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Abstract

We present an approach to compute all input don't care sequences for a component in an FSM network with an arbitrary
topology. In a cascade FSM network, Kim and Newborn's (K-N) procedure [13] exactly computes all input don't care
sequences for the driven machine. However, for a component in a general FSM network the exact computation of input don't
care sequences is unsolved. We demonstrate that this problem can be reduced to one for a cascade circuit. This reduction
uses the notion ofan abstract driving machine. In some cases, the exact computation and exploitation of these sequences may
be too expensive. We propose methods to compute subsets of input don't care sequences. We discuss the implementation of
these algorithms using implicit methods. We also present approximate methods for managing the complexity of large FSM
networks. Finally, we give some preliminary results on small networks.
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Figure 1: M\: A cascade circuitof two FSM's

1 Introduction

When one circuit is connected to another, the controllability of its inputs and the observability of its outputs are reduced.
This phenomenon has been studied thoroughly in combinational circuits in which limitedcontrollability can be represented
by don't cares; on otherhand, limitedobservability requires Boolean relations (observability relations) or symbolicrelations
[6,2,15,22]. In many cases, betterimplementations canbe obtained by exploiting this information.

Similarly, sequential don'tcares play animportant role in theoptimizationof sequential circuits. Several approaches have
been proposed; for example, in [16], unreachable orequivalent states are used in theoptimization of an isolated sequential
circuit Damiani et al. [9] introduced synchronous relations to deal with the logicoptimization of sequential circuits with
pipelined latches. In this approach a circuit implementation is given as the starting point. On the other hand, a transition
relation canbe used to represent an isolated finite statemachine (FSM); thus, symbolic information,i.e. unencoded machines,
can be manipulated.

In sequential circuits, don't cares sequences need to be considered. There are two kinds; outputand input sequences.
In this paper, we deal with the latter. Consider the cascade machine in Figure 1, where Mx is the drivingmachine and M2
the driven machine1. Unger [26] observed that M2, when driven by M\, may possess more unspecified transitions than as
an isolated machine, and proposed a methodto approximate and exploit a subsetof this information. Recently, Devadas
[10] proposed a different but similarprocedure. Kim and Newborn [13] proposed an elegantcomplete solution. However,
for a two-way-communication network of FSM's, jV2» as shown in Figure 2, theexact computation is notwellknown. Rho
et al. [20] suggested applying Kim andNewborn's (K-N) procedure iteratively between M\ and Af2 until a fixed pointis
reachedwhich represents the input don't care sequences for both M\ and M2. The upper bound on the number of iterations
is unknown.

In this paper, we survey previous related work, and provide an improved understanding of input don't care sequences.
We proposea complete solution without iteration for the problem in general FSM networks. Then, we propose methods
to compute subsets of these sequences and discuss implementation details, using implicit techniques. We consider several
special situations which make the computation easy, and give implicit methods to check for these situations. We discuss
approximation techniques formanaging the complexity in large FSM networks. Finally, we presentsome preliminary results
on small FSM networks.

2 Preliminaries

2.1 Finite Automata

A deterministic finite automaton (DFA), A, is a quintuple (A', 17,6, q0) F) where K is a finite set of states, E an alphabet,
qo € K the initial state, F C K the set of final states, and 6 the transition function, 6 : K x E —* K. A nondeterministic
finite automaton(NFA), A, is a quintuple (K, E, 8,qo, F) where 6, the transition relation,is a finite subsetof K x E* x K,
and E* the set of all strings obtained by concatenating zero or more strings from E. An input string is accepted by A if it
ends up in one of final states of A. The languageacceptedby A, C(A), is the set of strings it accepts.

1In this paper, we only considersynchronous FSMnetworkswith known initial states.
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Figure2: H2: A two-way-communication network of FSM's.

2.2 Finite State Machines

Afinite statemachine (FSM), M, isa six-tuple (/, O, Q,S, A, q0), where / isa finite inputalphabet, Oa finite output alphabet,
Q a finite set of states, 6 the transition function, Atheoutput function, and qo the initial state. A machine is of Moore type
if Adoes not depend on the inputs, andMealy otherwise. An FSM can be represented by a state transition graph (STG). A
machinein which transitionsunderall inputsymbolsfrom everystateare defined is a completely specified machine; in other
words, both6 and Aarecomplete functions. Otherwise, a machine is incompletely specified.

A distinguishing sequence for two states qx, q2 € Q is a sequence of inputs suchthat when applied to M, the last input
produces different outputs depending whether M started at q\ or q2. In a completely specified machine M, two states q\ and
qi are equivalent if there is no distinguishing sequence. In an incompletely specified machine M, two such states 91 and qi
are compatible. A sequence S\ is said to contain another S2 if S2 appears in S\.

A cascade of FSM's M\ and M2,denoted Mx —• M2, is shown in Figure 1. Mx is called the driving machine, M2 the
driven machine.

2.3 Set Computation and Operators

Let B designate the set {0,1}.

Definition 1 LetE bea setand S C E. The characteristic function ofS is thefunction \s : E -* B defined byxs(x) = 1
ifx e S, and Xs(x) = 0, otherwise.

Definition 2 Letf : Bn — B be a Booleanfunction, andx = {x\,..., Xk] a subset of theinput variables. The existential
quantification (smoothing) off byx, with fa denoting thecofactor off byliteral a is defined as :

^X,J = JXi "+• fxT .

Definition 3 Let f : Bn — Bm bea Booleanfunction, Sx C Bn and S2C Bm. The imageof Sx by f is f(Sx) = {y G
Bm\y = f{x),x e Si}. f(Bn) is the range off. The inverse image ofS2by f is f~l (52) = {x € Bn\f(x) = y,ye S2}.

Definition 4 Let f : Bn —> B be a Boolean function, only depending on a subset of variables y = {y\,...,yk}. Let
x - {xx,..., xk]beanother subset ofvariables, describing another subspace of Bn ofthe same dimension. The substitution
of variables y byvariables x in f is thefunction ofx obtained bysubstituting xifor yi inf:

{9y,*f){y) = /(*) if *i = Vi for all \<i<k.

Definitions Let f : Bn —• Bm be a Boolean function. The relation (characteristic relation) associated with f, F :
Bn x Bm — B, is defined as F(x, y) = {(x, y) € Bn x Bm \y = f(x)}. Equivalently, interms ofBoolean operations :

Ki<m



Wecan use F to obtain the imageby / of S\ CBn, by computing the projectionon Bm of the set F f) {S\ x Bm):

f(Sx)(y) = 3x(F(x,y).Sl(x)).

Similarly, the inverse image by / of S2 C Bm can be computed as :

f-l(S2)(x) = 3y(F(x1y).S2(y)).

Reduced ordered binary decision diagrams (BDD's) [3] are well suited to represent the characteristic functions of subsets
of a set, and efficient algorithms [1,3] exist to manipulate them to perform all standard Boolean operations. As a result, the
above set operations can be done efficiently.

2.4 Multiple-Valued Functions

Let X\, X2, •••Xn be multiple-valuedvariables ranging over sets P\, P2, •••, Pn respectively, where P, = {0,..., pi - 1},
and Pi are positive integers. A multiple-valued function / is a mapping

/ : Pi x P2 x ... x Pn -> B .

Let Sibe a subset ofP,,and X?' represent the characteristic function

tSi.ySi_ f 0 \iXi
A*' ~\ 1 ifXi€Si.

Xf' iscalled a literal ofthe variable X{. If |5t-1 = 1,this literal isa minterm ofX{. Aproduct term ora cube isa Boolean
product (AND) of literals. A sum-of-products is a Boolean sum (OR) of product terms. An implicant of a function / is a
product term which does notcontain any minterm in theOFF-set (/~l(0)) of the function. Aprime implicant of / is an
implicant not contained in any other implicant of /.

Let a symbolicvariable s assume values from 5 = {so,..., sm_i}. It can be representedby a multiple-valued variable,
X, restrictedto P = {0,..., m - 1}, whereeach symbolic valueof s mapsonto a uniqueinteger in P.

We can use multiple-valued decision diagrams (MDD's) [23] to manipulate multiple-valued functions just like BDD's for
Boolean functions. Furthermore, similar operations, such as existential, and universal quantification, and substitution, etc., are
well defined in the MDD framework [23]. In the sequel, we just use the term BDD to interchangeably refer to characteristic
functions of multiple-valued variables.

2.5 Implicit State Reachability Computation

The reachable states can be computed efficiently using implicit state enumeration techniques introduced by Coudert et al. [7].
These techniques are widely used in FSM verification [7,8,25], and in design verification [4,24]. This approach is based on
representing a set of states by a characteristic function which can be manipulated effectively using BDD's. In the following,
we represent a finite state machine implicitly by a characteristic function using BDD's.

Definition 6 The transition relation ofa finite state machine M = (/, O, Q, 8, A, g0) is a functionT:IxQxQxO—>
B suchthat T(i,p,n,o) = 1 if and only if state n can be reached in one state transition from state p and produceoutputo
when input i is applied.

A predicatetransformeris a monotonefunctionoperatingon thepower set of a finiteset. The set of states R(p) containing
thestatesreachablefroma givenset of initialstates I(p) can be viewedas the leastfixedpointcontainingI(p) of thefunction

T : c(p) »-* c(p)+ 9niP3itPt0(T(i, p,n, o) •c(p)).

At a fixed point, R(p) satisfies :

R(p) = R(p) + en<p3itPt0(T(i} p, n, o) • R{p)).

The least fixed point of T can be computed [4] as the limit of the following sequences :

Ro(p) = Up) (1)
Rm+iip) = Rm{p)+ dn,p3i,p,0{T{i,p,n,o)-Rm(p)) (2)

tfoo(P) = Rm(p) if Rm+l(p) = Rm(p) . (3)



Figure 3: A part of the STG of M2

2.6 Compatible Projection Operator

The compatibleprojectionoperator is defined in [14]and can be manipulated efficientlyusing BDD's.

Definition 7 Lety\ -< <ynbe anordering ofBoolean variables. The distance between twovertices a e Bn and/3 G Bn
is defined as [7,25]

n

Using the above distance metric, a total ordering of all the verticesof a Boolean space relative to some reference vertex
a can be defined; order(x) = d(a, x).

Definition 8 Given a € Bn,C C Bn,the closest interpretation of a inCfora given variable ordering is defined as [14]

V{oc,C) = argminxecd(a,x).

The definition of closest interpretationP, relative to a reference vertexa, is uniquefor a given variableordering.

Definition 9 Fora relation, H C Br x Bn, and a € Bn, the closest interpretation of a relative to%(called compatible
projection in [14]) is :

L(a,7l) = {(x,y)\(x}y)eK}y = V{a,Kx)}.

Conceptually, the -L operator selects a unique minterm y for each minterm x defined in the relation 71. Thus, ±(a, 71)
results in thecharacteristic function of a function defined on thedomain 3y7l(x, y); L(a, 71): 3y7Z(x, y) x Bn -*• B. Also,
the JL operator can be generalized to symbolic relations represented by MDD's.

3 Previous Work

Firstwe discuss inputdon't care sequences. In thissection, weconsider thecascade machine Mx —^ M2 in Figure 1. Partof
an STG of M2 is shown in Figure 3. Consider the transitions from sx to s2 and from s2 to s3. When M2 does not interact
with other machines, (si s2s3) is a possible sequence of transitions. However, when M2 isdriven by Mt, this sequence may
nothappen. Thus,wecan regard the inputstring (ax a2) causing these transitions as a don't caresequence starting at sx. We
cannotdetermine whether (sis2s3) is a possiblesequence by looking at M2 in isolation, but such information is useful; we
may get a smaller number of states for M2 in the cascade Mx -* M2y than when M2 is in isolation.

3.1 Unger's Procedure

Unger [26] observed that when one FSM is driven by another, there are more input-incompletely-specified don't cares
(unspecifiedtransitions) than for an isolated machine. We restate a theorem in [10].



Theorem 3.1 Given a machine M, a set of don't care sequences DCieq, and theset of all distinguishing sequences of two
states qx and q2, DIS3eq. Suppose that each sequence in DISseq contains at least onesequence of DCseq. Then qx and q2
are compatible under the DCseq.

Based on this theorem, one could create a procedure to produce all distinguishing sequences for every pair of states in
machine M2 and then check for the containment condition. Any pair of states satisfying this check is compatible and can be
merged. Although it provides some theoreticalclarification,this approach is potentially very time consuming, since each pair
of states may have many distinguishing sequences that have to be found for every pair.

A more efficient approach was proposed in [26, 10] which employs explicit state splitting to represent more of the
incompletely specified information. Thisapproach generates M2 withstates | Q'2 | >| Q2 \. M{has moretransitions thatare
not specified than those of M2. However, the number of states of a minimum state machine of M2 will not exceed that of a
minimum state machine of M2.

3.2 K-N Procedure

Kim and Newborn [13] proposed an elegant approach which solves the problem of computing input don't care sequences for
a driven machine in a cascade. The procedure is:

1. Construct an NFA A' to accept the language produced by machine Mx. This can be achieved by removing the input
part in the STG of Mi, and assigning every state of Mi as a final state. For a state s, if there are output symbols not
emitted from it, a transition is inserted from s to the deadstated with those symbols. The dead state d is the only
nonaccepting state. Thus A' is completely specifiedbut nondeterministic.

2. ConvertA' to a minimized completelyspecified DFA A. This can be done by using the subset construction [18] and
state minimization for DFA [12]. Note that efficient state minimization for completely specified machines can be used,
since the subset construction produces a completely specified machine.

3. A modified machine M2 is constructed as follows: construct M2 x A and delete any transition to a state that contains
the dead state d in its subset. M2 is deterministicbut possiblyincompletelyspecified.

The key idea is that sequences not produced by Mi are the input don't care sequences for M2,and these are converted into
unspecified transitions of a modified machine M{. TheK-N procedure indeed captures all inputdon't caresequences for M2.
In the next subsection, this is discussed in more detail. It can be seen that the state splitting method of Devadas is a subset of
this, but Devadas' procedure is explicit and length limited, whereas the K-N procedure is implicit and not length limited.

3.3 Input Incompletely Specified Don't Cares vs. Input Don't Care Sequences

Consideran incompletely specified FSM P. The input-incompletely-specifieddon't cares (unspecified transitions) for P may
be interpreted as characterizing that a given input symbol never occurs when this machine is in a particular state. Thus any
inputsequence isforbidden that drives P to exhibit unspecified behavior. The complementof forbidden input sequences is
the set of allowable input sequences. Let C(Pl) denote the set of all allowable input sequences. Since £(P') is a regular
language, we can constructan automaton A to accept it as follows. For each transition in the STGof P, remove the output
part. Each state is designated as a final state. For a state s with unspecified input symbols, create a transition edge from s to
the dead state d with thoseunspecified symbols. The dead state d is the only nonaccepting state. Consequently, any input
sequence not accepted by A causes P to produce unspecified behavior. Thus from an incompletely specified machine P we
can construct an automaton A which accepts all allowable input sequences to P.

From the above discussion, any incompletely specified FSM corresponds to a regular language. Conversely, the basic
idea behind the K-N procedure is that the sequencesproducedby Mi is a regular languagewhich can be implicitlyexpressed
with input-incompletely-specifieddon't cares. This conversion is done in step 3 of the K-N procedure. From this discussion,
we conclude that

• Givenany incompletely specified machine P, we can construct an automaton whichaccepts the regularset C of input
sequences for which P is always specified.

• Givenany regular language£, we can modifyany machine P to an incompletely specified one P' whoseset of input
sequences for which P' is specified is C.

Thus incompletely specified machines and regular input languages are equivalent.
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Figure4: M2 : An equivalentone-way-communication FSMnetwork to M2.

3.4 Transformation from NFA to DFA

Unfortunately, the worst case complexity for the transformation froman NFAto a DFA(i.e. from A' to .4) is exponential in
thenumber of states [18]. Furthermore, even if .4 can be built in a reasonable time, the resultant product machine M'2 may
have a large number of states before state minimization is performed.

In [21], a sophisticated heuristic was proposed to reduce the number of states of the DFA A by sacrificing some don't care
information. This simplification process was called summarizing theDFA. However, to apply this, one may need to have A
first. So the subsetconstruction to transform A' to A is still required. Laterin thispaper, we proposea simplification process
appliedduring the transformationfrom A' to A, whichcontrols the state explosion.

4 FSM Networks with Arbitrary Topologies

In this section, we demonstrate that the problem of computing and exploiting input don't care sequences for a component in
an FSM networks with an arbitrary topology can be reduced to one for a cascade circuit.

4.1 Exact Computation

Intuitively, computation of input don't care sequences for a component in an FSM network of arbitrary topology is much
more complicated than for a cascade circuit. Nevertheless, it is not theoretically harder. In this subsection, we demonstrate
that the K-N procedure can be applied directly to an arbitrary FSM network topology.

Consider a two-way-communication FSM network M2, Mx <-*• M2, as shown in Figure 2. We want to compute input
don't care sequences for Mx. The suggestion made in [20] is as follows.

Let automatonAi be definedon the samealphabetX. The DFA's produced for a given machinein the loop
by repeated applicationof the K-N procedureform a sequence {Ai) of automatasuch that C(Ai) C C(Ai+x).
Each iteration through the loop corresponds to an applicationof a recurrence relation of the form Ai+X = f(Ai),
with JC(Ao) = 0. If we proceed until we get the least fixed point, we have the wholeset of inputdon't care
sequences for these two machines. The fixed point is guaranteed to exist

The upper bound on the number of iterations required to attain the fixed point is not known and may be large. At each
iteration, an equivalencecheckingof twoautomata is required. Moreover, thenumberof statesof Ai at some iterationi may
grow too large.

Now consideranother FSM network M2 asshown inFigure 4. We show thatthis circuit produces thesame I/Osequences
as those innetwork N2. Since x, y innetwork M2 areproduced by the composite machine Mi x M2, the sequences happening
in x and y shouldbe the sameas those in networkM2. As a result, x and y in networkH2 will drive Mi and M2 in network
H2 toexhibit thesame behavior asinnetwork H2. Consequently, we will have thesame I/Osequences as innetwork H2, and
theoutput G of H2 is a tautology. By thisconstruction, wetransform a two-way-communication network to an equivalent
one-way-communication network. Here, the equivalent driving machine to Mi and M2 is Mi x M2. Wecan apply the same
procedureswe used in a cascade circuit directly to compute input don't care sequences for Mi and M2 simultaneously,since
M\ and M2 can be regardedas beingdriven independently by Mx x M2, insteadof communicating witheachother. Bysuch
a construction, we do not suffer the iterative executions of the K-N procedure as suggested in [20].



When we want to compute input don't care sequences for a component, say M2, in an FSM network of an arbitrary
topology,we can always lump the other components together,and call the resultant machine Mi. Then, it is either a one-way-
communication model in Figure 1or a two-way-communication model in Figure 2. Consequently,we are able to perform the
computation of input don't care sequences for a component in an FSM network with an arbitrary topology.

Based on the above explanation, we introduce the notion of an abstract driving machine in the computation of input
don't care sequences in an FSM network. For example, the abstract driving machine to M2 in Figure 1 is Mi, while the
abstract driving machine to M2 in Figure 2 is Mi x M2. The abstract driving machine for a component in an FSM network
is the composite machine of all components in this network, i.e. the network itself. However, if a component M2 is in a
one-way communication with other components as in Figure 1, its abstract driving machine will reduce to Mi. Then steps 1
and 2 of the K-N procedure can be used to compute the exact input don't care sequences.

An abstract driving machine itself may bea nondeterministic FSM2; however, this does notaffect the computation of
input don't care sequences in the K-N procedure. Consequently, we may start with a network of machines some of which are
nondeterministic (e.g. the environment may be one of the machines). The K-N procedure works anyway.

4.2 Exploitation

In thissubsection,we demonstrate that inputdon't caresequences fora componentin a generalFSMnetworkcan be exploited
in the same way as in a cascade circuit. This is not discussed in [13,10,21].

Consider the two-way-communication circuit Mi *-*• M2 in Figure 2. Let Cx be possible sequences over alphabet X
produced by Mi in isolation, i.e. when input y is unrestricted, and C2 possiblesequences over alphabetY produced by M2
in isolation, i.e. when input x is unrestricted. Let Cx, £y, Cxy be possible sequences over alphabets X, Y, and X xY in
Mi «-• M2, respectively. Cx and Cy are input don't care sequences for M2and Mi, respectively. Let M2 be the modified
machine of M2 with Cx as unspecified transitions.

Leta state-minimized machine of M2' be M2". Thespecified behavior of M2 is preserved in M2", i.e. the behavior
of M2" restricted to input sequences Cx is thesame as that of M2. Forunspecified input symbols ofa state s in M2, state
minimization procedures can exploit them by assigning transitions from s to any next states and with any output symbols.
Therefore, the set ofoutput sequences produced by M2" in isolation, £2", may bedifferent from C2. Let Cx", Cy'\ Cxy"
be possible sequences over alphabets Xy Y, and X x Y in Mi *-+ M2", respectively. If Cx = Cx", then Cy = Cy"
and Cxy = Cxy". This is because the behavior of M2 restricted to input sequences Cx is preserved after performing state
minimization on M2 . Thus, Cx = Cx" implies that Mi +-*> M2" has thesame input/output behavior as that of Mx <-• M2.
If Cx ^ Cx", the input/output behavior of the whole circuit may notbe preserved. This is because Cx is assumed to be
impossible sequences in order to be exploited by state minimization procedures.

Lemma 4.1 Cx = Cx".

Proof Our assumption is that Mx <->• M2 is synchronous and thereis no direct information feedback loop through x and y.
The initial transition of the composite system T can be excited by the initialstate of the wholecircuitand external input i.
If Mi <-• M2 is a closed system, i.e. there is no external input i, the first transition is excited by the initial state. If y is a
Moore-type output of M2, y is stilla Moore-type output of M2" with respect to input sequences Cx.
Case 1: One of x and y is of Moore type.
Let xi and y, be symbols of thealphabets X and Y, respectively. Let (xx •••xn) be a sequence in Cx,and thecorresponding
outputsequence ofM2be(yi • •yn)- First, we prove Cx C Cx". xx isthe initialoutputvalue if a; isa Moore-type output. Ify
is a Moore-type output, xi is producedafter a transition startingfromthe initalstateof Mx *-* M2", whichis the sameas that
of Mi *•* M2. Therefore, initially symbol xx should beable tobeproduced by Mx. Symbol xx must drive M2" toproduce yi.
This isbecause M2" restricted toinput sequences Cx has die same behavior asthat of M2. Symbol yi should beable todrive
Mi toproduce symbol x2, since Mi iskept unchanged. Input sequence (xix2) must drive M2" toproduce (yiy2) since (xx x2)
is a sequence in Cx. By applying the same rationale repeatedly, we can conclude that {xx,..., xn) is a sequence in Cx".
Next, we prove Cx C Cx". Without loss ofgenerality, consider that (xi_-_- •xn) is asequence in Cx, but (xx •••xnxn+x) is a
sequence in Cx. This means that(xx •••xnxn+\ )X* aresequences in Cx. Forinput sequence (xi •••x„), thecorresponding
output sequence produced by M2" is (yi • -yn). Symbol yn is the input to Mi for next transition. Suppose on the contrary
that (xi •••x„xn+i) is not a sequence inCx". For input sequence (yi •••yn), xn+i should beable to beproduced by Mi
as the last output symbol. This implies that (xi •• xnxn+i) should be a sequence in Cx. This is a contradiction. Thus,

2In this paper, anondeterministic FSM refers toacollection of permissible FSM's.



(xi •••xnxn+x)X* aresequences in Cx". Therefore, wehave Cx C Cx".
Case 2: Both of x and y are of Moore type.
Letxi and yi be the values in x and y at t = 0+, respectively. Let (xi •••xn) bea sequence in Cx, and thecorresponding
output sequence of M2 be (y2 •••ynyn+i). First, weprove Cx C Cx". Symbol xi must drive M2" to produce y2. This is
because M2" restricted to inputsequences Cx has thesame behavior as thatof M2. Symbol yi mustbe able to driveMi to
produce x2, since Mi is unchanged. Input sequence (xix2) must drive M2" to produce {mm) since (xix2) is a sequence
in Cx. Byapplying thesame rationale repeatedly, wecan conclude that (xi,..., xn) is a sequence in Cx". Next, weprove
Cx Q Cx"< Without loss of generality, consider that (xi ••-Xn) is a sequence in Cx, but (xi • •xnxn+i) is a sequence in
Cx. This means that (xi •• -XnXn+^X* are sequences in Cx. For inputsequence (xi • •xn), the corresponding output
sequence produced by M2" is {m- ynyn+i). Symbol yn is the input to Mi for the current transition. Suppose on the
contrary that (xi •••xnxn+i) is nota sequence in Cx". For input sequence (yi •••y„), xn+i should beable to beproduced
by Mi as the last output symbol. This implies that (xi •••xnxn+i) shouldbe a sequence in Cx. This is a contradiction.Thus,
(xi •••xnxn+i)X* are sequences in Cx". Therefore, weconclude Cx C Cx". •

Thus^ry is preserved andso is theinput/output behavior of thewhole circuit. Furthermore, input don't care sequences
for Mi, Cy, need not to be recomputed after exploiting Cx as inputdon't care sequences for M2.

Theorem 4.2 Inputdon'tcaresequencesfor a component ina generalFSMnetwork canbeexploitedusingstateminimization
proceduresfor incompletely specified FSM's.

Proof Directly from Lemma 4.1. •

Moreover, if y = o in Figure 2, M2 expresses the full flexibilityfor implementing M2 as in the cascade circuit Mi —• M2
in Figure 1.

5 Implicit Computation

In this section, we focus on the implementation of the K-N procedure using implicit techniques. BDD's can represent and
manipulate characteristic functions efficiently,and are thus suitable for implicit enumeration, e.g. implicit state reachability
computations.

5.1 Implicit Representation of Finite Automata

The first step of the K-N procedure is to generate an NFA A' to accept output sequences of Mi. Then A' is converted into
a DFA A. A' and A have the following properties — every state except the dead state is a final state, the inputstring in
each transition is of length one, and there are no ^-transitions. Note that we do not need to explicitly add the dead state in the
transition relation, since it is implicit from all unspecified transitions. We do not need to specify the set of final states, since
every state is a final state. As a consequence, we can represent the transitionrelations of A and A' in the same way as FSM's.
The transitionrelation for A' can be implicitlycomputedas:

TA'{p\,nx,ox) = 3ilTx{ix,px,nx,ox). (4)

5.2 Implicitly Checking for Nondeterminism

When A' is a DFA, thesubsetconstruction is not needed. Todetect thisproperty is easy using BDD's. Let T(p, n, i) be the
transitionrelation of a finiteautomaton. WecomputeT'(p, n, i) as follows:

r'(p,n,i) = l(af(T(p,n,i)) (5)

where a is a reference next state vertex. For each pair (p, i) defined in T{p, n, i), A. assigns a unique n. However, if
T'(p,n, i) equals T{p,n, i), then nothing was changed, implying that T already had only one such candidate. Hence,
T{p, n, i) is deterministic; otherwise nondeterministic.



5.3 Implicitly Checking for Complete Specification

If Mi and M2 are completely specified FSM's, we may want to perform state minimization on them first. There exist efficient
algorithms based on BDD's performing state minimization for completely specified machines [16]. Let T{i, p, n, o) be the
transition relation of an FSM M. An FSM M is completely specifiedif and only if Aand 8 are complete functions. The check
for Ais if each (i, p, n) defined in T has a unique o such that (i, p, n, o) e T. We use the -L operator for this. Thus,

±{a0,T{i,p,n,o)) = T{i,p,n,o) (6)

where a0 is a minterm in the O space. This says that T is output deterministic. Equation (5) could check if T is next state
deterministic. T is input-completely-specified if and only if

Vp30<nT{i,p,n,o) = l. (7)

This says that for all i and p, there exists a next state and output. Therefore, machine M is completely specified if and only if
(5), (6) and (7) hold.

5.4 Implicitly Checking for Input Don't Care Sequences

If there is no dead state in A', there are no input don't care sequences from the driving machine, and vice versa. This is
equivalentto checkingif there are no unspecified transitions in 7> (i, p, n). Therefore, A' does not generateany inputdon't
care sequences if and only if

Vp3nTA.{i,p,n) = l, (8)

In Section 6, we present methods to derive a DFA A from A' and discuss how to compute subsets of input don't care
sequences.

5.5 Implicit Construction of the Modified Machine

In thefollowing theorem, wedemonstrate thatthe transition relation of M{,themodified machine, canbe implicitly computed
using BDD's.

Theorem 5.1 Letthetransition relations of A and M2 be TA{p\, nx,i2),andT2{i2,p2, n2,c^), respectively. InTA, thedead
statedoesnotappearsincewe useincompletely specification of A to implicitlyspecifytransitions todeadstate. Thetransition
relation oftheincompletely specified modified machine M2 , T2, can be implicitly computed asfollows :

T2{i2,p, 71,02) = TA{p\Jnx,i2)'T2{i2,p2,n2,o2)

where p = (pi, Pi), n = {nx, n2).

Proof The states of M2 are representedby 2-tuples {s, t), where s and t are the states of A and M2,respectively. Consider
two states of M{% (s,, tk) and (s7,*/). If there is a transition between these two states, then thereexists an input symbol
a e h such that it is on the transitionedge from s: to sj in A, and a transitionedge from tk to U takinga as its input in M2.
SinceA is deterministic, a does not appear on the other transition edge emittedfrom s, in A. Furthermore, input symbols
notspecified on a state s of A implicitly transit from s to thedead state, and they do notcontribute any transitions in M2.
Therefore, they are implicitly converted to unspecified transitions. The above construction is exactly the same as step 3 of
the K-N procedure. •

Afterwards, the implicit state reachability computation can be used to remove unreachable states in the transition relation
of M{, T2% and thenapplyanystate minimization program to minimize M2, e.g. STAMINA [11].
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6 Computing Subsets of Input Don't Care Sequences

Consider the cascade machine Mi —> M2 in Figure 1. Note that Mi may be the abstractdrivingmachine for M2. Let output
sequences produced by Mi be £(M1°), a regular languageover alphabet I2. For computingand exploitingonly a subsetof
input don't care sequences, any language £ such that

C{MX°) c £ C V (9)

gives rise to a feasible subset C of input don't care sequences.
However, any superset of C(M°) may not be a regular language,and hence not be accepted by any finite automaton.

Moreover, in order to apply step 3 of the K-N procedure to construct M2 which captures C as input don't care sequences, a
DFA A accepting £ must be constructed first.

We present methods for finding a DFA accepting an £ that satisfies (9). In Section 6.1, we propose a bounded subset
construction to perform approximation during step 2 of the K-N procedure. Two implementations of this bounded subset
construction are disussed in Section 6.2 and 6.4, respectively. An simplification process which performs approximation on
the NFA A' before the subset construction is described in Section 6.3.

6.1 Bounded Subset Construction

The classical algorithm to transform an NFA to a DFA is the subset construction [18]. In the worst case, the resultant state
space isexponential in size. However, theexactDFA foraccepting C(MX) is notnecessarily to beconstructed ifonlya subset
of don't care sequences is required, since only a DFAsuch that it accepts£ in (9) is needed. The NFAA' in step 1 of the K-N
procedure does not have e-transitions, and in each transition the input string is of length one. The subset construction18,5]
is stated below.

Definition 10 (Subset Construction) Given a nondeterministicfinite automaton, A - (K, E, 8,qo, F), the corresponding
deterministicfinite automaton, Ad = (Kd, E, 8d,q$, Fd), isdefined asfollows:

Kd = 2K, qi = {q0}, Fd = {S 6 Kd\S DF # 0}

and 8d is the state transitionfunction: Kd x E —* Kd, defined by

8d{S,a) = \J^s8{q,a).

Thus any final state in Ad isany subset ofstates of Acontaining at least one final state of A. Inthe application where A
has only onenonaccepting stated which transits to itselfforall input symbols, theonlynonaccepting stateof Ad is {c/}, the
dead state ofAd. During the subset construction, there isno difference between asubset 5 containing dand a subset S —{d}.
The dead state {d} of Ad can be implicitly specified bythe empty set. Therefore, the dead state dcan beexcluded from the
state space of A during computation.

A bound on the number of states created during the subset construction can be set to prevent space explosion.

Procedure : Bounded Subset Construction

1. Givena boundon the numberof states, N > 1,assignthe initialstate 50 *- {?o},a queue Q initializedas Q <— {So},
and a set R initializedas R <— {So}.

2. If (Q isempty) then return Ad, else Sj <— first element ofQ,and remove it from Q.

3. For each (a € E)

Let Sk = 8d{Sjta).
Case 1: If (Sk € R), then add a transition {Sj,a,Sk) inAd.
Case 2: If {Sk &Rand \R\ < N-1), then addSk intoR,append Sk in theendof Q,andadda transition (Sj, a, Sk)

inAd.
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Case 3 : If (Sk £ R and \R\ = N - 1), then add a transition (Sj, a,Sn) in Ad, where Sn transits to itself forall
aeE.

4. Go to step 2.

Theorem 6.1 Let the NFA instep 1ofthe K-Nprocedure beA',and itscorresponding DFA beAd by the subset construction.
Then, the DFA Ad generated by the above procedure has thefollowing property :

C(Ad) C C(Adr). (10)

Therefore, Ad satisfies (9).

Proof If weexitwith(| R \< N - 1), theaboveprocedure isexactly thesubset construction. Thus,(10)is satisfied. Before
we terminatethe above procedure, we are just performingthe subset construction. This corresponds to cases 1 and 2 in step
3. If wereach N - 1 before completion, we have twocases. If Sk € R (case 1),thisprocedure adds a transition (Sj, a, Sk)
toAd. Inthis case, this procedure still preforms the subset construction. If Sk &R(case 3),this procedures adds a transition
(Sj, a, Sn), where Sn transits to itselffor all inputsymbols. Sn accepts all inputsequences starting at Sn. Moreover, A'
has thefollowing property: every state except thedead state d is a final state. Therefore, every new state of Ad generated in
theabove procedure is a final state except thedead state {</}. With this construction, itguarantees thatAd accepts more input
sequences than Ad. Thus, when this procedure terminates, the resultant automaton Ad accepts more input sequences than Ad.
Therefore, it satisfies (10),and hence Ad satisfies (9). •

We may need toperform state minimization on Ad, since itmay contain many equivalentstates. With the above procedure,
the numberof states generated in the subset construction is limited. The heuristic, summarizing theDFA, proposed in [21]
is more sophisticated to approximate input don't care sequences, but one may need to start from a DFA A to perform
approximation, i.e. after the subset construction, while we can avoid this complexity.

Based on the same rationale in the proof of Theorem 6.1, the NFA A' can be approximated before performing subset
construction. Wecall thisfiltering theNFA and explain it in Section6.3. In the following, we discuss the implementation of
the bounded subset construction using implicit techniques.

6.2 Implicit Bounded Subset Construction

The bounded subset construction needs tocheck whether anew stateofAd isgenerated foraninput symbol. When the number
of input symbols of an NFA is large, explicit enumeration becomes inefficient. Here, we present an implicit enumeration
algorithm. First, the subset construction using implicit enumeration is given.

Letthestate space of A' be A' (excluding thedead state d), and | A |= k. This canberepresented bya Jfe-valued variable
s. However, inorder to represent allpossible 2k subsets of A, each state s,- in A' is associated with a Boolean variable #*, a
one-hot encoding representation. Forexample, suppose k =4 andA' = {so,si,s2,s3}. Thecorresponding one-hot encoding
of states0 is (x0,xx,x2, ar3) = 1000. Similarly, {s0, sx} is 1100. Note that0000corresponds to the empty subset, i.e. the
dead state {</} of Ad. Let X = (x0,..., xk-X), where x0 •••xk-X are Boolean variables. Each minterm in the space ofA'
corresponds to a subsetof A. Thisencoding scheme can berepresented using its characteristic function £x (s, X),

SX(S,X) = JJ (xi-(Sj:Sj) +Xi(s = Sj)). (11)
o<i<*-i

LetTA'(i, p, n) be thetransition relation andqo theinitial state of-4'. LetTAd (i, Xp,Xn)be thetransition relation of Ad
in terms of the one-hot encoding.

Theorem 6.2 (Implicit Subset Construction) TAd(i, Xp,Xn) is the limit ofthefollowing sequence, where Rm(Xp) corre
sponds tothe one-hot encoding of the subsets of K generated up tothe m-th iteration, and (TA* )m is all incoming transitions
to these states, butgiven in the one-hot encoding.

Ro(Xp) = {£i(p,AP)}(p=90)
(TA*)m = 3p,n{£x(p,Xp)-Rm-l(Xp)TA,(i,p,n)-Ex(n,Xn)}

Rm(Xp) = 0xn,xp3Xpti((TA<i)m) + Rm-i(Xp)
(^)oo = (*U<)m, Roo(Xp) = Rm(Xp) if (TA<)m+l = (TA*)m.
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Proof Consider (TAd)m. At the m-th iteration, £i(p, Xp) maps Rm-X(Xp), thegenerated subsets of A in terms of the
one-hot encoding, into the state space A. Then TAt (i, p,n) computes the nextstate imagewhichis mapped by £x (n, Xn) to
express this next state image using the one-hotencoding. The smoothing of p and n requires that there exists p, n for Xp to
bemapped intoXn. This gives (TAd )m. Thenew subset of A generated in them-th iteration is added to Rm-\(Xp) togive
Rm (Xp). When the fixedpoint is reached, the subset constructionis completed. •

Each minterm of R(XP) corresponds to a subsetof K. Let thenumber of minterms of R(XP) be ^'(excluding the dead
state {d}, i.e. minterm 00.. .0). Similarto equation (10),we can usea characteristic function &i(s', X) to associate each
minterm of R(XP) to a unique value of a fc'-valued variable s'. Thus, the transition relation of Ad can be reexpressed as
follows:

T'Ad(i,p\n') = 3Xl,,xn(^(p,,Xp)-TAd(i,Xp,Xn)-S2(n',Xn)). (12)

To perform the bounded subset construction, we count the number of minterms of R(Xp) at each iteration. Let
count(Rm(Xp)) denote such anoperation3. Itequals the number ofstates of Ad generated bythe subset construction up to
the m-th iteration. Let the boundbe N. We construct A? as follows. When count(Rm(Xp)) < N < count(Rm+x(Xp)),v/e
pickan arbitrarymintermh in Rm(Xp). Next assign h to transitto itself underall inputcombinations. For those transitions
going to Rm(Xp) at the (m + l)-th iteration, reassign them togo to h. By theorem 6.1, theresultant Ad is guaranteed to
satisfy (9). The transition relation of Ad, TAd (i, Xp, Xn), is thus computed as follows :4

TAd(i,Xp,Xn) = {^xA{TA^m+l-^{^n)]}'h(Xn) + (TAd)m+rRm(Xn)^h(Xp)h(Xn).
Similarly, wecan use(12) toreexpress TA* (i, Xp,Xn) intoT'Ad (i,p',nf).

6.3 Implicit Filtering the NFA

If thestate space A of the NFA A', \K\ is large, constructing BDD's for theimplicit bounded subset construction may be
inefficient, since the numberof one-hot-encoding variables is large. Toremedy this, an approximation can be performed by
constructing an NFA A" with a bound on the number of states such that C(A!) C C(A"). This simplification process is
calledfiltering the NFA.

Suppose theboundon thenumberofstatesin A" is N'. LettheRm(p) be thereachable statesupto the m-thiteration when
we perform implicit reachability computation on TA>(i,p, n) using equations (1), (2), (3). Similar to the implicit bounded
subset construction, when count(Rm(p)) < N' < coun<(.ftm+i (p)), we pick anarbitrary state sj in Rm(p). Next assign sj
to transit to itselffor all i (selfloop). For thosetransitions from Rm(p) goingto Rm(p) at the (m + l)-th iteration, reassign
them to go to state sj . Basedon thesamerationalein theproofof Theorem 6.1, thisconstructionguarantees C(A*) C C(A").
The transitionrelationof A", TA« (i, p, n) is thus computedas follows:

TA»(i,p,n) = [3n(Rm(p) •TA>(hP,n) •Rm(n))] •Sj(n) + Sj(p) •Sj(n) + Rm(p) •TA>(i,p,n) •Rm(n).

6.4 Partially Implicit Bounded Subset Construction

Using the implicit bounded subset construction andfiltering the NFA together, we may handlea largestate spaceand many
inputsymbols. The efficiency of this method may deteriorate when the numberof one-hot-encoding variables increases. In
comparison, for a large state space and few input symbols, the boundedsubsetconstruction using explicit enumeration may
be moreefficient. In this subsection,we presentan implementation usingimplicittechniques partially.

LetTA> (i, p,n)bethetransition relation of A'. Consider step 3of thebounded subset construction. Thesubset generated
from Sj(p) underan inputsymbola, Sk (p), can be computed as follows:

Sk(p) = 0n,P3p{(TA,(i,p,n)-Sj(p)\i=a)}. (13)

Thus, thesubsets generated from Sj(p)can becomputed using equation (13) forall inputsymbols. Thiscanbeexpedited by
first computing the next state imageof TA> under Sj (p).

G(i,p) = 6n,P3p(TA,(i,p,n)-Sj(p)).
L(i) = 3pG(i,p).

3Counting ihe numberofminterms inR(XP) can bedone linearly inthe numberof BDD nodes.
4Here, h(Xv) represents the characteristic function of the single state hchosen as the last state.

13



(a)

i\h V\Pi

00 53 = {10}
01 Sx = { 01,10 }
10 S3= {10} .
11 St = { 00,10 }

Table 1: An example of G(i, p).

Figure 5: (a)TheBDD of G(i,p) with variable ordering ix -< i2 -<px <p2. (b)Unreduced BDD of fx (ix, i2). (c)Reduced
BDDof/i(ii,i2).

L( i) are those input symbols transiting tothe dead state {d} from 5,. The subsets generated from Sj(p) can becomputed by
only cofactoring G(i, p) with respect toeach minterm in L(i). However, this isstill not efficient when there aremany input
minterms in L(i).

Here, wepresent a method to implicitly compute all subsets generated from Sj(p). First,we usean example to illustrate.
G(i,p)isshown inTable 1where i = (ix, i2) and p = (pi,pi). The subsets ofG(i,p)areSi = {01,10}, S2 = {00,10}, and
S3 = {10}. Assign the BDD variable ordering as i -< p. The BDD ofG(i,p) isshown inFigure 5(a). Nodes &i, 62, and63 in
theBDD of G(i,p)correspond to Si, S2, S3,respectively. In fact, they are those nodes withvariable pi or pi suchthat there
are incident edges from nodes with variable ix or i2. Thecorresponding input combinations forproducing Si(p), fx (i), can
beeasily computed as follows: assign those edges which point to node 61 to"1" node, andthose directed edges which point
to 62 or 63 to"0"node. This results in an unreduced BDD of fx(i) as shown inFigure 5(b), and itscorresponding reduced
BDD is in Figure 5(c).

We define thesetof border nodes, B, in theBDD of G(i,p)with thevariable ordering i -< pas follows: B - { b I 6is a
constant node ora node with a variable inp,such thatthere areincident edges from nodes with variables in i. }. Forexample,
B = {bx, 62,63} in Figure5(a).

Theorem 63 Let G(i,p)and Bbedefined asabove. The variable ordering is i •< p. Each node inB corresponds toa subset
generatedfrom Sj (p) and vice versa, i. e. the number ofnodes in Bequals to the number ofsubsets generatedfrom Sj(p).

Proof LetB = {bx,..., bm}, and fx(i),..., fm(i) bethe corresponding inputcombinations. Then, G(i,p) = fx(i)-bx(p)+
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(a)
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M1

12
M2

(c)

(b)

Figure 6: (a) An FSM network with Ix ^ I2. (b) An FSM network with / = Ix = I2. (c) A cascade circuit Mh -*• Mr. (d)
Decomposed Mh cascaded with Mr.

r- fm(i) • bm(p). Then bk(p) corresponds to a subset generated from Sj(p), since fk(i) ^ 0 by definition and for each
minterm aoffk (*), G(i, p\i=a) = 6* (p). Suppose on the contrary there is asubset b' g B, and its corresponding set ofinput
combinations, /' (i), is not empty. However, fx(i),... fm(i) are distinct and fx(i) + \- fm(i) is a tautology. Let a be a
minterm of /'. Thenby G(i, p)i=a weget its corresponding bin B. Since b^ &', thisis a contradiction. •

This method is efficient when there are many input combinations associated with the same subset. Checking whether a
new subset is generated is easy, because every subset is expressed in terms of BDD's. Since generating and checking new
subsets can be done efficiently using BDD's, this method is more efficient for a large state space and medium-size input
combinations.

7 Approximate Computation in Large FSM networks

An abstract driving machine may be the system itself. Constructing the transition relation of the whole system and then
performing the approximation methods in Section 6 may be still expensive. We discuss how to control the complexity of
approximating input don't care sequences for a component in an large FSM network.

Consider the FSM networks shown in Figure 6(a), (b). Let the transition relations of Mx, M2 be Tx(ix,px,nx,ox) and
T2(i2,pi, n2,02), respectively. Let A', Ax, A2 be the NFA, derived from step 1 of the K-N procedure, accepting output
sequences of Mi x M2, Mx, M2, respectively. -4, A\, A2 are their corresponding DFA derived from the bounded subset
construction forA', Ax', A2 respectively. TA», TAi>, TAl>, derived from (4), denote thetransition relations of A', Ax, A2,
respectively5.

Lemma 7.1 ([25]) Let f : Bn x Bm — B and 9 : Bm — B be twoBooleanfunctions. Then

lx(f(x,y)-g{y)) = (%f(x,y))g(y).

Lemma 7.2 ([17]) Let f : Bn x Bm -• B andg : Bn x Bm -• B be two Booleanfunctions. Then

3x(f(x, y) •g(x, y)) C (3xf(x, y)) • (3xg(x, y)).

5Note that thealphabetof A', A\', A\' is 0\ x O2.
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Lemma 13 ([5]) Let Ax = (At, E, 8X, q0x, Fx), A2 = (A2,27, 82, q^, F2), be two DFA. Ax x A2 is a quintuple (A'i x
K2, E, 8, (q0l, 902), F\ x ^2). wherefor all P\€Kx,p2E K2, and a e E, 8((px ,p2),a) = (8X (px, a), 82(pi, a)). Then

C(AX xA2) = C(AX)C\C(A2).

This lemma also holds for the NFA discussed here (e.g. A', Ax\ A2'), since they have no e-transitions, and the input
string in each transition is of length one.

Consider the FSM networks in Figure 6(a), (b). In the following, we demonstrate that output sequences of Mi x M2 can
be approximated with the output sequences of Mi and M2 separately.

Theorem 7.4 Let Mx,and M2 be FSM'sas shownin Figure6(a), where Ix ^ I2. Then

C(A') = C(AX' x A2').

Proof The transition relation of A', TA>, can be computed using (4):

TAi = 3iXii2(Tx(ix,px,nx,ox) •T2(i2,p2,n2,o2))

= (3ixTx(ix,pX)nx,ox))- (3i2T2(i2,p2,n2,o2)) (byLemma7.1)
= TAx'(px,nx,ox) •TAl'(p2,n2,o2).

Therefore,^ = TAl>-TAl> = TAx>xM>. This implies C(A') = C(AX x A2). •

Corollary 7.5 Let Mx, and M2 be FSM's as shown in Figure 6(a), where Ix ^ I2. Then C(A') C C(AX x A2).

Proof

C(A') = C(Ax'xA2')
= C(Ax')r\C(A2) (byLemma 7.3)
C C(AX) n C(A2) (C(AX') C C(AX), andC(A2') C C(A2) byTheorem 6.1)
= £(^1 x A2).

ByTheorem 7.4, outputsequences of Mi x M2 in Figure6(a)are thesameas the intersection of outputsequences of Mi
and M2. This provides a way tocompute output sequences of Mi x M2. Firstderive .4i', ^42'» and then apply thebounded
subset construction tocompute *4i andA2. ByCorollary 7.5,£(^4i x ,42) isguaranteed to satisfy (9). Using thisapproach,
wecan avoid performing thebounded subset construction on A' directly. Thus, this reduces thecomplexity for performing
approximations.

Theorem 7.6 Let Mx,and M2 be FSM'sas shown in Figure6(b), where Ix = I2 = I. Then

C(A') C C(AX' x A2').

Proof The transition relation of A', TA>, can be computed using (4):

TA> = 3i(Ti(i,pi,ni,oi) •T2(i,p2,n2,o2))

C (3,-Ti (i, pi, nx, ox)) • (3iT2(i, p2) n2, c^)) (by Lemma 7.2)
= TAl>(px,nx,ox) 'TA2'(p2,n2,o2).

Therefore, TA> C TAl> •TAl> = TAt'xA2>. The unspecified transitions are implicitly assigned to the dead state, the only
nonaccepting state. Thus, this implies C(A') C C(AX x A2). •

Corollary 7.7 Let Mx, and M2 be FSM's as shown inFigure 6(b), where Ix = l2- I. Then C(A') C C(AX x A2).
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circuit Mx M2 X Y total CPU

I 0 S I 0 S B A DC SM

KN2 1 1 5 1 1 5 1 1 10 5 0.2 0.1

S2 10 10 5 10 3 4 3 3 9 8 0.5 0.1

LI (bbara=ex2) 4 2 7 2 2 29 2 2 36 10 0.8 3.1

L2 (ex6=sl) 5 8 8 8 6 21 8 4 29 13 1.5 0.1

L3 (keyb=dkl6) 7 2 19 2 3 76 2 3 95 20 1.1 20.9
L4 (sl=ex4) 8 6 20 6 9 14 6 3 34 18 1.7 10.9

L5 (pma=sl488) 8 8 24 8 19 61 8 4 85 38 6.0 24.1

L6 (s386=keyb) 7 7 13 7 2 23 7 2 36 20 1.2 653.0

Table 2: Experimental results for two-way-communcation circuits.

Mi, M2: interacting FSM's
I, O, S: numberof Pi's, PO's, states,respectively
X (Y): number of signals from Mi to Mz (from M2 to Mi)
B (A): sumof number of states in Mi and M2 before (after) exploiting don't cares
DC: time forcomputingdon't cares(in secondson a DEC5000/240)
SM: time for STAMINA (in seconds on a DEC 5000/240)

By Theorem 7.6, output sequences of Mi x M2 in Figure 6(b) are contained in theintersection of output sequences of
Mi and M2. This provides away toapproximate input don't care sequences for Mr. Similar tothe FSM network inFigure
6(a), wecan use C(AX x A2) toapproximate output sequences of Mi x M2. ByCorollary 7.7, it isguaranteed tosatisfy (9).
Also, this reduces the complexity for performing approximations.

Consider the cascade, MH -+ Mt in Figure 6(c). MH may be the abstract driving machine of MT in a large FSM
network. MH may have a large state space and many interacting signals, denoted as x, to MT. As explained in Section 6.3,
the implicitbounded subset construction can handle the case when there are many inputcombinations, but it is not suitable
for a largestate space. However, together with filtering theNFA method which limits the number of states of A' before the
subset construction, approximate computation of outputsequences from Mh can be preformed.

Anotherapproach which enhances theability tomanage thecomplexity toperform approximate computation in large FSM
networksis the following. DecomposeMH into Mx,...,Mkas shownin Figure 6(d). This canbe doneas follows. Partition
theinteracting signals x into xx,...,xk. Thetransition relation of M,- is3Xj jiX,TM„. Bysuch aconstruction, this reduces the
problem tooneinFigure 6(b). Wecan then individuallycompute theapproximate output sequences of Mi,..., M*. Suppose
these are v4i,..., ^4fc respectively. The partially implicit bounded subset construction inSection 6.4 can beemployed. It is
more efficient for a large state space and medium-size input combinations, since generating and checking newsubsets can be
done efficiendy using BDD's. Then construct A = Ax x •••x Ak. Thestate minimizationonA can bedone using themethod
in [16]. Note that if the state space of the minimized DFAis still large, a similarmethod to the boundedsubset construction
can be applied to limit the number of states to make further approximation.

8 Experimental Results

In this section, we present preliminary results on small networks. Due tothelack of FSM network benchmark examples,
most of the examples here are obtainedbyconnecting FSM's from MCNC benchmarks. These FSM's are completely specified
and state-minimal. We use STAMINA [11] to exploit input don't caresequences.

Table 2 shows some experimental results for two-way communication circuits with two FSM's. The circuit topology of
these examples is shown in Figure 2. The bound on the number of states for subset construction is 32. Example KN2 is
obtained by connecting the output of the driven machine of thecascade circuit in [13] to the input of its driving machine.
Example S2 isobtained bydecomposing s 386 into atwo-way-communication network. Theother examples are obtained by
connecting twoFSM's from MCNC benchmarks. Toprevent direct information feedback, weattach latches totheinteracting
signals from M2 to Mi, i.e. y.

Example KN2 is theonlytwo-way-communication circuit considered in [20]. The total number of states reported by [20]
for thetwoFSM's of example KN2 is7, and CPU timeis96.0seconds (on a DEC 5000/200) after performing twoiterations
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circuit I X 0 5, 52 CPU

B A DC SM

CI (ex7-dkl6) 2 2 3 10 27 15 0.65 0.2

C2 (keyb-dkl6) 7 2 3 19 27 19 0.49 0.1

C3 (s510-keyb) 19 7 2 47 19 15 1.92 21.2

C4 (bbsse-keyb) 7 7 2 16 19 18 0.67 3.9

C5 (bbsse-planet) 7 7 19 16 48 42 0.97 548.6

C6 (sand-ex 1) 11 9 19 32 20 8 1.94 117.9

C7(sl488-s510) 8 19 7 48 47 4 4.80 0.6

C8 (exl-s510) 9 19 7 20 47 7 1.89 0.3

Table 3: Experimental results of one-way-communcation circuits.

Mi (M2): driving machine (driven machine)
I, O, X: numberof Pi's, PO's,interacting signals of Mi -* M2, respectively
Si (Si): number of states of Mi (M2)
B (A): numberof statesof M2 before(after) exploitingdon't cares
DC: time for computing don't cares(in seconds on a DEC 5000/240)
SM: time for STAMINA (in seconds on a DEC 5000/240)

around the loop and stateminimization.The numberof states of the DFA forcapturing inputdon't care sequences grows too
much aftertwo iterations. Thus, much CPUtime is spent in stateminimization [19]. In contrast, our approach employs the
notion of an abstract driving machine and takes much less CPU dme to achieve a better result as shown in Table 2.

Table 3 shows someexperimental results forcascade circuits consisting of two FSM's. The purpose of theseexperiments
is to examinethe.case when there aremany interacting signals from anabstract driving machine to its corresponding driven
machine. The bound on the number of states for subset construction is 64.

We have implemented most of our algorithms and are studying various trade-offs offered by different approximation
methods. Our preliminary results indicate that the notion of abstract driving machines is very promising for computing
input don't care sequences in general FSM networks. We plan to do more experiments on large FSM networks using the
approximation methods in Section 6 and 7.

9 Conclusion

We presented a novel approach to compute the exact input don't care sequences for a component in an FSM network with
arbitrary topologyby converting thisproblem intoacascade circuit consistingof thiscomponent anditscorresponding abstract
driving machine. In case the exact computation and exploitation are too expensive, we provided approximation methods
to compute subsets of inputdon't care sequences. We havealso discussed how to implement the algorithms using implicit
enumeration techniques. For large FSMnetworks, we proposed methods to manage thecomplexityto perform approximate
computations. Preliminaryresults look promising but larger networks must be experimented on.
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