We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A = PL^TLTP^T where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. The current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.
Title
Communication-Avoiding Symmetric-Indefinite Factorization
Published
2013-07-05
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2013-127
Type
Text
Extent
33 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).