This thesis describes a method for view-dependent cloth simulation using dynamically adaptive mesh refinement and coarsening. Given a prescribed camera motion, the method adjusts the criteria controlling refinement to account for visibility and apparent size in the camera’s view. Objectionable dynamic artifacts are avoided by anticipative refinement and smoothed coarsening. This approach preserves the appearance of detailed cloth throughout the animation while avoiding the wasted effort of simulating details that would not be discernible to the viewer. The computational savings realized by this method increases as the scene complexity grows, producing a 2x speed-up for a single character and more than 4x for a small group.
Title
View-Dependent Adaptive Cloth Simulation
Published
2016-01-09
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2016-5
Type
Text
Extent
25 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).