Go to main content

PDF

Description

A critical problem faced by a Network Intrusion Detection System (NIDS) is that of ambiguity. The NIDS cannot always determine what traffic reaches a given host nor how that host will interpret the traffic, and attackers may exploit this ambiguity to avoid detection or cause misleading alarms. We present a novel, lightweight solution, Active Mapping, which eliminates TCP/IP-based ambiguity in a NIDS' analysis with minimal runtime cost. Active Mapping efficiently builds profiles of the network topology and the TCP/IP policies of hosts on the network; a NIDS may then use the host profiles to disambiguate the interpretation of the network traffic on a per-host basis. Active Mapping avoids the semantic and performance problems of traffic normalization, in which traffic streams are modified to remove ambiguities.

We have developed a prototype implementation of Active Mapping and modified a NIDS to use the Active Mapping-generated profile database in our tests. We found wide variation across operating systems' TCP/IP stack policies in real-world tests (about 6,700 hosts), underscoring the need for this sort of disambiguation.

We discuss the capabilities and limitations of Active Mapping in detail, including real-world challenges. We also present results on the performance impact of using Active Mapping in terms of time and memory.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS