We propose a method to perform adaptive transfer of visual category knowledge from labeled datasets acquired in one image domain to other environments. We learn a representation which minimizes the effect of shifting between source and target domains using a novel metric learning approach. The key idea of our approach to domain adaptation is to learn a metric that compensates for the transformation of the object representation that occurred due to the domain shift. In addition to being one of the first studies of domain adaptation for object recognition, this work develops a general adaptation technique that could be applied to non-image data. Another contribution is a new image database for studying the effects of visual domain shift on object recognition. We demonstrate the ability of our adaptation method to improve performance of classifiers on new domains that have very little labeled data.
Title
Transferring Visual Category Models to New Domains
Published
2010-05-07
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2010-54
Type
Text
Extent
19 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).