The paper focuses on the problem of explicitly generating open loop strategies for steering control systems with left-invariant vector fields on the Lie group of rigid rotations SO(3). Both systems with and without drift are considered as well as systems with three, two or one input(s). For each of these cases, if possible, we present a constructive solution to the steering problem. The most interesting cases are those of systems with drift and either only or two inputs. Having two inputs gives us the freedom to choose the steering time. In the case of only one input our algorithm will drive the system to the desired orientation in a finite time. There are, however, limitations on the choice of the arrival time. Simulations have been developed and the results animated on a Silicon Graphics Iris workstation. In particular, an executable for the Indigo II workstation which demonstrates the algorithms mentioned above is available by an anonymous. ftp.
Title
Algorithms for Steering on the Group of Rotations
Published
1993-01-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
ERL-93-44
Type
Text
Extent
28 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).