. Thus, (e, R)
results in the characteristic function of a function defined on the domain 3, R(z, y); L(a,R): 3,R(z,y) x B® — B. Also,
the L operator can be generalized to symbolic relations represented by MDD'’s.

3 Previous Work

First we discuss input don’t care sequences. In this section, we consider the cascade machine M; — M, in Figure 1. Part of
an STG of M, is shown in Figure 3. Consider the transitions from s; to0 s, and from s, to s3. When M, does not interact
with other machines, (s)s253) is a possible sequence of transitions. However, when M, is driven by M, this sequence may
not happen. Thus, we can regard the input string (a, az) causing these transitions as a don’t care sequence starting at s;. We
cannot determine whether (s;s253) is a possible sequence by looking at M, in isolation, but such information is useful; we
may get a smaller number of states for M- in the cascade M; — M,, than when M, is in isolation.

3.1 Unger’s Procedure

Unger [26] observed that when one FSM is driven by another, there are more input-incompletely-specified don’t cares
(unspecified transitions) than for an isolated machine. We restate a theorem in [10].

Theorem 3.1 Given a machine M, a set of don’t care sequences DC.q, and the set of all distinguishing sequences of two
states q1 and q3, DIS,eq. Suppose that each sequence in DIS,., contains at least one sequence of DCl.,. Then q; and q;
are compatible under the DC.,.

Based on this theorem, one could create a procedure to produce all distinguishing sequences for every pair of states in
machine M and then check for the containment condition. Any pair of states satisfying this check is compatible and can be
merged. Although it provides some theoretical clarification, this approach is potentially very time consuming, since each pair
of states may have many distinguishing sequences that have to be found for every pair.

A more efficient approach was proposed in [26, 10] which employs explicit state splitting to represent more of the
incompletely specified information. This approach generates M, with states | Q5 | >| Q2 |. M, has more transitions that are
not specified than those of M>. However, the number of states of a minimum state machine of M5’ will not exceed that of a
minimum state machine of M.

3.2 K-N Procedure

Kim and Newborn [13] proposed an elegant approach which solves the problem of computing input don’t care sequences for
a driven machine in a cascade. The procedure is :

1. Construct an NFA A’ to accept the language produced by machine M;. This can be achieved by removing the input
part in the STG of M, and assigning every state of M) as a final state. For a state s, if there are output symbols not
emitted from it, a transition is inserted from s to the dead state d with those symbols. The dead state d is the only
nonaccepting state. Thus A’ is completely specified but nondeterministic.

2. Convert A’ to a minimized completely specified DFA A. This can be done by using the subset construction [18] and
state minimization for DFA [12]. Note that efficient state minimization for completely specified machines can be used,
since the subset construction produces a completely specified machine.

3. A modified machine M,' is constructed as follows : construct M, x A and delete any transition to a state that contains
the dead state d in its subset. M, is deterministic but possibly incompletely specified.

The key idea is that sequences not produced by M are the input don’t care sequences for M, and these are converted into
unspecified transitions of a modified machine M;. The K-N procedure indeed captures all input don’t care sequences for M.
In the next subsection, this is discussed in more detail. It can be seen that the state splitting method of Devadas is a subset of
this, but Devadas’ procedure is explicit and length limited, whereas the K-N procedure is implicit and not length limited.

3.3 Input Incompletely Specified Don’t Cares vs. Input Don’t Care Sequences

Consider an incompletely specified FSM P. The input-incompletely-specified don’t cares (unspecified transitions) for P may
be interpreted as characterizing that a given input symbol never occurs when this machine is in a particular state. Thus any
input sequence is forbidden that drives P to exhibit unspecified behavior. The complement of forbidden input sequences. is
the set of allowable input sequences. Let £(P*) denote the set of all allowable input sequences. Since £(P*) is a regular
language, we can construct an automaton A to accept it as follows. For each transition in the STG of P, remove the output
part. Each state is designated as a final state. For a state s with unspecified input symbols, create a transition edge from s to
the dead state d with those unspecified symbols. The dead state d is the only nonaccepting state. Consequently, any input
sequence not accepted by A causes P to produce unspecified behavior. Thus from an incompletely specified machine P we
can construct an automaton .4 which accepts all allowable input sequences to P.

From the above discussion, any incompletely specified FSM corresponds to a regular language. Conversely, the basic
idea behind the K-N procedure is that the sequences produced by M, is a regular language which can be implicitly expressed
with input-incompletely-specified don’t cares. This conversion is done in step 3 of the K-N procedure. From this discussion,
we conclude that

¢ Given any incompletely specified machine P, we can construct an automaton which accepts the regular set £ of input
sequences for which P is always specified.

¢ Given any regular language £, we can modify any machine P to an incompletely specified one P’ whose set of input
sequences for which P’ is specified is L.

Thus incompletely specified machines and regular input languages are equivalent.

0 G
tautology

bt M1 M2

o)

Figure 4: A3’ : An equivalent one-way-communication FSM network to Nz.
gur

3.4 Transformation from NFA to DFA

Unfortunately, the worst case complexity for the transformation from an NFA to a DFA (i.e. from A’ to A) is exponential in
the number of states [18]. Furthermore, even if A can be built in a reasonable time, the resultant product machine M, may
have a large number of states before state minimization is performed.

In {21], a sophisticated heuristic was proposed to reduce the number of states of the DFA A by sacrificing some don’t care
information. This simplification process was called summarizing the DFA. However, to apply this, one may need to have A
first. So the subset construction to transform A’ to A is still required. Later in this paper, we propose a simplification process
applied during the transformation from A’ to A, which controls the state explosion.

4 FSM Networks with Arbitrary Topologies

In this section, we demonstrate that the problem of computing and exploiting input don’t care sequences for a component in
an FSM networks with an arbitrary topology can be reduced to one for a cascade circuit.

4.1 Exact Computation

Intuitively, computation of input don’t care sequences for a component in an FSM network of arbitrary topology is much
more complicated than for a cascade circuit. Nevertheless, it is not theoretically harder. In this subsection, we demonstrate
that the K-N procedure can be applied directly to an arbitrary FSM network topology.

Consider a two-way-communication FSM network N2, M; — M,, as shown in Figure 2. We want to compute input
don’t care sequences for M;. The suggestion made in [20] is as follows.

Let automaton 4; be defined on the same alphabet X. The DFA’s produced for a given machine in the loop
by repeated application of the K-N procedure form a sequence (A;) of automata such that £(A;) C L(Ai4+).
Each iteration through the loop corresponds to an application of a recurrence relation of the form A; 4+ = f(A;),
with £(Ap) = 0. If we proceed until we get the least fixed point, we have the whole set of input don’t care
sequences for these two machines. The fixed point is guaranteed to exist.

The upper bound on the number of iterations required to attain the fixed point is not known and may be large. At each
iteration, an equivalence checking of two automata is required. Moreover, the number of states of A; at some iteration : may
grow too large.

Now consider another FSM network A2’ as shown in Figure 4. We show that this circuit produces the same 1/O sequences
as those in network V3. Since x, y in network V> are produced by the composite machine M, x Ma, the sequences happening
in z and y should be the same as those in network A,. As aresult, z and y in network A3’ will drive M, and M in network
N>’ 1o exhibit the same behavior as in network A,. Consequently, we will have the same I/0 sequences as in network A3, and
the output G of N, is a tautology. By this construction, we transform a two-way-communication network to an equivalent
one-way-communication network. Here, the equivalent driving machine to M; and M, is M; x M,. We can apply the same
procedures we used in a cascade circuit directly to compute input don’t care sequences for M, and M, simultaneously, since
M, and M, can be regarded as being driven independently by M; x M,, instead of communicating with each other. By such
a construction, we do not suffer the iterative executions of the K-N procedure as suggested in [20].

When we want to compute input don’t care sequences for a component, say M, in an FSM network of an arbitrary
topology, we can always lump the other components together, and call the resultant machine M;. Then, it is either a one-way-
communication model in Figure 1 or a two-way-communication model in Figure 2. Consequently, we are able to perform the
computation of input don’t care sequences for a component in an FSM network with an arbitrary topology.

Based on the above explanation, we introduce the notion of an abstract driving machine in the computation of input
don’t care sequences in an FSM network. For example, the abstract driving machine to M, in Figure 1 is M), while the
abstract driving machine to M, in Figure 2 is M; x M,. The abstract driving machine for a component in an FSM network
is the composite machine of all components in this network, i.e. the network itself. However, if a component M, is in a
one-way communication with other components as in Figure 1, its abstract driving machine will reduce to M;. Then steps 1
and 2 of the K-N procedure can be used to compute the exact input don’t care sequences.

An abstract driving machine itself may be a nondeterministic FSM2; however, this does not affect the computation of
" input don’t care sequences in the K-N procedure. Consequently, we may start with a network of machines some of which are
nondeterministic (e.g. the environment may be one of the machines). The K-N procedure works anyway.

4.2 Exploitation

In this subsection, we demonstrate that input don’t care sequences for a component in a general FSM network can be exploited
in the same way as in a cascade circuit. This is not discussed in [13, 10, 21].

Consider the two-way-communication circuit M; < M, in Figure 2. Let £; be possible sequences over alphabet X
produced by M in isolation, i.e. when input y is unrestricted, and £, possible sequences over alphabet Y produced by M,
in isolation, i.e. when input z is unrestricted. Let L., £y, L2y be possible sequences over alphabets X, Y, and X x Y in
My — M, respectively. L and £, are input don’t care sequences for M, and Ml, respectively. Let M’ be the modified
machine of M, with £ as unspecified transitions.

Let a state-minimized machine of M’ be M,". The specified behavior of My’ is preserved in M,”, i.e. the behavior
of M," restricted to input sequences L. is the same as that of M,. For unspecified input symbols of a state s in Ma’, state
minimization procedures can exploit them by assigning transitions from s to any next states and with any output symbols.
Therefore, the set of output sequences produced by M" in isolation, Ez", may be different from £,. Let LS, Ly", Loy
be possible sequences over alphabets X, Y, and X x Y in My — M,", respectively. If £, = £.”, then L, = L,”
and L.y = L:,". This is because the behavior of M, restricted to input sequences L is preserved after performing state
minimization on My'. Thus, £, = £,” implies that M, «— M," has the same input/output behavior as that of M; — M.
If L. # L£,", the input/output behavior of the whole circuit may not be preserved. This is because £, is assumed to be
impossible sequences in order to be exploited by state minimization procedures.

Lemmad.l £, = L,".

Proof Our assumption is that M, — M, is synchronous and there is no direct information feedback loop through z and y.
The initial transition of the composite system 7" can be excited by the initial state of the whole circuit and external input .
If M, — M is a closed system, i.e. there is no external input i, the first transition is excited by the initial state. If y is a
Moore-type output of My, y is still a Moore-type output of M," with respect to input sequences L.

Case 1: One of z and y is of Moore type.

Let z; and y; be symbols of the alphabets X and Y, respectively. Let (z; - - - z,) be a sequence in £, and the corresponding
outputsequence of M, be (y; - - - yn). First, we prove £, C L:". z, is the initial output value if z is a Moore-type output. If y
is a Moore-type output, z; is produced after a transition starting from the inital state of M; « M,", which is the same as that
of My — M, Therefore initially symbol 2, should be able to be produced by M,. Symbol z; must drive M," to produce ;.
This is because M, restricted to input sequences £ has the same behavior as that of M,. Symbol y1 should be able to drive
M, to produce symbol z3, since M is kept unchanged. Input sequence (zz;) must drive M" to produce (3,) since (z,3)
is a sequence in L. By a applying the same rationale repeatedly, we can conclude that (z1,...,z,) is a sequence in £,".
Next, we prove Z. C £.”. Without loss of generality, consider that (z1 - - - z,) is a sequence in L, but () - - - nTn41) isa
sequence in L. This means that (:z:1 -ZnTn41)X" are sequences in £,. For input sequence (z, - - - z,), the corresponding
output sequence produced by M>" is (y _y,,) Symbol y, is the input to M for next transition. Suppose on the contrary
that () - - - ZnZn41) is not a sequence in £:". For input sequence (¥ - - - ¥n), Zn+1 should be able to be produced by M;
as the last output symbol. This implies that (z; - - - ZnZn41) should be a sequence in £.. This is a contradiction. Thus,

2In this paper, a nondeterministic FSM refers to a collection of permissible FSM's.

(21 -+ ZnZn41)X* are sequences in L£;”. Therefore, we have £, C £.".

Case 2 : Both of z and y are of Moore type.

Let z; and y, be the values in z and y at t = 0%, respectively. Let (z; - - - =) be a sequence in £, and the corresponding
output sequence of Mz be (32 - - - YnYn+1). First, we prove £, C L.”. Symbol z; must drive M," to produce . This is
because M," restricted to input sequences £ has the same behavior as that of M,. Symbol y; must be able to drive M; to
produce z,, since M, is unchanged. Input sequence (x;22) must drive M," to produce (1ys) since (x,z;) is a sequence
in C,. By applying the same rationale repeatedly, we can conclude that (z,, . ..,,) is a sequence in £;". Next, we prove
L, C £,". Without loss of generality, consider that (z; - - -2,) is a sequence in Lz, but (&, - - - ZnZn41) is a sequence in
L. This means that (| - - -TnZn41)X* are sequences in L. For input sequence (z, - - - z,), the corresponding output
sequence produced by Mz" is (32 - - -YaYn+1). Symbol y, is the input to M, for the current transition. Suppose on the
contrary that () - - - £ Zn41) is NOt a sequence in £, For input sequence (¥ - - - ¥n), Zn+1 Should be able to be produced
by M, as the last output symbol. This 1mplnes that (z; - - - Zn 2,41) should be a sequence in £,. This is a contradiction. Thus,
(z)---ZnZn4q)X* are sequences in £."'. Therefore, we conclude Z, C £;”. =

Thus, L.y is preserved and so is the input/output behavior of the whole circuit. Furthermore, input don’t care sequences
for M;, Ly, need not to be recomputed after exploiting £, as input don’t care sequences for M.

Theorem 4.2 Inputdon’t care sequences for a component in a general FSM network can be exploited using state minimization
procedures for incompletely specified FSM's.

Proof Directly from Lemma 4.1. »

Moreover, if y = oin Figure 2, M, expresses the full flexibility for 1mplemennng M, as in the cascade circuit M} — M
in Figure 1.

5 Implicit Computation

In this section, we focus on the implementation of the K-N procedure using implicit techniques. BDD’s can represent and
manipulate characteristic functions efficiently, and are thus suitable for implicit enumeration, e.g. implicit state reachability
computations.

5.1 Implicit Representation of Finite Automata

The first step of the K-N procedure is to generate an NFA A’ to accept output sequences of M. Then A’ is converted into
a DFA A. A" and A have the following properties — every state except the dead state is a final state, the input string in
each transition is of length one, and there are no e-transitions. Note that we do not need to explicitly add the dead state in the
transition relation, since it is implicit from all unspecified transitions. We do not need to specify the set of final states, since
every state is a final state. As a consequence, we can represent the transition relations of A and A’ in the same way as FSM’s.
The transition relation for A’ can be implicitly computed as :

TA'(PI,"l,Ol)=3£|Tl(ilspl,nh01)- (4)

5.2 Implicitly Checking for Nondeterminism

When A’ is a DFA, the subset construction is not needed. To detect this property is easy using BDD’s. Let T'(p, n, 7) be the
transition relation of a finite automaton. We compute 7" (p, , £) as follows:

T'(p,n,i) = Lo, (T(p,n,i)) &)

where « is a reference next state vertex. For each pair (p, ¢) defined in T'(p, n, i), L assigns a unique n. However, if
T'(p,n,i) equals T(p,n,), then nothing was changed, implying that T already had only one such candidate. Hence,
T(p, n, i) is deterministic; otherwise nondeterministic.

5.3 Implicitly Checking for Complete Specification

If M and M, are completely specified FSM’s, we may want to perform state minimization on them first. There exist efficient
algorithms based on BDD’s performing state minimization for completely specified machines [16]. Let T'(i, p, n, 0) be the
transition relation of an FSM M. AnFSM M is completely specified if and only if A and é are complete functions. The check
for A is if each (¢, p, n) defined in T has a unique o such that (¢, p, n, 0) € T. We use the L operator for this. Thus,

1(@0, T(i,p,n,0)) = T(i,p,n,0) ©

where a, is a minterm in the O space. This says that T is output deterministic. Equation (5) could check if T is next state
deterministic. T is input-completely-specified if and only if

Vp3onT(i,pyn,0) = 1.)
This says that for all ¢ and p, there exists a next state and output. Therefore, machine M is completely specified if and only if
(5), (6) and (7) hold.
5.4 Implicitly Checking for Input Don’t Care Sequences

If there is no dead state in A’, there are no input don’t care sequences from the driving machine, and vice versa. This is
equivalent to checking if there are no unspecified transitions in T'a:(%, p, n). Therefore, .4’ does not generate any input don’t
care sequences if and only if

V,,B,,TAt(i,p, n) =1. (8)

In Section 6, we present methods to derive a DFA A from A’ and discuss how to compute subsets of input don’t care
sequences. '

5.5 Implicit Construction of the Modified Machine

In the following theorem, we demonstrate that the transition relation of M/, the modified machine, can be implicitly computed
using BDD’s.

Theorem 5.1 Let the transition relations of A and M, be Ta(p1, m1, i2), and Ty (43, p2, na, 03), respectively. In T a, the dead
state does not appear since we use incompletely specification of A to implicitly specify transitions to dead state. The transition
relation of the incompletely specified modified machine M,', T, can be implicitly computed as follows :

Tzl(i2|pa n)OZ) = TA(plynl;iZ)’T'Z(i21p2sn2702)

where p = (p1, p2), n = (n1, ng).

Proof The states of M, are represented by 2-tuples (s, t), where s and ¢ are the states of .A and M, respectively. Consider
two states of M, (s;,t) and (sj,%;). If there is a transition between these two states, then there exists an input symbol
a € L, such that it is on the transition edge from s; to s; in A, and a transition edge from ¢;. to ¢; taking a as its inputin M,.
Since A is deterministic, a does not appear on the other transition edge emitted from s; in .A. Furthermore, input symbols
not specified on a state s of .A implicitly transit from s to the dead state, and they do not contribute any transitions in M.
Therefore, they are implicitly converted to unspecified transitions. The above construction is exactly the same as step 3 of
the K-N procedure. =

Afterwards, the implicit state reachability computation can be used to remove unreachable states in the transition relation
of M;, T3, and then apply any state minimization program to minimize M;, e.g. STAMINA [11].

10

6 Computing Subsets of Input Don’t Care Sequences

Consider the cascade machine M; — A3 in Figure 1. Note that M, may be the abstract driving machine for M. Let output
sequences produced by M, be £(M), a regular language over alphabet [,. For computing and exploiting only a subset of
input don’t care sequences, any language £’ such that

LMYy € L' Ch” ©)

gives rise to a feasible subset £’ of input don’t care sequences.

However, any superset of £(M;’) may not be a regular language, and hence not be accepted by any finite automaton.
Moreover, in order to apply step 3 of the K-N procedure to construct M,’ which captures £’ as input don’t care sequences, a
DFA A accepting £’ must be constructed first.

We present methods for finding a DFA accepting an £’ that satisfies (9). In Section 6.1, we propose a bounded subset
construction to perform approximation during step 2 of the K-N procedure. Two implementations of this bounded subset
construction are disussed in Section 6.2 and 6.4, respectively. An simplification process which performs approximation on
the NFA A’ before the subset construction is described in Section 6.3.

6.1 Bounded Subset Construction

The classical algorithm to transform an NFA to a DFA is the subset construction [18]. In the worst case, the resultant state
space is exponential in size. However, the exact DFA for accepting £(M) is not necessarily to be constructed if only a subset
of don’t care sequences is required, since only a DFA such that it accepts £’ in (9) is needed. The NFA A’ in step 1 of the K-N
procedure does not have ¢-transitions, and in each transition the input string is of length one. The subset construction{18, 5]
is stated below.

Definition 10 (Subset Construction) Given a nondeterministic finite automaton, A = (K, X, 8, qo, F'), the corresponding
deterministic finite automaton, A% = (K¢, £,6%,q8, F?), is defined as follows :

K¢ =2%, ¢f = {q}, F={SeK’SNF+0}

and §¢ is the state transition function : K¢ x £ — K¢, defined by
d _
6 (S, a) - qus6(q)a)°

Thus any final state in A? is any subset of states of A containing at least one final state of A. In the application where A
has only one nonaccepting state d which transits to itself for all input symbols, the only nonaccepting state of A? is {d}, the
dead state of A%. During the subset construction, there is no difference between a subset S containing d and a subset S — {d}.
The dead state {d} of A¢ can be implicitly specified by the empty set. Therefore, the dead state d can be excluded from the
state space of A during computation.

A bound on the number of states created during the subset construction can be set to prevent space explosion.

Procedure ; Bounded Subset Construction

1. Given a bound on the number of states, N > 1, assign the initial state Sp — {qo}, a queue Q initialized as @ — {So},
and a set R initialized as-R — {Sp}.

2. If (Q is empty) then return A?, else S; « first element of @, and remove it from Q.
3. Foreach (a € X)

Let Si = 64(S;,a).

Case 1: If (Sk € R), then add a transition (S;, a, St) in AZ.

Case2: If (Si. € Rand |R| < N —1),thenadd S;. into R, append Sy in the end of Q, and add a transition (S;, a, Si.)
in A2,

11

Case 3: If (Sx € Rand |R| = N — 1), then add a transition (Sj, ¢, Sy) in A%, where Sy transits to itself for all
a€ X,

4. Gotostep 2.

Theorem 6.1 Let the NFA in step 1 of the K-N procedure be A', and its corresponding DFA be A® by the subset construction.
Then, the DFA A? generated by the above procedure has the following property :

L(AY C L(AY. (10)
Therefore, A2 satisfies (9).

Proof If we exit with (] R |[< N — 1), the above procedure is exactly the subset construction. Thus, (10) is satisfied. Before
we terminate the above procedure, we are just performing the subset construction. This corresponds to cases 1 and 2 in step
3. If we reach N — 1 before completion, we have two cases. If S;. € R (case 1), this procedure adds a transition (S;, a, Sk)
to AZ. In this case, this procedure still preforms the subset construction. If S & R (case 3), this procedures adds a transition
(Sj,a,Sn), where Sy transits to itself for all input symbols. Sy accepts all input sequences starting at Sy. Moreover, A’
has the following property : every state except the dead state d is a final state. Therefore, every new state of A% generated in
the above procedure is a final state except the dead state {d}. With this construction, it guarantees that A¢ accepts more input
sequences than A%, Thus, when this procedure terminates, the resultant automaton A¢ accepts more input sequences than A%,
Therefore, it satisfies (10), and hence A¢ satisfies (9). =)

We may need to perform state minimization on A?, since it may contain many equivalent states. With the above procedure,
the number of states generated in the subset construction is limited. The heuristic, summarizing the DFA, proposed in [21]
is more sophisticated to approximate input don’t care sequences, but one may need to start from a DFA A to perform
approximation, i.e. after the subset construction, while we can avoid this complexity.

Based on the same rationale in the proof of Theorem 6.1, the NFA A’ can be approximated before performing subset
construction. We call this filtering the NFA and explain it in Section 6.3. In the following, we discuss the implementation of
the bounded subset construction using implicit techniques.

6.2 Implicit Bounded Subset Construction

The bounded subset construction needs to check whether a new state of A? is generated for an input symbol. When the number
of input symbols of an NFA is large, explicit enumeration becomes inefficient. Here, we present an implicit enumeration
algorithm. First, the subset construction using implicit enumeration is given.

Let the state space of A’ be K (excluding the dead state d), and | K |= k. This can be represented by a k-valued variable
s. However, in order to represent all possible 2* subsets of i, each state s; in K is associated with a Boolean variable x;, a
one-hot encoding representation. For example, suppose £ =4 and K = {so, s1, 52, 53}. Thé corresponding one-hot encoding
of state so is (o, Z1, 2, z3) = 1000. Similarly, {so, 51} is 1100. Note that 0000 corresponds to the empty subset, i.e. the

dead state {d} of A%. Let X = (=o,...,&k-1), where o - - - 21—, are Boolean variables. Each minterm in the space of .X
corresponds to a subset of /. This encoding scheme can be represented using its characteristic function &, (s, X),
(s, X) = J] @-(s#sj)+zi-(s=s;). 1)
0<j<k-1

Let T4«(i, p, n) be the transition relation and go the initial state of A’. Let T4 (7, X,, X,) be the transition relation of A¢
in terms of the one-hot encoding.

Theorem 6.2 (Implicit Subset Construction) T4« (i, Xp, X,) is the limit of the following sequence, where Rm(X,) corre-
sponds to the one-hot encoding of the subsets of K generated up to the m-th iteration, and (T 42),, is all incoming transitions
to these states, but given in the one-hot encoding.

Ro(Xp) = {&(p Xp)}(p=qo)

(Tas)m = I, n{&i(p, Xp) - Rmn-1(Xp) - Tasiy py m) - E1(n, X)}
Rm(Xp) = 0x.,%,3%,i((Tas)m) + Bm-1(X5)

(Tat)o = (Tat)m: Rewo(Xp) = Ru(Xp) if (Tae)pyy = (Tae)y, -

12

Proof Consider (T4¢),,. At the m-th iteration, & (p, Xp) maps Rm—_1(Xp), the generated subsets of K in terms of the
one-hot encoding, into the state space K. Then T4 (3, p, n) computes the next state image which is mapped by &, (n, X,,) to
express this next state image using the one-hot encoding. The smoothing of p and n requires that there exists p, n for X, to
be mapped into X,,. This gives (T4¢),,,. The new subset of K generated in the m-th iteration is added to Rm—1(X,) to give
Rm(X,). When the fixed point is reached, the subset construction is completed. =

Each minterm of R(X,) corresponds to a subset of /. Let the number of minterms of R(X,) be k’(excluding the dead
state {d}, i.e. minterm 00...0). Similar to equation (10), we can use a characteristic function &(s’, X) to associate each
minterm of R(X,) to a unique value of a k’-valued variable s’. Thus, the transition relation of A% can be reexpressed as
follows :

Tha(i,p',n") = 3x, x. (&0, Xp) - Taa(i, Xp, Xa) - &(n', X5)) . (12)

To perform the bounded subset construction, we count the number of minterms of R(X,) at each iteration, Let
count(Rm(Xp)) denote such an operation®. It equals the number of states of A generated by the subset construction up to
the m-th iteration. Let the bound be N. We construct A? as follows. When count(Rm(X,)) < N < count(Rm4 (Xp)), we
pick an arbitrary minterm A in R, (Xp). Next assign h to transit to itself under all input combinations. For those transitions
going to R, (X,) at the (m + 1)-th iteration, reassign them to go to h. By theorem 6.1, the resultant A? is guaranteed to
satisfy (9). The transition relation of A2, T44 (i, Xp, X»), is thus computed as follows :*

TA*}(ir Xps Xﬂ) = {axn [(TAd)m-}-l ’ Rm(Xn)]} ' h(Xn) + (Tae)m+l : Rm(Xn) + h(Xp) : h(Xn) -
Similarly, we can use (12) to reexpress T4 (%, Xp, Xn) into Tl'ag (&P, n').

- 6.3 Implicit Filtering the NFA

If the state space K of the NFA A’, | K| is large, constructing BDD’s for the implicit bounded subset construction may be
inefficient, since the number of one-hot-encoding variables is large. To remedy this, an approximation can be performed by
constructing an NFA A" with a bound on the number of states such that £(A’) C L£(A”). This simplification process is
called filtering the NFA.

Suppose the bound on the number of states in A" is N”. Let the R, (p) be the reachable states up to the m-th iteration when
we perform implicit reachability computation on T(i, p, n) using equations (1), (2), (3). Similar to the implicit bounded
subset construction, when count(Rm(p)) < N’ < count(Rm41(p)), we pick an arbitrary state s; in Rm(p). Next assign s;
to transit to itself for all ¢ (self loop). For those transitions from R (p) going to R, (p) at the (m + 1)-th iteration, reassign
them to go to state s;. Based on the same rationale in the proof of Theorem 6.1, this construction guarantees £(A’) C L(A").
The transition relation of A", T4~ (%, p, n) is thus computed as follows :

Tan(i,pyn) = [Fa(Rm(p) - Tar(i, pyn) - Rm(n))] - 55(n) + 55(p) - 55 (n) + Rm(p) - Tar(i, p, 1) - Rin(n).

6.4 Partially Implicit Bounded Subset Construction

Using the implicit bounded subset construction and filtering the NFA together, we may handle a large state space and many
input symbols. The efficiency of this method may deteriorate when the number of one-hot-encoding variables increases. In
comparison, for a large state space and few input symbols, the bounded subset construction using explicit enumeration may
be more efficient. In this subsection, we present an implementation using implicit techniques partially.

Let T4:(4, p, n) be the transition relation of A’. Consider step 3 of the bounded subset construction. The subset generated
from S;(p) under an input symbol a, Sk(p), can be computed as follows :

Sk(p) = bnpFp{(Ta(i,p,n) - S; (P))(;‘:a)} : (13)
Thus, the subsets generated from S;(p) can be computed using equation (13) for all input symbols. This can be expedited by
first computing the next state image of T4+ under S;(p).
G(i, P) = 0n,p3p(TA’(ispy Tl) . Sj (P)) .
L(z) 3,G(i,p) .

3Counting the number of minterms in R(Xp) can be done linearly in the number of BDD nodes.
“Here, h(Xp) represents the characteristic function of the single state £ chosen as the last state.

13

[415 | np |
0 | 5=1{10]

01 | 5 ={01,10]
10 S3={10} .
11 | 5, ={00,10}

Table 1: An example of G(i, p).

(b)

()

1 0

Figure 5: (a) The BDD of G(i, p) with variable ordering i, < i < p; < pz. (b) Unreduced BDD of f,(i;, i3). (c) Reduced
BDD of f] (il s iz).

L(3) are those input symbols transiting to the dead state {¢} from S;j. The subsets generated from S; (p) can be computed by
only cofactoring G(i, p) with respect to each minterm in L(i). However, this is still not efficient when there are many input
minterms in L(z). :

Here, we present a method to implicitly compute all subsets generated from S; (p). First, we use an example to illustrate.
G(i, p) is shown in Table 1 where ¢ = (¢1,42) and p = (p1, p2). The subsets of G(¢, p) are S, = {01, 10}, S, = {00, 10}, and
S3 = {10}. Assign the BDD variable ordering as 7 < p. The BDD of G(i, p) is shown in Figure 5(a). Nodes by, b5, and b5 in
the BDD of G(, p) correspond to Sy, Sa, S3, respectively. In fact, they are those nodes with variable p; or p, such that there
are incident edges from nodes with variable #, or ¢,. The corresponding input combinations for producing S; (p), fi (%), can
be easily computed as follows : assign those edges which point to node b, to “1” node, and those directed edges which point
to b, or b3 to “0” node. This results in an unreduced BDD of fi(i) as shown in Figure 5(b), and its corresponding reduced
BDD is in Figure 5(c).

We define the set of border nodes, B, in the BDD of G (i, p) with the variable ordering ¢ < p as follows: B={b | bisa
constant node or a node with a variable in p, such that there are incident edges from nodes with variables in i. }. For example,
B = {b,, b3, b3} in Figure 5(a).

Theorem 6.3 Let G(¢, p) and B be defined as above. The variable ordering is i < p. Each node in B corresponds to a subset
generated from S;(p) and vice versa, i. e. the number of nodes in B equals to the number of subsets generated from S;(p).

Proof LetB = {b,...,bm},and fi(¢),..., fm(i) be the corresponding input combinations. Then, G(i,p) = fi(¢)-b,(p)+

14

I
1 M \ I My \ o
0o — M
MT —t T =
I, / 127 {(
—— I\A2 02 M2 2
Mg
(c) (d) {'____;
Mg
1
I X lo} I : \N o
—= Mg ~ My P) M e
F e [
E——_1

Figure 6: (a) An FSM network with I; # L. (b) An FSM network with [= I; = L. (c) A cascade circuit Mg — Mr. (d)
Decomposed My cascaded with Mr. ’)

-+ fm(%) - bm(p). Then bx(p) corresponds to a subset generated from S;(p), since fi(Z) # @ by definition and for each
minterm a of fi(¢), G(?, P)(;=4) = bx(P). Suppose on the contrary there is a subset b’ ¢ B, and its corresponding set of input
combinations, f’(z), is not empty. However, fi (%), ... fm () are distinct and f;(?) + - - - + fm (?) is a tautology. Let a be a
minterm of f’. Then by G(¢, p),_, we get its corresponding b in B. Since b # V', this is a contradiction. =

This method is efficient when there are many input combinations associated with the same subset. Checking whether a
new subset is generated is easy, because every subset is expressed in terms of BDD’s. Since generating and checking new
subsets can be done efficiently using BDD’s, this method is more efficient for a large state space and medium-size input
combinations.

7 Approximate Computation in Large FSM networks

An abstract driving machine may be the system itself. Constructing the transition relation of the whole system and then
performing the approximation methods in Section 6 may be still expensive. We discuss how to control the complexity of
approximating input don’t care sequences for a component in an large FSM network.

Consider the FSM networks shown in Figure 6(a), (b). Let the transition relations of M, M, be T; (¢, p1, ny,01) and
Ti(iz, p2, 12, 02), Tespectively. Let A’, A;’, A’ be the NFA, derived from step 1 of the K-N procedure, accepting output
sequences of My x My, M;, M,, respectively. A, A, A, are their corresponding DFA derived from the bounded subset
construction for A’, Ay’, A,’ respectively. T+, Ta,’, Ta,, derived from (4), denote the transition relations of A’, A,’, Ay’,
respectively’.

Lemma 7.1 ([25]) Let f : B® x B™ — Band g : B™ — B be two Boolean functions. Then
(f(=,9) - 9(¥) = (Ff(z,9)) -9(v) .
Lemma 7.2 ([17]) Let f : B® x B™ — Band g : B® x B™ — B be two Boolean functions. Then

3(f(z,y) - 9(z,9)) C(3:f(2,¥)) - (3z9(z,y)) .
5Note that the alphabetof A’, 4,’, A;'is O; x O,.

15

Lemma 7.3 ([5]) Let Ay = (K, X, 61,90, F1), Ay = (K3, X,8,4q05, F2), be two DFA. A, x A, is a quintuple (K| x
K3, 2,6,(q0,,90,), F1 x F2), where forallpy € Ky, py € Kz,and a € Z, 6((p1, p2), @) = (61(p1, @), 62(p2,). Then

L(A] X Az) = [:(Al)nﬁ(Az) .

This lemma also holds for the NFA discussed here (e.g. A’, A;’, A;"), since they have no e-transitions, and the input
string in each transition is of length one.

Consider the FSM networks in Figure 6(a), (b). In the following, we demonstrate that output sequences of M; x M; can
be approximated with the output sequences of M, and M, separately.

Theorem 7.4 Let My, and M, be FSM’s as shown in Figure 6(a), where I) # I,. Then
L(A) = L(A' x A).

Proof The transition relation of .A’, T4, can be computed using (4) :

T.A’ = 3i|.i¢(ﬂ(i1,Plx"1,01) 'n(i21p2:n2:02))
= (3TN, Ly, o)) - (35,T3(i2, p2, m2,02)) (by Lemma 7.1)
= T.A.’(Phnl,ol) 'TAz'(pZ)nZlOZ) .

Therefore, T4+ = T4, - Ta, = Ta,' x4y This implies C(A') = L(A)' x A'). =
Corollary 7.5 Let M, and M, be FSM's as shown in Figure 6(a), where I # L. Then L(A") C L(A; x A,).

Proof
ﬁ(A') ﬁ(All X .Az')
L(AYN L(AY) (by Lemma 7.3)
L(A)NL(Az) (L(A) C L(Ar1), and L(A4,) € L£(Az) by Theorem 6.1)
l:(A] X Az) .

N i

By Theorem 7.4, output sequences of M; x M in Figure 6(a) are the same as the intersection of output sequences of M,
and M>. This provides a way to compute output sequences of M; x M,. First derive A,’, A,’, and then apply the bounded
subset construction to compute .A; and A;. By Corollary 7.5, £(A, x Ay) is guaranteed to satisfy (9). Using this approach,
we can avoid performing the bounded subset construction on A’ directly. Thus, this reduces the complexity for performing
approximations.

Theorem 7.6 Let My, and M, be FSM's as shown in Figure 6(b), where I, = I = I. Then
L(A) C LA x A).

" Proof The transition relation of A’, T/, can be computed using (4) :

TA’ Bi(Tl(ivPl,nl,Ol) 'B(iva)nZ)oZ))
(3iTi(i, pryny,01)) - (3iT2(3, 2, m2,02)) (by Lemma 7.2)

Ta, (p1,m,01) - Tay(p2,n2,02) .

[T]

Therefore, T4» C Ta,' - T4y = Ta,'x4,. The unspecified transitions are implicitly assigned to the dead state, the only
nonaccepting state. Thus, this implies £(A’) C L(A;’ x Ay'). »

Corollary 7.7 Let M), and M, be FSM's as shown in Figure 6(b), where I, = I, = I. Then L(A') C L(A; x Ay).

16

circuit M M, X|Y total CPU
I]O]| S I[Oo] S Bl A[IDC] sSM
KN2 1 1 5 1 1 St1{1]10]f| 5{ 02 0.1
S2 10[10] 5|10 3] 4] 3] 3 91 8| 05 0.1
L1 (bbara=ex2) 4|1 21 7| 2| 2129 2] 21|[36]10] 08 3.1
L2 (ex6=s1) 5 8 8| 8| 6|21 | 8| 4 29[13] 1.5 0.1
L3 (keyb=dk16) 71 2119 21 31761 2] 395201 1.1 209
L4 (s1=ex4) 8 6120 6 9|14 6| 3|34 18] 1.7 10.9
L5 (pma=s1488) 8 8124 | 8|19 |61 | 8] 48 |38 60| 24.1
L6 (s386=keyb) 71 713 7| 223 7] 2136201 1.2] 653.0

Table 2: Experimental results for two-way-communcation circuits.

My, M: interacting FSM’s
LO,S: number of PI's, PO’s, states, respectively
X (Y): number of signals from M; to M, (from M, to M)

B (A): sum of number of states in M; and M before (after) exploiting don’t cares
DC: time for computing don’t cares (in seconds on a DEC 5000/240)
SM: time for STAMINA (in seconds on a DEC 5000/240)

By Theorem 7.6, output sequences of M, x M, in Figure 6(b) are contained in the intersection of output sequences of
My and M,. This provides a way to approximate input don’t care sequences for Mz. Similar to the FSM network in Figure
6(a), we can use £(A, x A;) to approximate output sequences of M; x M,. By Corollary 7.7, it is guaranteed to satisfy (9).
Also, this reduces the complexity for performing approximations.

Consider the cascade, My — Mr in Figure 6(c). My may be the abstract driving machine of Mr in a large FSM
network. My may have a large state space and many interacting signals, denoted as z, to Mp. As explained in Section 6.3,
the implicit bounded subset construction can handle the case when there are many input combinations, but it is not suitable
for a large state space. However, together with filtering the NFA method which limits the number of states of A’ before the
subset construction, approximate computation of output sequences from My can be preformed.

Another approach which enhances the ability to manage the complexity to perform approximate computation in large FSM
networks is the following. Decompose My into My, . . ., M; as shown in Figure 6(d). This can be done as follows. Partition
the interacting signals z into z1, . . ., zx. The transitionrelation of M; is 3z ;%-, Ta,,. By such a construction, this reduces the
problem to one in Figure 6(b). We can then individually compute the approximate output sequences of Mj, . . ., Mj.. Suppose
these are Ay, ..., Ay respectively. The partially implicit bounded subset construction in Section 6.4 can be employed. It is
more efficient for a large state space and medium-size input combinations, since generating and checking new subsets can be
done efficiently using BDD’s. Then construct A = A; x - - - x A. The state minimization on A can be done using the method
in [16]. Note that if the state space of the minimized DFA is still large, a similar method to the bounded subset construction
can be applied to limit the number of states to make further approximation.

8 Experimental Results

In this section, we present preliminary results on small networks. Due to the lack of FSM network benchmark examples,
most of the examples here are obtained by connecting FSM’s from MCNC benchmarks. These FSM’s are completely specified
and state-minimal. We use STAMINA [11] to exploit input don’t care sequences.)

Table 2 shows some experimental results for two-way communication circuits with two FSM’s. The circuit topology of
these examples is shown in Figure 2. The bound on the number of states for subset construction is 32. Example KN2 is
obtained by connecting the output of the driven machine of the cascade circuit in [13] to the input of its driving machine.
Example S2 is obtained by decomposing s386 into a two-way-communication network. The other examples are obtained by
connecting two FSM’s from MCNC benchmarks. To prevent direct information feedback, we attach latches to the interacting
signals from M; to M), i.e. y.

Example KN2 is the only two-way-communication circuit considered in [20]. The total number of states reported by [20]
for the two FSM’’s of example KN2 is 7, and CPU time is 96.0 seconds (on a DEC 5000/200) after performing two iterations

17

circuit Il X] 015 S CPU
B| A DC| SM
C1 (ex7-dk16) 2| 2 3110 27|15 | 0.65 0.2
C2 (keyb-dk16) 7 2 319427119 | 049 0.1
C3 (s510-keyb) 19| 7 214719 |15 192 | 21.2
C4 (bbsse-keyb) 7 7 2|16 19 | 18 || 0.67 39
C5 (bbsse-planet) 7 7119 | 16| 48 | 42 || 097 | 548.6
C6 (sand-ex1) 11 9|19 32| 20 8|l 194 | 117.9
C7 (s1488-s510) 8119 7| 48 || 47 4 || 4.80 0.6
C8 (ex1-s510) 9119 7120 47 740 1.89 0.3

Table 3: Experimental results of one-way-communcation circuits.

M, (Mp): driving machine (driven machine)
,o,X: number of PI's, PO’s, interacting signals of M; — M, respectively
S1 (S2): number of states of M, (M)

B (A): number of states of M, before(after) exploiting don’t cares
DC: time for computing don’t cares (in seconds on a DEC 5000/240)
SM: time for STAMINA (in seconds on a DEC 5000/240)

around the loop and state minimization. The number of states of the DFA for capturing input don’t care sequences grows too
much after two iterations. Thus, much CPU time is spent in state minimization [19]. In contrast, our approach employs the
notion of an abstract driving machine and takes much less CPU time to achieve a better result as shown in Table 2.

Table 3 shows some experimental results for cascade circuits consisting of two FSM’s. The purpose of these experiments
is to examine the case when there are many interacting signals from an abstract driving machine to its corresponding driven
machine. The bound on the number of states for subset construction is 64.

We have implemented most of our algorithms and are studying various trade-offs offered by different approximation
methods. Our preliminary results indicate that the notion of abstract driving machines is very promising for computing
input don’t care sequences in general FSM networks. We plan to do more experiments on large FSM networks using the
approximation methods in Section 6 and 7.

9 Conclusion

We presented a novel approach to compute the exact input don’t care sequences for a component in an FSM network with
arbitrary topology by converting this problem into a cascade circuit consisting of this component and its correspanding abstract
driving machine. In case the exact computation and exploitation are too expensive, we provided approximation methods
to compute subsets of input don’t care sequences. We have also discussed how to implement the algorithms using implicit
enumeration techniques. For large FSM networks, we proposed methods to manage the complexity to perform approximate
computations. Preliminary results look promising but larger networks must be experimented on.

10 Acknowledgements

The authors are thankful to Szu-Tsung Cheng and Thomas Shiple for helpful discussions on the use of the BDD package.

References
(1] K. L. Brace, R. E. Bryant, and R. L. Rudell. Efficient Implementation of a BDD Package. In 27th ACM/IEEE Design Automation
Conference, pages 40-45, June 1990.

{2] R.K. Brayton and F. Somenzi. Boolean Relations and the Incomplete Specification of Logic Networks. In VLSI'89, August 1989.

(3] R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation. /EEE Transactions on Computers, C-35(8):677-691,
August 1986.

18

[4] J.R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential Circuit Verification Using Symbolic Model Checking. In 27tk
ACMIIEEE Design Automation Conference, pages 46-51, Orlando, June 1990.

[5] I. Carroll and D. Long. Theory of Finite Automata : with an Introduction to Formal Languages. Prentice Hall, Englewood Cliffs, NJ,
1989.

(6] E. Cemy and M. A. Marin. An Approach to Unified Methodology of Combinational Switching Circuits. In JEEE Transactions on
Computers, pages 745-756, August 1977.

{71 O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Based on Symbolic Execution. In Proceedings of the
Workshop on Automatic Verification Methods for Finite State Systems, Grenoble, France, 1989.

[8] O.CoudertandJ.C. Madre. A Unified Framework for the Formal Verification of Sequential Circuits, In /EEE International Conference
on Computer-Aided Design, pages 126129, November 1990.

{9] M. Damiani and G. De Micheli. Recurrence Equations and the Optimization of Synchronous Circuits. In 28th ACMIIEEE Deszgn
Automation Conference, pages 556-561, June 1992.

[10] S. Devadas. Optimizing Interacting Finite State Machines Using Sequential Don’t Cares. In IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, pages 1473-1484, December 1991.

[11] G. Hachtel, J. K. Rho, F. Somenzi, and R. Jacoby. Exact and Heuristic Algorithms for the Minimization of Incompletely Specified
State Machines. In The European Conference on Design Automation, 1991.

[12] I.E. Hopcroft. An nlog(n) Algorithm for Minimizing the States in a Finite Automaton. In The Theory of Machines and Computation,
ed. Z. Kohavi, 1971.

[13] J.Kim and M. M. Newborn. The Simplification of Sequential Machines With Input Restrictions. In /JEEE Transactionson Computers,
pages 1440-1443, December 1972.

[14] B. Lin and A. R Netwon. Implicit Manipulation of Equivalence Classes Using Binary Decision Digrams. In International Workshop
on Logic Synthesis, 1991.

[15] B.Lin and F. Somenzi. Minimization of Symbolic Relations. In /EEE International Conference on Computer-Aided Design, pages
88-91, November 1990.

[16] B. Lin, H. Touati, and A. R. Newton. Don’t Care Minimization of Multi-Level Sequential Logic Networks. In JEEE International
Conference on Computer-Aided Design, pages 414-417, November 1990.

[17] P. McGeer. On the Interaction of Functional and Timing Behavior of Combinational Logic Circuits. PhD thesis, U.C. Berkeley,
November 1989.

[18] M. Rabin and D. Scott. Finite Automata and Their Decision Problems. In IBM Journal of Researchand Development, pages 114-125,
1959,

[19] J.K. Rho. Private Communication. April 1993.

[20] J. K. Rho, G. Hachtel, and F. Somenzi. Don’t Care Sequences and the Optimization of Interacting Finite State Machines. In
International Workship on Logic Synthesis, May 1991.

[21] J. K. Rho, G. Hachtel, and F. Somenzi. Don’t Care Sequences and the Optimization of Interacting Finite State Machines. In JEEE
International Conference on Computer-Aided Design, pages 418-421, November 1991.

[22] H. Savojand R. K. Brayton. Observability Relations and Observability Don’t Cares. In /EEE International Conference on Computer-
Aided Design, pages 518-521, November 1991.

[23] A.Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algorithms for Discrete Function Manipulation. In I[EEE International Conference
on Computer-Aided Design, pages 92-95, November 1990.

[24] H. Touati, R. K. Brayton, and R. Kurshan. Testing Language Containment for w-Automata using BDD’s. In Proceedings of
ACMISIGDA International Workshop on Formal Method s in VLSI Designs, Miami, January 1991.

[25] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit State Enumeration of Finite State Machines
using BDD's. In IEEE International Conference on Computer-Aided Design, pages 130-133, November 1990.

[26] S. H. Unger. Asynchronous Sequential Switching Circuits. John Wiley, 1969,

19

	Copyright notice 1993
	ERL-93-64

