As memory accesses increasingly limit the overall performance of reconfigurable accelerators, it is important for high-level synthesis (HLS) flows to adopt a systematic way to discover and exploit memory-level parallelism. This work develops 1) a framework where parallelism between memory accesses can be revealed from runtime profiles of applications and provided to a high level synthesis flow, and 2) a novel multiaccelerator/multi-cache architecture to support parallel memory accesses, taking advantage of the high aggregated memory bandwidth found in modern FPGA devices. Our experimental results have shown that for 10 accelerators generated from 9 benchmark applications, circuits using our proposed memory structure achieve on average 51% improved performance over accelerators using a traditional memory interface. We believe that our study represents a solid advance towards achieving memory-parallel embedded computing on hybrid CPU+FPGA platforms.
Title
Exploiting Memory-level Parallelism in Reconfigurable Accelerators
Published
2013-05-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2013-40
Type
Text
Extent
38 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).