In recent years, a variety of complex synopsis structures have been proposed to capture statistical correlations present in database relations. The goal of that work has been to improve cardinality estimation during query optimization by improving statistics on "base tables". In order to use the correlation information for multi-table estimations as well, synopses must also be constructed on "intermediate result tables" during query optimization. We address that problem here, and show how to efficiently integrate multi-dimensional histograms and other complex synopsis structures into the search algorithm of a traditional query optimizer such as that of System R.
A main challenge in this work is minimizing the computational expense of dynamically computing synopses on intermediate tables during query optimization. We show that one only needs to construct a very small subset of all possible synopses to get the full estimation benefits of multi-dimensional modeling. We also show that choosing this subset unwisely can have unacceptable performance overheads. This leads to an "estimation planning" problem that has been ignored to date in literature: how to choose the most efficiently-computable collection of intermediate synopses to construct, so that all the required cardinality estimates can be computed as accurately as possible from the base-table synopses?
In this paper, we identify and formalize the estimation planning problem in the context of a System R-style optimizer extended with complex synopsis techniques such as multi-dimensional histograms. We propose algorithms that find very good estimation plans efficiently, and discuss properties of synopsis structures that make them amenable to efficient use in an optimizer.
Title
On Using Correlation-based Synopses during Query Optimization
Published
2002-02-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-02-1173
Type
Text
Extent
28 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).