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Abstract

Speeding up distributed storage and computing systems using codes

by

Kang Wook Lee

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Chair

Modern data centers have been providing exponentially increasing computing and storage re-
sources, which have been fueling core applications ranging from search engines in the early 2000’s
to the real-time, large-scale data analysis of today. All these breakthroughs were made possible
only due to the scalability in computing and storage resources offered by modern large-scale clus-
ters, comprising individually small and unreliable low-end devices. Given the individually un-
predictable nature of the underlying devices in these systems, we face the constant challenge of
securing predictable and high-quality performance of such systems in the face of uncertainty.

In this thesis, distributed storage and computing systems are viewed through a coding-theoretic
lens. The role of codes in providing resiliency against noise has been studied for decades in many
other engineering contexts, especially in communication systems, and codes are parts of our ev-
eryday infrastructure such as smartphones, WiFi, cellular systems, etc. Since the performance of
distributed systems is significantly affected by anomalous system behavior and bottlenecks, which
we call “system noise”, there is an exciting opportunity for codes to endow distributed systems
with robustness against such system noise.

Our key observation – channel noise in communication systems is equivalent to system noise in
distributed systems – forms the key motivation of this thesis, and raises the fundamental question:
“can we use codes to guarantee robust speedups in distributed storage and computing systems?”.
In this thesis, three main layers of distributed computing and storage systems – storage layer, com-
putation layer, and communication layer – are robustified through coding-theoretic tools. For the
storage layer, we show that coded distributed storage systems allow faster data retrieval in addition
to the other known advantages such as higher data durability and lower storage overhead; for the
computation layer, we inject computing redundancy into distributed algorithms that are robust to
stragglers or nodes that are substantially slower than the other nodes; for the communication layer,
we propose a novel data caching and communication protocol, based on coding-theoretic principles
that can significantly reduce the network overhead of the data shuffling operation, which is nec-
essary to achieve higher statistical efficiency when running parallel/distributed machine learning
algorithms.
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Chapter 1

Introduction

Modern data centers have been providing exponentially increasing computing and storage re-
sources, which have been fueling core applications ranging from search engines in the early 2000’s
to the real-time, large-scale data analysis of today: real time analysis of a huge amount of stream-
ing data from millions of mobile devices or sensors, so called Big data analysis, has transformed
how we view data and create value from data; machine learning has quickly evolved to the point
where machines can nearly match or even exceed human performance in a diverse range of tasks
from classical prediction tasks (e.g. digit recognition [22], image classification [116], and speech
recognition [52]) to playing complicated games such as Go [109]. All these breakthroughs were
made possible only due to the scalability in computing and storage capacity offered by modern
large-scale clusters.

While classical computing and storage clusters were composed of a small number of expensive,
custom-designed high-end machines (think IBM mainframes in the 1970’s), modern large-scale
clusters consist of more than tens of thousands of “commodity” hardware nodes, connected through
general-purpose network infrastructure (think Google or Facebook today). Specifically, modern
distributed systems like Apache Spark [128] and computational primitives like MapReduce [30]
have gained significant traction, as they have enabled the execution of production-scale tasks on
data sizes of the order of terabytes in such clusters, comprising individually small and unreliable
low-end commodity hardware.

In order to develop and deploy sophisticated solutions and tackle large-scale problems in ma-
chine learning, science, engineering, and commerce, it is important to understand and optimize
novel and complex trade-offs across the multiple dimensions of computation, communication,
storage, and the accuracy of results. Moreover, given the individually unpredictable nature of
the underlying nodes in these systems, we face the challenge of securing fast and high-quality
algorithmic results in the face of uncertainty. This, coupled with the high level of complexity
and heterogeneity of the component hardware, introduces significant delays that represent a key
bottleneck to attaining the promised speed-ups of these large systems.

In this thesis, distributed storage and computing systems are viewed through a coding-theoretic
lens. The role of codes in providing resiliency against noise has been studied for decades in many
other engineering contexts, especially communication systems, and is part of our everyday in-
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frastructure (smartphones, laptops, WiFi and cellular systems, etc.). Since the performance of
distributed systems is also significantly affected by anomalous system behavior and bottlenecks
[29], which we call “system noise”, there is an exciting opportunity for codes to endow distributed
systems with robustness against such system noise.

That is, our key observation –

Channel noise : Communication systems ≡ System noise : Distributed systems

– forms the key motivation of this thesis, and further raises the fundamental question:

Can we use codes to guarantee robust speedups in distributed storage and computing systems?

Codes are usually perceived as slow because in order to achieve a high degree of reliability,
they require some redundancy of system resources as well as add encoding/decoding complexity,
which are likely to slow down systems. This thesis studies how codes can speed up large-scale
distributed storage and computing systems, hinting at a similar transformational role of codes in
the way next-generation distributed storage and computing systems are designed and deployed.

1.1 Main Contribution of the Thesis
The backbone of these large and complex platforms consists of three functional layers: a computa-
tional layer, a communication layer, and a storage layer. The role of codes for each of these layers
is addressed in this thesis, and the main contributions of the thesis are summarized as follows.

• The first main contribution of the thesis is to propose a queueing model of distributed
coded storage systems, to analyze the proposed model, and to study data retrieval per-
formance of coded storage systems. Codes have already begun to transform the evolution
of large-scale distributed storage systems in modern data centers under the umbrella of regen-
erating and locally repairable codes, which are also having a major impact on industry. How-
ever, most of the existing works have been focusing on providing higher data durability while
minimizing the storage overhead and the network bandwidth/connectivity/computation over-
head of repairing node failures. Regarding whether codes can speed up distributed data stor-
age systems, only little has been studied. Our analysis shows that data retrieval performance
of coded storage systems is superior to that of uncoded storage systems.

• Many systems possess the possibility of serving the same request in multiple ways, poten-
tially reducing the service time variability. For instance, distributed data storage systems,
which inherently have data redundancy in the form of replication or codes, can serve a data
retrieval request at more than one storage node. Scheduling of redundant requests can poten-
tially speed up such systems as long as the increased amount of system load is sufficiently
low. In this thesis, optimal scheduling policies are characterized in various scenarios, and
it is shown that one can achieve a significant speed-up by scheduling redundant requests.

• Runtime performance of distributed algorithms is heavily affected by stragglers, i.e. “work-
ers” that are substantially slower than the others in a distributed computing cluster. By
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encoding distributed algorithms and viewing such stragglers as erasures, we propose a novel
solution, called ‘coded computation’, which we show significantly improves the runtime
performance of distributed algorithms. This opens up a new application of codes for the
design of efficient distributed algorithms.

• Parallel/distributed machine learning algorithms can achieve higher statistical efficiency if
input data can be shuffled during the runtime of the algorithm. Further, all existing conver-
gence guarantees on parallel/distributed machine learning algorithms assume perfect data-
shuffling. Shuffling training data of a large size, however, can completely exhaust the net-
work resource of the computing cluster, which in turn makes data shuffling practically infea-
sible. We propose a coded shuffling algorithm, which can significantly reduce the network
burden of the data shuffling operation, enabling statistically-efficient distributed machine
learning algorithms as well as bridging the chasm between theory and practice.

1.2 Related Works
In this section, we provide a high-level overview of some selected related works. More extensive
surveys of the related works are provided in the following chapters.

1.2.1 Coded Storage Systems
Codes have already begun to transform the evolution of large-scale distributed storage systems
in modern data centers under the umbrella of regenerating and locally repairable codes for dis-
tributed storage [34, 89, 114, 117, 19, 85, 44, 81, 84, 48, 53, 83, 60, 95, 88, 108], which also
have major impacts on industry [54, 101, 91, 93]. All of these works have been focusing on
providing higher data durability, while minimizing the storage overhead and the network band-
width/connectivity/computation overhead of repairing node failures. Huang et al. [55] propose the
first queueing model of distributed coded storage systems, and show that one can retrieve data
faster from a coded storage system than an uncoded storage system. However, only a limited class
of codes is studied in this work, and data retrieval performance of a more general class of codes
was still open. The new framework proposed in this thesis can be used to model and to analyze
a larger class of codes, i.e., the class of MDS (maximum distance separable) codes [26]: using
this new framework, we rigorously analyze the data retrieval performance of MDS-coded storage
systems, and show that it is strictly superior to that of uncoded storage systems.

1.2.2 Straggler Mitigation and Scheduling of Redundant Requests
The straggler problem has been widely observed in distributed computing clusters. The authors of
[29, 4] show that running a computational task at a computing node often involves unpredictable
latency due to several factors such as network latency, shared resources, maintenance activities, and
power limits. Further, they argue that stragglers cannot be completely removed from a distributed
computing cluster. One approach to mitigating the adverse effect of stragglers is based on efficient
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straggler detection algorithms. For instance, the default scheduler of Hadoop constantly detects
stragglers while running computational tasks, and relaunches the detected straggler tasks at some
other available node. In [129, 4], modifications to the existing straggler detection algorithm are
proposed. Another line of approaches is based on appropriate modification of the algorithms: one
can design distributed algorithms that are robust to asynchronous or delayed updates from the
workers. Such robust distributed algorithms can continuously make progress without needing to
wait for all the responses from the workers, and hence the overall runtime of these algorithms is
less affected by stragglers [1, 99].

Scheduling of redundant requests has also been proposed as a way to tackle the straggler prob-
lem: by replicating tasks and scheduling the replicas, the runtime of distributed algorithms can be
significantly improved [62, 3, 103, 124, 43, 20, 66]. By collecting outputs of the fast-responding
nodes (and potentially canceling all the other slow-responding replicas), such replication-based
scheduling algorithms can reduce latency.

1.2.3 Data Shuffling and Communication Overhead
Distributed learning algorithms running on large-scale networked systems have been extensively
studied in the literature [11, 80, 18, 8, 35, 21, 31, 74, 63, 111, 67]. Many of the distributed al-
gorithms that are implemented in practice share a similar algorithmic “anatomy": the data set is
split among several cores or nodes, each node trains a model locally, then the local models are
averaged, and the process is repeated. While training a model with parallel or distributed learning
algorithms, it is common to randomly re-shuffle the data a number of times [98, 99, 16, 130, 45,
56, 98, 45, 56]. This essentially means that after each shuffling, the learning algorithm will go over
the data in a different order than before. However, the statistical benefits of data shuffling do not
come for free: each time a new shuffle is performed, the entire dataset is communicated over the
network of nodes, resulting in a heavy communication burden.

Our coded shuffling algorithm is built upon the coded caching framework of Maddah-Ali and
Niesen [77]. Coded caching is a technique to reduce the communication rate in content delivery
networks, mainly motivated by video-sharing applications [78, 86, 61, 57]. The authors of [68]
propose coded MapReduce that reduces the communication cost in the process of transferring the
results of mappers to reducers.

1.3 Organization
The rest of the thesis is organized as follows:

Chapter 2. In this chapter 1, we study how codes can speed up modern distributed data storage
systems. Codes that provide significantly increased data durability and lower overhead of

1This chapter is partly done in collaboration with Nihar Shah and Longbo Huang. A part of this chapter was
presented in IEEE ISIT 2014 [105], and the whole chapter is under review for publication in IEEE Transactions on
Information Theory.
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repairing lost data blocks have been extensively studied, and these efficient storage codes
are being increasingly adopted in modern data centers. However, it is unclear if such codes
can possibly result in compromised ‘data retrieval’ performance. We introduce a queueing
model for distributed data storage systems with codes, called the MDS queue, and provide
rigorous analysis of how fast one can retrieve data from such systems. Our analysis reveals
that data retrieval performance under coded storage systems is superior than uncoded storage
systems.

Chapter 3. In this chapter 2, we study how one can improve the data retrieval performance by
scheduling redundant requests. Distributed data storage systems have inherent data redun-
dancy for maintaining a sufficient level of data durability. Therefore, one can always retrieve
data faster by requesting the relevant data blocks from more than the requisite number of
storage nodes. This, however, may increase the effective load of the system, and it is not
clear whether the overall data retrieval performance improves or degrades. We study when
scheduling redundant requests can improve data retrieval performance distributed storage
systems (with codes or replication).

Chapter 4. In this chapter 3, we continue our study of scheduling redundant requests, motivated by
system-level observations. Scheduling redundant requests in a distributed system is straight-
forward but cancelling straggling requests is not: cancellation of already-issued-requests
usually takes non-negligible time, or sometimes is infeasible. This brings us a new question
whether one can still improve latency performance even with such a cancellation overhead.
Focusing on the case of distributed data storage systems with replicated data, we show that
one can still achieve improved data-retrieval performance, and that dynamic scheduling poli-
cies can provide strictly better performance than static policies.

Chapter 5. In this chapter 4, changing gears from storage to computation, we study how one can
speed up distributed algorithm with codes. From the previous chapters, we learned that an
appropriate scheduling of redundant requests can significantly speed up data-retrieval per-
formance in distributed storage systems with codes. Can we apply a similar idea to speed up
distributed computing? We show that by carefully orchestrating a distributed paradigm, a ju-
diciously chosen amount of computing redundancy can be injected into the algorithm. Due
to this injected redundancy, such ‘coded’ distributed algorithms can be made very robust to
stragglers, the nodes that are significantly slower than the others. We call this new paradigm
of distributed computing coded computation, and show how one can design efficient coded
distributed algorithms.

2This chapter is partly done in collaboration with Nihar Shah. A part of this chapter was presented in Allerton
2013 [104], and the whole chapter is published in IEEE Transactions on Communications [103].

3This chapter is partly done in collaboration with Ramtin Pedarsani. A part of this chapter was presented in
Allerton 2015 [66], and the whole chapter is under review for publication in IEEE/ACM Transactions on Networking.

4This chapter is partly done in collaboration with Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos,
and Jichan Chung. A part of this chapter was presented in NIPS 2015 Workshop on Machine Learning Systems [65],
and will be presented in IEEE ISIT 2016.
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Chapter 6. Finally, in this chapter 5, we show how codes can speed up data-shuffling in a dis-
tributed cluster. It has been empirically observed that shuffling training data between dis-
tributed workers makes parallel machine learning algorithms – such as parallel stochastic
gradient descent – converge faster. Moreover, all of the known convergence guarantees on
parallel/distributed machine learning algorithms assume perfect data-shuffling. We show
how coded shuffling can significantly curtail the network overhead involved with such shuf-
fling procedure.

In Chapter 7, we conclude the thesis with the summary of the results and important future
research directions.

5This chapter is partly done in collaboration with Maximilian Lam, Jichan Chung, Ramtin Pedarsani, Dimitris
Papailiopoulos. A part of this chapter was presented in NIPS 2015 Workshop on Machine Learning Systems [65], and
will be presented in IEEE ISIT 2016.
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Chapter 2

Data Retrieval Performance of Distributed
Storage Systems with Coded Data

2.1 Introduction
Two primary objectives of a storage system are to provide reliability and availability of the stored
data: the system must ensure that data is not lost even in the presence of individual component
failures, and must be easily and quickly accessible to the user whenever required. The classical
means of providing reliability is to employ the strategy of replication, wherein identical copies
of the (entire) data are stored on multiple servers. However, this scheme is not very efficient in
terms of the storage space utilization. The exponential growth in the amount of data being stored
today makes storage an increasingly valuable resource, and has motivated data-centers today to
increasingly turn to the use of more efficient erasure codes [51, 41, 54, 91].

The most popular, and also most efficient, erasure codes are the class of the
Maximum-Distance-Separable (MDS) codes, e.g., Reed-Solomon codes. An MDS code is
typically associated to two parameters n and k. Under an (n, k) MDS code, a file is encoded and
stored in n servers such that (a) the data stored in any k of these n servers suffice to recover the
entire file, and (b) the storage space required at each server is 1

k
of the size of the original file. 1

While the reliability properties of erasure codes are very well understood, much less is known
about their latency performance. In this chapter, we study coded data storage systems based on
MDS codes through the lens of queueing theory. We term the queue resulting from the use of
codes that allow for recovery of the data from any k of the n servers as “the MDS queue”. To
understand this queueing-theoretic perspective, consider a simple example with n = 4 and k = 2.
Files {F1, F2, . . .} are to be stored in the 4 servers such that no data is lost upon failure of any
(n − k) = 2 of the n = 4 servers. This is achieved via a (4, 2) MDS code under which each
file is partitioned into two halves Fi = [fi,1 fi,2], and the 4 servers store fi,1, fi,2, (fi,1 + fi,2), and
(fi,1 + 2fi,2) respectively for every i. Requests for reading individual files arrive as a stochastic

1While a more precise definition of an MDS code is that it is a code that satisfies the ‘Singleton bound’ [76], the
definition in the main text will suffice for the purposes of this chapter.



CHAPTER 2. DATA RETRIEVAL PERFORMANCE OF DISTRIBUTED STORAGE
SYSTEMS WITH CODED DATA 8

1 1.2 1.4 1.6 1.8 220

5

10

15

Arrival Rate(h)

Av
er

ag
e 

La
te

nc
y

 

 

MDS−Reservation(1)
MDS−Reservation(3)
MDS−Violation(1)
MDS [simulated]

Figure 2.1: The average latency of a centralized MDS queue using an MDS code with n = 10
and k = 5. The service time of each job is assumed to be drawn from an exponential distribution
with rate µ = 1. The curve titled ‘MDS’ corresponds to simulations of the exact MDS queue. Also
plotted are the analytically computed latencies of the lower bounds (MDS-Reservation(t) queues)
and upper bounds (MDS-Violation(t) queues) presented in this chapter.

process, which are buffered and served by the system, and the resulting queue is termed an MDS
queue (this will be formalized later in the chapter).

We first study centralized MDS queues, which are MDS queues with a central buffer that
accepts all incoming requests. While having a centralized buffer allows for efficient load balancing,
it comes at the cost of having a centralized architecture, which requires additional system-level
overheads. This cost may be prohibitive for large-scale applications, and hence we subsequently
study decentralized MDS queues as well. A decentralized MDS queue has n servers with their
individual buffers, and any request for reading a file is directly scheduled to a randomly chosen
set of k servers upon the arrival of the request. This model precisely captures large-scale systems
where clients have a limited view of the whole system and submit their jobs to a part of the system
at random.

An exact analysis of the MDS queue is hard in general. The Markov chain representation of the
centralized MDS queue has a state space that is infinite in at least k dimensions, and the Markov
chain representation of the decentralized MDS queue has a state space that is infinite in at least
n dimensions. Furthermore, in both settings, the transitions in the respective Markov chains are
tightly coupled across dimensions. The highly complex structures of the Markov chains make
performance analysis of the MDS queues computationally challenging. In this chapter, we present
insightful scheduling policies that provide upper and lower bounds on the performance of the MDS
queue, which allow for convenient computation of various metrics of the latency, either analytically
or numerically. These bounds are observed to be quite tight for a wide range of system parameters.
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Fig. 2.1 illustrates the latency performance of centralized MDS queues. The lower bounds (the
‘MDS-Reservation(t)’ scheduling policies) and the upper bounds (the ‘MDS-Violation(t)’ schedul-
ing policies) presented in this chapter are both indexed by a parameter ‘t’. An increase in the value
of t results in tighter bounds, but also increases the complexity of analysis. Furthermore, both
classes of scheduling policies converge to the MDS scheduling policy as t→ ∞. However, we
observe that the performance of the MDS-Reservation(t) queue is very close to that of the central-
ized MDS queue for very small values of t (as small as t = 3), and the performance of the upper
bounds MDS-Violation(t) closely follow that of the MDS queue for values of t as small as t = 1.
This can be observed in Fig. 2.1. The MDS-Reservation(t) scheduling policies presented here are
themselves practical alternatives to the MDS scheduling policy, since they require maintenance of
a smaller state, while offering highly comparable performance.

We also consider the problem of degraded reads (i.e., reading of partial data) in distributed
storage systems, that has recently attracted considerable interest in the coding-theory community.
We employ the framework of the centralized MDS queue to understand and compare, from a
queueing theoretic viewpoint, different methods of performing degraded reads.

We summarize our contributions as follows.

(i) We model centralized/decentralized queueing systems that arise in data storage systems based
on MDS codes.

(ii) We propose the scheduling policies that form upper and lower bounds on the latency perfor-
mance of the centralized MDS queues.

(iii) We analyze the latency performance of degraded reads using the centralized MDS queue.

(iv) We find upper and lower bounds on the latency performance of decentralized MDS queues.

(v) We provide extensive simulation results to show how useful the proposed bounds are.

While our analysis of the MDS queues successfully captures the essence of queueing behavior
of data storage systems, it is important to note the limitations of the model. We assume that every
request asks for an entire file (e.g., as in Facebook’s warehouse cluster [91]), but the current model
does not capture a system where requests may also ask for partial data blocks. We also make a few
simplifying assumptions for analytical tractability: homogeneity of the servers and requests, and
the memoryless service time distribution.

The rest of the chapter is organized as follows. Section 2.2 discusses related literature. Sec-
tion 2.3 presents the centralized MDS queue system model. Section 2.4 gives an overview of the
general approach, and also introduces the notation employed in the chapter. Section 2.5 presents
the proposed MDS-Reservation(t) queues that lower bound the performance of the centralized
MDS queue. Section 2.6 presents the proposed MDS-Violation(t) queues that upper bound the
performance. Section 2.7 presents analyses and comparisons of these queues. Section 2.8 presents
and analyzes the decentralized MDS queues. Section 2.9 presents conclusions and discusses open
problems. The appendix contains proofs of the theorems presented in the chapter.
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2.2 Related Works
In this section, we review literature that is most closely related to the setting of this chapter.

A class of queues closely related to the MDS queue is the class of fork-join queues [7], and in
particular, fork-join queues with variable subtasks [120]. The classical setup of fork-join queues
assumes each batch to consist of n jobs, while the setup of fork-join queues with variable subtasks
assumes k jobs per batch for some parameter k ≤ n. However, under a fork-join queue (with
variable subtasks), each job must be served by a particular pre-specified server, while under an
MDS queue, the k jobs of a batch may be processed at any arbitrary set of k servers and this
choice is governed by the scheduling policy.

Recent works have shown that coded storage systems can achieve improved data serving per-
formance in terms of blocking probability, capacity, and latency. In [37], the authors analyze the
coded storage systems that do not have buffers for incoming jobs, and study how codes can reduce
the blocking probability compared to that in uncoded storage systems; further, the authors of [38]
show that coding can achieve higher capacity in point-to-multipoint storage area networks. The
authors of [23] show that coding data across multiple memory units improves read/write capac-
ity of network switches and routers. The authors of [107] provide a general model of distributed
storage systems that handle both data retrieval requests and data repair requests, and numerically
evaluate a variety of storage codes under the new model. In [127], which appeared subsequent to
our conference publication, the authors consider the problem of jointly optimizing latency and cost
of coded storage systems. They first find the upper bound on the latency of probabilistic scheduling
policies for the coded storage systems with decentralized, heterogenous storage nodes; then, they
formulate and solve a joint latency and storage optimization problem. However, a lower bound on
the latency is not presented in the paper. Moreover, under the setting of the present chapter, our
upper bound (see Theorem 2.14) provides a much tighter bound. For instance, when k

n
is fixed and

k increases, the proposed bound in [127] scales as O(
√
k), while our bound of O(log k) gives a

much sharper result.
A few notable works also study the construction of new codes that are optimized for the data

retrieval performance. The authors of [119] study the problem of multilevel diversity coding with
regeneration, which allows for different levels of fault tolerance and latency performance for differ-
ent classes of content; queueing theoretic analysis for such multilevel coding systems is provided
in [64]. In [75], the authors propose a coded storage system in which the original data is spread
across the storage nodes along with the coded chunks, while maintaining the MDS property of the
system. In such a system, the data can be retrieved either by retrieving coded chunks from any k
nodes or by collecting the uncoded chunks from all the nodes.

In a system that employs a (n, k) erasure code, the latency of serving the requests can po-
tentially be reduced by sending the requests redundantly to more than k servers. The request is
deemed served when it is served in any one of these ways. The other copies of this request may
now be removed from the system. In Chapter 3, we will show that scheduling of redundant requests
can potentially speed up data retrieval performance.
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Figure 2.2: Functioning of the MDS queue.

2.3 The Centralized MDS Queue System Model
We now describe a queueing theoretic model of a centralized system employing an MDS code. The
model of a decentralized MDS queue is provided in Section 2.8. As discussed previously, under
an MDS code, a file can be retrieved by downloading data from any k of the servers. We model
this by treating each request for reading a file as a batch of k jobs. The k jobs of a batch represent
reading of k encodings of the file from k servers. A batch is considered as served when k of its
jobs have been served. For instance, in the example of the (n = 4, k = 2) system of Section 2.1,
a request for reading file Fi (for some i) is treated as a batch of two jobs. To serve this request, the
two jobs may be served by any two of the four servers; for example, if the two jobs are served by
servers 2 and 3, then they correspond to reading fi,2 and (fi,1 + fi,2) respectively, which suffice to
obtain Fi. We assume homogeneity among files and among servers: the files are of identical size,
and the n servers have identical performance characteristics. Such a queueing system is termed as
a centralized MDS queue, or simply an MDS queue.

Definition 2.1 ((Centralized) MDS queue). A (centralized) MDS queue is associated with four
parameters (n, k) and [λ, µ].

• There are n identical servers

• Requests enter a (common) buffer of infinite capacity

• Requests arrive as a Poisson process with rate λ

• Each request comprises a batch of k jobs

• Each of the k jobs in a batch can be served by an arbitrary set of k distinct servers

• The service time for a job at any server is exponentially distributed with rate µ, independent
of all else
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• The jobs are processed in order, i.e., among all the waiting jobs that an idle server is allowed
to serve, it serves the one which had arrived the earliest.

Algorithm 1 formalizes the scheduling policy of the MDS queue.

Algorithm 1 MDS scheduling policy
On arrival of a batch

Assign as many of its jobs as possible to idle servers
Append remaining jobs (if any) as new batch at end of buffer

On departure from a server (say, server s)
If ∃ at least one batch in the buffer such that no job of this batch has been served by s

Among all such batches, find batch that arrived earliest
Assign a job from this batch to s

The following example illustrates the functioning of the MDS scheduling policy and the result-
ing MDS queue.

Example 2.1. Consider the MDS(n = 4, k = 2) queue, as depicted in Fig. 2.2. Here, each request
comes as a batch of k = 2 jobs, and hence we denote each batch (e.g., A, B, etc.) as a pair of jobs
({A1, A2}, {B1, B2}, etc.). The two jobs in a batch need to be served by (any) two distinct servers.
Denote the four servers (from left to right) as servers 1, 2, 3 and 4. Suppose that the system is in
the state as shown in Fig. 2.2(a), wherein the jobs A2, A1, B1 and B2 are being served by the four
servers, and there are three more batches waiting in the buffer. Suppose that server 1 completes
serving job A2 (Fig. 2.2(b)). This server is now free to serve any of the 6 jobs waiting in the buffer.
Since jobs are processed only in order, it begins serving job C1 (assignment of C2 would also have
been valid). Next, suppose that server 1 completes C1 before any other servers complete their tasks
(Fig. 2.2(c)). In this case, since server 1 has already served a job of batch C, it is not allowed to
service C2. However, it can service any job from the next batch {D1, D2}, and one of these two
jobs is (arbitrarily) assigned to it. Finally, when one of the other servers completes its service, that
server is assigned job C2 (Fig. 2.2(d)).

2.3.1 Other Applications
The MDS queue also arises in other applications that require diversity or error correction. For
instance, consider a system with n processors, with the arriving jobs comprising computational
tasks. It is often the case that the processors are not completely reliable [15], and may give incorrect
outputs at random instances. In order to guarantee a correct output, a job may be processed at k
different servers, and the results aggregated (perhaps by majority rule) to obtain the final answer.
Such a system results in an MDS(n,k) queue (with some arrival and service-time distributions). In
general, queues where jobs require diversity, for purposes such as security, error-protection etc.,
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may be modelled as an MDS queue. 2 Finally, even in the setting of distributed storage systems,
the MDS queue need not be restricted to analysing Maximum-Distance-Separable codes alone, and
can be used for any code that supports recovery of the files from ‘any k out of the n’ servers.

2.3.2 Exact Analysis
An exact analysis of the MDS queue is hard. The difficulty arises from the special property of
the MDS queue that each of the k jobs of a batch must be served by k distinct servers. Thus, a
Markov-chain representation of this queue is required to have each state encapsulating not only the
number of batches or jobs in the queue, but also the configuration of each batch in the queue, i.e.,
the number of jobs of each batch currently being processed, the number of jobs that have completed
processing, and the number of jobs still waiting in the buffer. Thus, when there are b batches in the
system, the system can have Ω

(
bk
)

possible configurations. Since the number of batches b in the
system can take any value in {0, 1, 2, . . .}, this leads to a Markov chain which has a state space that
has infinite states in at least k dimensions. Furthermore, the transitions along different dimensions
are tightly coupled. This makes the Markov chain hard to analyze, and in this chapter, we provide
scheduling policies for the MDS queue that lower/upper bound the exact MDS queue.

2.4 Our Approach and Notation for Latency Analysis of the
MDS Queue

For each of the scheduling policies presented in this chapter (for lower/upper bounding the MDS
queue), we represent the respective resulting queues as continuous time Markov chains. We show
that these Markov chains belong to a class of processes known as Quasi-Birth-Death (QBD) pro-
cesses (described below), and obtain their steady-state distribution by exploiting the properties
of QBD processes. This is then employed to compute other metrics such as average latency, tail
latency, maximum throughput, system occupancy, and waiting probability.

Throughout the chapter, we will refer to the entire setup described in Section 2.3 as the ‘queue’
or the ‘system’. We will say that a batch is waiting (in the buffer) if at-least one of its jobs is still
waiting in the buffer (i.e., has not begun service). We will use the term “ith waiting batch” to refer
to the batch that was the ith earliest to arrive, among all batches currently waiting in the buffer.
For example, in the system in the state depicted in Fig. 2.2(a), there are three waiting batches:
{C1, C2}, {D1, D2} and {E1, E2} are the first, second and third waiting batches respectively.

We will frequently refer to an MDS queue as MDS(n,k) queue, and assume [λ, µ] to be some
fixed (known) values. The system will always be assumed to begin in a state where there are no
jobs in the system. Since the arrival and service time distributions have valid probability density

2An analogy that the academic will relate to is that of reviewing papers. There are n reviewers in total, and each
paper must be reviewed by k reviewers. This forms an MDS(n,k) queue. The values of λ and µ considered should be
such that λµ is close to the maximum throughput, modelling the fact that reviewers are generally busy.
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functions, we will assume that no two events occur at exactly the same time. We will use the
notation a+ to denote max(a, 0).

Review of Quasi-Birth-Death (QBD) processes: Consider a continuous-time Markov process
on the states {0, 1, 2, . . .}, with transition rate λ0 from state 0 to 1, λ from state i to (i + 1) for all
i ≥ 1, µ0 from state 1 to 0, and µ from state (i+ 1) to i for all i ≥ 1. This is a birth-death process.
A QBD process is a generalization of such a birth-death process, wherein, each state i of the birth-
death process is replaced by a set of states. The states in the first set (corresponding to i = 0 in
the birth-death process) is called the set of boundary states, whose behaviour is permitted to differ
from that of the remaining states. The remaining sets of states are called the levels, and the levels
are identical to each other (recall that all states i ≥ 1 in the birth-death process are identical). The
Markov chain is allowed to have transitions only within a level or the boundary, between adjacent
levels, and between the boundary and the first level. The transition probability matrix of a QBD
process is thus of the form




B1 B2 0 0 · · ·
B0 A1 A2 0 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
0 0 0 A0 · · ·
...

...
...

... . . .



. (2.1)

Here, the matrices B0, B1, B2, A0, A1 and A2 represent transitions entering the boundary from
the first level, within the boundary, exiting the boundary to the first level, entering a level from
the next level, within a level, and exiting a level to the next level respectively. If the number of
boundary states is qb, and if the number of states in each level is q`, then the matrices B0, B1 and
B2 have dimensions (q`× qb), (qb× qb) and (qb× q`) respectively, and each of A0, A1 and A2 have
dimensions (q` × q`). The birth-death process described above is a special case with qb = q` = 1
and B0 = µ0, B1 = 0, B2 = λ0, A0 = µ, A1 = 0, A2 = λ. Figures 2.4, 2.6 and 2.9 in the sequel
are also examples of QBD processes.

QBD processes are very well understood [36], and their stationary distribution is fairly easy to
compute. In this chapter, we employ the SMCSolver software package [13] for this purpose. In the
next two sections, we present scheduling policies which lower and upper bound the performance
of the MDS queue, and show that the resulting queues can be represented as QBD processes. This
representation makes them convenient to analyze, and this is exploited subsequently in the analysis
presented in Section 2.7.

2.5 Lower Bounds: MDS-Reservation(t) Queues
This section presents a class of scheduling policies (and resulting queues), which we call the MDS-
Reservation(t) scheduling policies (and MDS-Reservation(t) queues), whose performance lower
bounds the performance of the MDS queue. This class of scheduling policies is indexed by a
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parameter ‘t’: a higher value of t leads to a better performance and a tighter lower bound, but on
the downside, requires maintenance of a larger state and is more complex to analyze.

The MDS-Reservation(t) scheduling policy, in a nutshell, can be described as follows:

“Apply the MDS scheduling policy, but with an additional restriction that for any i ∈ {t +
1, t+ 2, . . .}, the ith waiting batch is allowed to move forward in the buffer only when all k of
its jobs can move forward together.”

We first describe in detail the special cases of t = 0 and t = 1, before moving on to the
scheduling policy for a general t.

2.5.1 MDS-Reservation(0)
Scheduling policy

The MDS-Reservation(0) scheduling policy is rather simple: the batch at the head of the buffer may
start service only when k or more servers are idle. The policy is described formally in Algorithm 2.

Algorithm 2 MDS-Reservation(0) Scheduling Policy
On arrival of a batch

If number of idle servers < k
append new batch at the end of buffer

Else
assign k jobs of the batch to any k idle servers

On departure from server
If (number of idle servers≥k) and (buffer is non-empty)

assign k jobs of the first waiting batch to any k idle servers

Example 2.2. Consider the MDS(n=4,k=2) queue in the state depicted in Fig. 2.2(a). Suppose
that the server 2 completes processing job A1 (Fig. 2.3(a)). Upon this event, the MDS scheduling
policy would have allowed server 2 to take up execution of either C1 or C2. However, this is not
permitted under MDS-Reservation(0), and this server remains idle until a total of at least k = 2
servers become idle. Now suppose that the third server completes execution of B1 (Fig. 2.3(b)).
At this point, there are sufficiently many idle servers to accommodate all k = 2 jobs of the batch
{C1, C2}, and hence jobs C1 and C2 are assigned to servers 2 and 3.

We note that the MDS-Reservation(0) queue, when n = k, is identical to a “split-merge
queue” [50].

Analysis

Observe that under the specific scheduling policy of MDS-Reservation(0), a batch that is waiting
in the buffer must necessarily have all its k jobs in the buffer, and furthermore, these k jobs go into
the servers at the same time.
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Figure 2.3: An illustration of the MDS-Reservation(0) scheduling policy for a system with
parameters (n = 4,k = 2). This policy prohibits the servers to process jobs from a batch unless
there are k idle servers that can process all k jobs of that batch. As shown in the figure, server 1 is
barred from processing {C1, C2} in (a), but is subsequently allowed to do so when another server
also becomes idle in (b).

We now describe the Markovian representation of the MDS-Reservation(0) queue. We show
that it suffices to keep track of only the total number of jobs m in the entire system.

Proposition 2.1. A Markovian representation of the MDS-Reservation(0) queue has a state space
{0, 1, . . . ,∞}, and any state m ∈ {0, 1, . . . ,∞} has transitions to: (i) state (m + k) at rate λ,
(ii) if m ≤ n then to state (m − 1) at rate mµ, and (iii) if m > n then to state (m − 1) at rate
(n − (n − m) mod k))µ. The MDS-Reservation(0) queue is thus a QBD process, with boundary
states {0, 1, . . . , n− k}, and levels m ∈ {n− k + 1 + jk, . . . , n+ jk} for j = {0, 1, . . . ,∞}.

The state transition diagram of the MDS-Reservation(0) queue for (n = 4, k = 2) is depicted
in Fig. 2.4. The notation at any state is the number of jobs m in the system in that state. The set
of boundary states are {0, 1, 2}, and the levels are pairs of states {3, 4}, {5, 6}, {7, 8}, etc. Hence,
the transition matrix is of the form (2.1) with

B0 =

[
0 0 3µ
0 0 0

]
, B1 =



−λ 0 λµ
µ −(µ+ λ) 0
0 2µ −(2µ+ λ)


 , B2 =




0 0
λ 0
0 λ


 , (2.2)

A0 =

[
0 3µ
0 0

]
, A1 =

[
−(3µ+ λ) 0

4µ −(4µ+ λ)

]
, A2 =

[
λ 0
0 λ

]
. (2.3)

Proposition 2.1 shows that the MDS-Reservation(0) queue is a QBD process, allowing us to
employ the SMC solver to obtain its steady-state distribution. Alternatively, the
MDS-Reservation(0) queue is simple enough to analyze directly as well. To this end, let y(m)
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Figure 2.4: State transition diagram of the MDS-Reservation(0) queue for n = 4 and k = 2.

denote the number of jobs being served when the Markov chain is in state m. From the
description above, this function can be written as:

y(m) =

{
m, if 0 ≤ i ≤ n

n− ((n−m) mod k), if m > n .

Let π = [π0 π1 π2 · · · ] denote the steady-state distribution of this chain. The global balance
equation for the cut between states (m− 1) and m gives:

πm =
λ

y(m)µ




m−1∑

j=(m−k)+
πj


 , (2.4)

for every m > 0. Using these recurrence equations, for any given (n, k), the distribution π of the
number of jobs in steady-state can be computed easily.

2.5.2 MDS-Reservation(1)
Scheduling Policy

The MDS-Reservation(0) scheduling policy discussed above allows the batches in the buffer to
move ahead only when all k jobs in the batch can move together. The MDS-Reservation(1)
scheduling policy relaxes this restriction for (only) the job at the head of the buffer. This is formal-
ized in Algorithm 3.

Algorithm 3 MDS-Reservation(1) Scheduling Policy
On arrival of a batch

If buffer is empty
assign one job each from new batch to idle servers

append remaining jobs of batch to the end of the buffer
On departure from server (say, server s):

If buffer is non-empty and no job from first waiting batch has been served by s
assign a job from first waiting batch to s
If first waiting batch had only one job in buffer & there exists another waiting batch

to every remaining idle server, assign a job from second waiting batch
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Figure 2.5: An illustration of the MDS-Reservation(1) scheduling policy, for a system with
parameters (n = 4,k = 2). As shown in the figure, this policy prohibits the servers from pro-
cessing jobs of the second or later batches (e.g., {D1, D2} and E1, E2 in (b)), until they move to
the top of the buffer (e.g., {D1, D2} in (c)).

Example 2.3. Consider the MDS(n=4,k=2) queue in the state depicted in Fig. 2.2(a). Suppose
that server 2 completes processing job A1 (Fig. 2.5(a)). Under MDS-Reservation(1), server 2 now
begins service of job C1 (which is allowed by the MDS scheduling policy, but was prohibited under
MDS-Reservation(0)). Now suppose that server 2 finishes this service before any other server
(Fig. 2.5(b)). In this situation, since server 2 has already processed one job from batch {C1, C2},
it is not allowed to process C2. However, there exists another batch {D1, D2} in the buffer such
that none of the jobs in this batch have been processed by the idle server 2. While the MDS
scheduling policy would have allowed server 2 to start processing D1 or D2, this is not permitted
under MDS-Reservation(1), and the second server remains idle. Now, if server 3 completes service
(Fig. 2.5(c)), thenC2 is assigned to server 3, allowing batch {D1, D2} to move up as the first batch.
This now permits server 2 to begin service of job D1.

Analysis

The following proposition describes the Markovian representation of the MDS-Reservation(1)
queue. Each state in this representation is defined by two quantities: (i) the total number of jobs m
in the system, and (ii) the number of jobs w1 of the first waiting batch, that are still in the buffer.

Proposition 2.2. The Markovian representation of the MDS-Reservation(1) queue has a state
space (w1,m) ∈ {0, 1, . . . , k} × {0, 1, . . . ,∞}. It is a QBD process with boundary states
{0, . . . , k} × {0, . . . , n}, and levels {0, . . . , k} × {n − k + 1 + jk, . . . , n + jk} for
j = {1, 2, . . . ,∞}.

The state transition diagram of the MDS-Reservation(1) queue for (n = 4, k = 2) is depicted
in Fig. 2.6.
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Figure 2.6: State transition diagram of the MDS-Reservation(1) queue for n = 4 and k = 2.
The notation at any state is (w1,m). The subset of states that are never visited are not shown.
The set of boundary states are {0, 1, 2, 3, 4} × {0, 1, 2}, and the levels are sets {5, 6} × {0, 1, 2},
{7, 8} × {0, 1, 2}, etc.

Note that the state space {0, 1, . . . , k} × {0, 1, . . . ,∞} has several states that will never be
visited during the execution of the Markov chain. For instance, the states (w1 > 0,m ≤ n − k)
never occur. This is because w1 > 0 implies existence of some job waiting in the buffer, while
m ≤ n − k implies that k or more servers are idle. The latter condition implies that there exists
at least one idle server that can process a job from the first waiting batch, and hence the value of
w1 must be smaller than that associated to that state, thus proving the impossibility of the system
being in that state.

2.5.3 MDS-Reservation(t) for a General t
Scheduling Policy

Algorithm 4 formally describes the MDS-Reservation(t) scheduling policy.

Algorithm 4 MDS-Reservation(t) Scheduling Policy
On arrival of a batch

If buffer has strictly fewer than t batches
Assign jobs of new batch to idle servers

Append remaining jobs of batch to end of buffer
On departure of job from a server (say, server s)

Find î=min{i≥1: s has not served job of ith waiting batch}
Let bt+1 be the (t+ 1)th waiting batch (if any)
If î exists & î ≤ t

Assign a job of îth waiting batch to s
If î = 1 & the first waiting batch had only one job in the buffer & bt+1 exists

To every remaining idle server, assign a job from batch bt+1

The following example illustrates the MDS-Reservation(t) scheduling policy when t= 2.
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Figure 2.7: An illustration of the working of the MDS-Reservation(2) scheduling policy, for a
system with parameters (n = 4,k = 2). As shown in the figure, this policy prohibits the servers
from processing jobs of the third and later batches (e.g., batch {E1, E2} in (c)), until they move
higher in the buffer (e.g., as in (d)).

Example 2.4. (t=2). Consider the MDS(n=4,k=2) queue in the state depicted in Fig. 2.2(a). Sup-
pose the second server completes processing job A1 (Fig. 2.7(a)). Under the MDS-Reservation(2)
scheduling policy, server 2 now begins service of job C1. Now suppose that server 2 finishes
this service as well, before any other server completes its respective service (Fig. 2.7(b)). In
this situation, while MDS-Reservation(1) would have mandated server 2 to remain idle, MDS-
Reservation(2) allows it to start processing a job from the next batch {D1, D2}. However, if the
server also completes processing of this job before any other server (Fig. 2.7(c)), then it is not
allowed to take up a job of the third batch {E1, E2}. Now suppose server 3 completes service
(Fig. 2.7(d)). Server 3 can begin serving job C2, thus clearing batch {C1, C2} from the buffer, and
moving the two remaining batches up in the buffer. Batch {E1, E2} is now within the threshold of
t= 2, allowing it to be served by the idle server 2.

Analysis

Theorem 2.3. The Markovian representation of the MDS-Reservation(t) queue has a state space
{0, 1, . . . , k}t×{0, 1, . . . ,∞}. It is a QBD process with boundary states {0, . . . , k}t×{0, . . . , n−
k + tk}, and levels {0, . . . , k}t × {n− k + 1 + jk, . . . , n+ jk} for j = {t, t+ 1, . . . ,∞}.

The proof of Theorem 2.3 also describes how one can obtain the configuration of the entire
system from only the number of jobs in the system, under the MDS-Reservation(t) scheduling
policies.

One can see that the sequence of MDS-Reservation(t) queues, as t increases, becomes closer
to the MDS queue. This results in tighter bounds, and also increased complexity of the transition
diagrams. The limit of this sequence is the MDS queue itself.
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Proposition 2.4. The MDS-Reservation(t) queue, when t =∞, is precisely the MDS queue.

2.6 Upper Bounds: MDS-Violation(t) Queues
In this section, we present a class of scheduling policies (and resulting queues), which we call the
MDS-Violation(t) scheduling policies (and MDS-Violation(t) queues), whose performance upper
bounds the performance of the MDS queue. The scheduling policies presented here relax the
constraint of requiring the k jobs in a batch to be processed by k distinct servers. While the MDS-
Violation(t) scheduling policies and the MDS-Violation(t) queues are not realizable in practice,
they are presented here only to obtain upper bounds on the performance of the MDS queue.

The MDS-Violation(t) scheduling policy, in a nutshell, is as follows:
“apply the MDS scheduling policy whenever there are t or fewer batches in the buffer; when
there are more than t batches in the buffer, ignore the restriction requiring the k jobs of a
batch to be processed by distinct servers.”

We first describe the MDS-Violation(0) queue in detail, before moving on to the general MDS-
Violation(t) queues.

2.6.1 MDS-Violation(0)
Scheduling Policy

The MDS-Violation(0) scheduling policy operates by completely ignoring the restriction of assign-
ing distinct servers to jobs of the same batch. This is described formally in Algorithm 5.

Algorithm 5 MDS-Violation(0)
On arrival of a batch

assign jobs of this batch to idle servers (if any)
append remaining jobs at the end of the buffer

On departure from a server
If buffer is not empty

assign a job from the first waiting batch to this server

Note that the MDS-Violation(0) queue is identical to the MDS-Violation queue, i.e., an
M/M/n queue with batch arrivals.

The following example illustrates the working of the MDS-Violation(0) scheduling policy.

Example 2.5. Consider the MDS(n=4,k=2) queue in the state depicted in Fig. 2.2(a). Suppose
the first server completes processing job A2, as shown in Fig. 2.8(a). Under the MDS-Violation(0)
scheduling policy, server 1 now takes up job C1. Next suppose server 1 also finishes this task
before any other server completes service (Fig. 2.8(b)). In this situation, the MDS scheduling
policy would prohibit job C2 to be served by the first server. However, under the scheduling policy
of MDS-Violation(0), we relax this restriction, and permit server 1 to begin processing C2.
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Figure 2.8: An illustration of the working of the MDS-Violation(0) scheduling policy. This
policy allows a server to process more than one jobs of the same batch. As shown in the figure,
server 1 processes both C1 and C2.
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Figure 2.9: State transition diagram of the MDS-Violation(0) queue for n = 4 and k = 2. The
notation at any state is the number of jobs m in the system in that state. The set of boundary states
are {0, 1, 2, 3, 4}, and the levels are pairs of states {5, 6}, {7, 8}, etc. The transition matrix is of the
form (2.1) withB0 = [0 0 0 0 4µ ; 0 0 0 0 0],B1 = [−λ 0 λ 0 0; µ −(µ+λ) 0 λ 0; 0 2µ −
(2µ+λ) 0 λ; 0 0 3µ −(3µ+λ) 0; 0 0 0 4µ −(4µ+λ)], B2 = [0 0 ; 0 0 ; 0 0 ; λ 0 ; 0 λ],
A0 = [0 4µ ; 0 0], A1 = [−(4µ+λ) 0 ; 4µ −(4µ+λ)], A2 = [λ 0 ; 0 λ].

Analysis

We now describe a Markovian representation of the MDS-Violation(0) scheduling policy, and
show that it suffices to keep track of only the total number of jobs m in the system.

Proposition 2.5. The Markovian representation of the MDS-Violation(0) queue has a state space
{0, 1, . . . ,∞}, and any state m ∈ {0, 1, . . . ,∞}, has transitions (i) to state (m+ k) at rate λ, and
(ii) if m > 0, then to state (m− 1) at rate min(n,m)µ. It is a QBD process with boundary states
{0, . . . , k}×{0, . . . , n}, and levels {0, . . . , k}×{n−k+1+jk, . . . , n+jk} for j = {1, 2, . . . ,∞}.

The state transition diagram of the MDS-Violation(0) queue for n = 4, k = 2 is shown in
Fig. 2.9.
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Proposition 2.5 shows that the MDS-Reservation(0) queue is a QBD process, allowing us to
employ the SMC solver to obtain its steady-state distribution. Alternatively, the MDS-Violation(0)
queue is simple enough to allow for a direct analysis as well. Let πm denote the stationary proba-
bility of any state m ∈ {0, 1, . . . ,∞}. Then, for any m ∈ {1, . . . ,∞}, the global balance equation
for the cut between states (m− 1) and m gives:

πm =
λ

min(m,n)µ

m−1∑

j=(m−k)+
πj , (2.5)

for every m > 0. The stationary distribution of the Markov chain can now be computed easily
from these equations.

2.6.2 MDS-Violation(t) for a General t
Scheduling policy

Algorithm 6 formally describes the MDS-Violation(t) scheduling policy.

Algorithm 6 MDS-Violation(t) Scheduling Policy
On arrival of a batch

If buffer has strictly fewer than t batches
Assign jobs of new batch to idle servers

Else if buffer has t batches
Assign jobs of first batch to idle servers
If first batch is cleared

Assign jobs of new batch to idle servers
Append remaining jobs of new batch to end of buffer

On departure of job from a server (say, server s)
If number of batches in buffer is strictly greater than t

Assign job from first batch in buffer to this server
Else

Among all batches in buffer that s has not served, find the one that arrived earliest; assign a
job of this batch to s

Example 2.6. (t=1). Consider a system in the state shown in Fig. 2.10(a). Suppose server 1 com-
pletes execution of job C1 (Fig. 2.10(b)). In this situation, the processing of C2 by server 1 would
be allowed under MDS-Violation(0), but prohibited in the MDS queue. The MDS-Violation(1)
queue follows the scheduling policy of the MDS queue whenever the total number of batches in
the buffer is no more than 1, and hence in this case, server 1 remains idle. Next, suppose there is
an arrival of a new batch (Fig. 2.10(c)). At this point there are two batches in the buffer, and the
MDS-Violation(1) scheduling policy switches its mode of operation to allowing any server to serve
any job. Thus, the first server now begins service of C2 (Fig. 2.10(d)).
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Figure 2.10: An illustration of the working of the MDS-Violation(1) scheduling policy for
n = 4 and k = 2. This policy allows a server to begin processing a job of a batch that it has
already served, unless this batch is the only batch waiting in the buffer. As shown in the figure,
server 1 cannot process C2 in (b) since it has already processed C1 and C is the only waiting batch;
this restriction is removed upon on arrival of another batch in the buffer in (d).

Analysis

Theorem 2.6. The state transition diagram of the MDS-Violation(t) queue has a state space
{0, 1, . . . , k}t × {0, 1, 2, . . .}. It is a QBD process with boundary states {0, . . . , k}t × {0, . . . , n+
tk}, and levels {0, . . . , k}t × {n− k + 1 + jk, . . . , n+ jk} for j = {t+ 1, t+ 2, . . . ,∞}.

The proof of Theorem 2.6 also describes how one can obtain the configuration of the entire
system from only the number of jobs in the system, under the MDS-Violation(t) scheduling poli-
cies.

As in the case of MDS-Reservation(t) queues, one can see that the sequence of
MDS-Violation(t) queues, as t increases, becomes closer to the MDS queue. On increase in the
value of parameter t, the bounds become tighter, but the complexity of the transition diagrams
also increases, and the limit of this sequence is the MDS queue itself.

Proposition 2.7. The MDS-Violation(t) queue, when t =∞, is precisely the MDS(n,k) queue.

Remark 2.1. The class of queues presented in this section have another interesting intellectual
connection with the MDS queue: the performance of an MDS(n,k) queue is lower bounded by the
MDS-Violation(t) queue for all values of t.

2.7 Performance Comparison of Various Scheduling Policies
In this section we analyze the performance of the MDS-Reservation(t) and the MDS-Violation(t)
queues. The analysis is performed by first casting these queues as quasi-birth-death processes (as
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shown in Theorems 2.3 and 2.6), and then building on the properties of quasi-birth-death processes
to compute the average latency and throughput of each of these queues. Via simulations, we then
validate these analytical results and also look at the performance of these queues with respect to
additional metrics. We see that under each of these metrics, for the parameters simulated, the
performance of the lower bound MDS-Reservation(t) queues (with t = 3) closely follows the
performance of the upper bound MDS-Violation(t) queues (with t = 1).

2.7.1 Maximum Throughput
The maximum throughput is the maximum possible number of requests that can be served by the
system per unit time.

Theorem 2.8. Let ρ∗Resv(t), ρ∗MDS , and ρ∗Vio(t) denote the maximum throughputs of the
MDS-Reservation(t), MDS, and MDS-Violation(t) queues respectively. Then,

ρ∗MDS =ρ∗Vio(t) =
n

k
.

When k is treated as a constant,

(
1−O(n−2)

) n
k
≤ρ∗Resv(t)≤

n

k
.

In particular, for any t≥1, when k=2,
(

1− 1

2n2−2n+1

)
n

k
=ρ∗Resv(1)≤ρ∗Resv(t) ,

and when k=3,
(

1− 4n3−8n2+2n+4

3n5−12n4+22n3−29n2+26n−8

)
n

k
=ρ∗Resv(1)≤ρ∗Resv(t)

Using the techniques presented in the proof of Theorem 2.8, explicit bounds analogous to those
for k = 2, 3 in Theorem 2.8 can be computed for k ≥ 4 as well.
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MDS-Reservation(1), k=2
MDS-Reservation(1), k=5
MDS-Reservation(2), k=2
MDS-Reservation(2), k=5

(a) Maximum throughput loss

MDS-Reservation(2)

MDS-Violation(1)

MDS

(b) System occupancy

MDS-Reservation(3)
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(c) The 99th percentile of latency

MDS-Reservation(2)

MDS-Violation(1)

MDS
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Figure 2.11: Performance comparison of various scheduling policies. In (a), we plot the maxi-
mum throughput loss of the MDS-Reservation policies. In (b), we plot the steady state distribution
of the system occupancy when n = 10, k = 5, λ = 1.5 and µ = 1. In (c), we plot the 99th

percentile of latency when n = 10, k = 5 and µ = 1. In (d), we plot the waiting probability when
n = 10, k = 5 and µ = 1.

Fig. 2.11(a) plots loss in maximum throughput incurred by the MDS-Reservation(1) and the
MDS-Reservation(2) queues, as compared to that of the MDS queue. We can observe that for
a fixed value of k, the throughput loss decreases as n increases. This is because the MDS-
reservation(t) blocks at most k − 1 servers, and blocking k − 1 servers among n servers is less
wasteful when n is large compared to k.
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2.7.2 System Occupancy
The system occupancy at any given time is the number of jobs present (i.e., that have not yet been
served completely) in the system at that time. This includes jobs that are waiting in the buffer
as well as the jobs being processed in the servers at that time. The distribution of the system
occupancy is obtained directly from the stationary distribution of the Markov chains constructed
in sections 2.5 and 2.6. Fig. 2.11(b) plots the complementary cdf of the the number of jobs in the
system in the steady state. Observe that the analytical upper and lower bounds from the MDS-
Reservation(2) and the MDS-Violation(1) queues respectively are very close to each other.

2.7.3 Latency
The latency faced by a batch is the time from its arrival into the system till the completion of
service of k of its jobs. Using the obtained steady-state distributions of the MDS-Reservation(t)
and the MDS-Violation(t), we can analytically compute the average batch latencies of these sys-
tems. Given the steady-state distribution π of a system, for each state i, we can find the average
latency di faced by a batch entering the system in state i. Since Poisson arrivals see time aver-
ages [126], the average latency faced by a batch in the steady state is given by

∑
i πidi. Fig. 2.1

plots the average latency faced by a batch in the steady state. Observe that the performance of the
MDS-Reservation(t) scheduling policy, for t as small as 3, is extremely close to that of the MDS
scheduling policy and to the upper bounding MDS-Violation(1) scheduling policy.

We also look at the tails of the latency-distribution via simulations. Fig. 2.11(c) plots the
99th percentile of the distribution of the latency. Also observe how closely the bound MDS-
Reservation(3) follows the exact MDS.

While the computation of the stationary distribution of the MDS-Reservation(t) and the MDS-
Violation(t) is fairly easy, an exact analysis of these bounds is still difficult. A notable exception is
the MDS-Reservation(1) with k = 2: one can exactly analyze the MDS-Reservation(1) with k = 2
by finding its steady-state distribution. We denote by D the batch latency of a randomly chosen
batch in steady state.

Theorem 2.9. If n is an even number that is larger than 2, and the system is stable, the average
request latency of MDS-Reservation(1) with (n, k = 2) is

E[D] ≤ 1

2λ

[ n−1∑

l=1

lπl +
∞∑

m=0

(n+ 2m+ 1)πn+2m+1 +
∞∑

m=0

(n+ 2m)(πpn+2m + πgn+2m)

]

+
n− 1

n− 2

1

2µ
− 1

(n− 2)(n− 1)nµ
− 1

2(n− 1)µ
, (2.6)

where the steady state probabilities {πi}∞i=0, {πpi }∞i=n, {πgi }∞i=n can be computed by an iterative
process, described in the appendix.

Theorem 2.9 provides an efficient way for analyzing the MDS-Reservation(1) when k = 2.
We note that these results are not asymptotic and can be applied to systems of any size. Deferring
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the detailed proof to the appendix, we provide a sketch here. We carefully choose cuts on the
Markov chain of the system. We then solve the system of equations, comprising of the flow balance
equations derived from each of those chosen cuts, and obtain the iterative process to find the steady-
state distribution {π}. By Little’s law, the average ‘job’ latency can be computed with the steady-
state distribution. Then, we bound the difference between the average ‘job’ latency and the average
‘request’ latency, and hence bound the average request latency.

2.7.4 Waiting Probability
The waiting probability is the probability that, in the steady state, one or more jobs of an arriving
batch will have to wait in the buffer and will not be served immediately. As shown previously,
under the MDS-Reservation(t) and the MDS-Violation(t) scheduling policies, the system configu-
ration at any time is determined by the state of the Markov chain, which also determines whether
a newly arriving batch needs to wait or not. Thus, the waiting probability can be computed di-
rectly from the steady-state distribution of the number of jobs in the system. Fig. 2.11(d) plots
the waiting probability for the different queues considered in the chapter. Observe how tightly the
MDS-Violation(1) and the MDS-Reservation(2) queues bound the waiting probability of the MDS
queue.

2.7.5 Degraded Reads
The system considered so far assumed that each incoming request asks for one entire file (from
any k servers). In certain applications, incoming requests may sometimes require only a part of the
file, say, the part that is stored in one of the servers. In the event that a server is busy or has failed,
one may serve requests for that part from the data stored in the remaining servers. This operation
is termed a ‘degraded read’. Under an MDS code, a degraded read may be performed by obtaining
the entire file from the data stored in any k of the (n − 1) remaining servers, and then extracting
the desired part. Such an operation is generally called ‘data-reconstruction’.

Dimakis et al. recently proposed a new model, called the regenerating codes model, as a basis
to design alternative codes supporting faster degraded reads. Several explicit codes under this
model have been constructed subsequently, e.g., [94, 89, 85, 118]. In particular, the product-matrix
(PM) codes proposed in [89, 92] are practical codes that possess several appealing properties.
One feature of the product-matrix codes is that they are associated with an additional parameter
d (≤ n−1), and can recover the desired data by reading and downloading a fraction 1

d−k+1

th of the
requisite data from any d of the remaining (n − 1) servers. This method of performing degraded
reads entails a smaller total download but requires connectivity to more servers, and hence the
gains achieved by this method in a dynamic setting are unclear. This operation is generally called
a ‘node-repair’ operation in the literature.

We employ the framework of the MDS queue to compare these two methods of performing
degraded reads: the data-reconstruction method results in an MDS(n-1,k) queue, while the node-
repair operation leads to an MDS(n-1,d) queue with a different service rate. We assume that the
average service time is proportional to the number of bits required by a job. Fig. 2.12 depicts
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Figure 2.12: Average latency during degraded reads. The parameters associated to this system
are n = 6, k = 2. The service time at any server is exponentially distributed with a mean pro-
portional to the amount of data to be read. The performance of the product-matrix (PM) codes are
compared for various values of the associated parameter d.

average latency incurred under the two methods when n = 6, k = 2 and d = 3. We see that the
product-matrix/regenerating codes perform consistently better in terms of the latency performance.
The key insight is that the property of being able to read from any d servers provides a great deal
of flexibility to the degraded-read operations under a product-matrix code, enabling it to match up
(and beat) the performance of the data-reconstruction operation.

2.8 Decentralized MDS Queue
In the previous sections, we considered an MDS queue with a centralized buffer that accepts all
arriving requests. However, in some applications, such a centralized scheme is infeasible or in-
efficient due to practical reasons. For instance, having such a centralized buffer may limit the
performance of large-scale storage systems.

In this section, we study a decentralized version of the MDS queue. A decentralized MDS
queue has n servers with their own buffers, and arriving batches of k jobs are scheduled to k
servers, chosen uniformly at random.

Definition 2.2 (Decentralized MDS queue). A decentralized MDS queue is associated to four
parameters (n, k) and [λ, µ].

• There are n identical servers with their own buffers

• Requests arrive as a Poisson process with rate λ

• Each request comprises a batch of k jobs
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• Upon arrival of a batch, the k jobs of the batch are scheduled to k (distinct) servers, chosen
uniformly at random

• The service time for a job at any server is exponentially distributed with rate µ, independent
of all else

• At each server, the jobs are processed in order.

Algorithm 7 formalizes the scheduling policy of the decentralized MDS queue.

Algorithm 7 Decentralized MDS scheduling policy
On arrival of a batch

Randomly choose k servers among the n servers
Append each job of the arrival to the buffer of each of the k chosen servers

On departure from a server (say, server s)
If ∃ at least one job in its own buffer

Assign the job that arrived earliest

A1# A2#

B1# B2#
(a)

A1# A2# B2#

B1#

(b)

A2# B2#B1#

A1#

(c)

Figure 2.13: Functioning of the decentralized MDS queue.

The following example illustrates the functioning of the decentralized MDS scheduling policy
and the resultant decentralized MDS queue.

Example 2.7. Consider a decentralized MDS(n = 4, k = 2) queue, as depicted in Fig. 2.13. Each
request comes as a batch of k = 2 jobs, and the 2 jobs of the batch are scheduled to 2 servers,
chosen uniformly at random. Suppose that the system is in the state as shown in Fig. 2.13(a),
wherein the jobs A1, A2 are being served by the first two servers, and there are no other jobs in the
system. When the new batch B arrives, it is randomly dispatched to 2 servers among the 4 servers.
Suppose that the two jobs of the new batch are scheduled to server 1 and server 4. As shown in
Fig. 2.13(b), the job B1 starts waiting in the buffer of server 1 as server 1 is now busy. On the



CHAPTER 2. DATA RETRIEVAL PERFORMANCE OF DISTRIBUTED STORAGE
SYSTEMS WITH CODED DATA 31

other hand, server 4 immediately starts serving job B2 since there were no jobs in server 4. Now
suppose that server 1 completes service as shown in Fig. 2.13(c). As job B1 has been waiting in
the queue of server 1, server 1 begins serving job B1.

We will follow a slightly different proof techniques for deriving results for the decentralized
settings, as compared to the techniques employed earlier for the centralized settings. Recall that
for the analysis of the centralized MDS queues, we first constructed scheduling policies that form
upper and lower bounds to the centralized MDS queues, and then exactly analyzed those bounds
to obtain bounds on several metrics including the maximum throughput and the average latency.
On the other hand, for the decentralized setting, we find the exact maximum throughput of the
decentralized MDS queues. We establish lower bounds on the expected average latency of the
decentralized MDS queues also by analyzing these queues directly. The upper bounds on the
expected average latency follow a proof technique similar to that in the decentralized case, with a
construction of an upper bounding system and an analysis of this system’s latency performance.

2.8.1 Throughput
We now analyze decentralized MDS queues focusing on its stability and latency performance. We
first define the effective arrival rate of each queue as λeff

def
= kλ

n
. Since the scheduler chooses a set

of k servers at random for any batch, each server is chosen with probability k
n

. Thus, the arrival
process of batches of k jobs is split into n Poisson processes, and the rate of each Poisson process
is λeff = kλ

n
. Therefore, the maximum throughput of a decentralized MDS (n, k) queue can be

found by equating the effective arrival rate λeff and the service rate µ.

Proposition 2.10. The maximum throughput of a decentralized MDS (n, k) queue is nµ
k

.

Not that the maximum throughput of a decentralized MDS queue is equal to that of a centralized
MDS queue.

2.8.2 Lower Bound on the Average Request Latency
We denote by D the batch latency of a randomly chosen batch in steady state. Also, for any n ≥ 1,
we denote the nth harmonic number as Hn =

∑n
i=1

1
i

and the nth generalized harmonic number
as H ′n =

∑n
i=1

1
i2

. We now present a lower bound on the average batch latency of a decentralized
MDS queue.

Theorem 2.11. The average batch latency of a decentralized MDS queue E[D] is lower bounded
as

E[D] ≥
(

1

µ− λeff
− 1

µ

)
+
Hk

µ
. (2.7)

Note that the batch latency is determined by the maximum of k job latencies. By analyzing the
latency of the job whose service time is the maximum among the k jobs, the above lower bound
can be easily obtained. We defer the detailed proof of Theorem 2.11 to the appendix.
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2.8.3 Upper Bound on the Average Batch Latency
In order to establish an upper bound on the average batch latency of a decentralized MDS queue,
we construct a virtual queuing system whose average batch latency is greater than that of the
decentralized MDS queue. Consider a virtual queueing system where all the batches arrive in a
waiting room before they enter the actual servers. Due to the latency incurred in the waiting room,
the latency performance of this new queueing system clearly serves as an upper bound of that
of the decentralized MDS queue. We carefully design this system so that the resultant system is
amenable to analysis, while not differing much from the actual system.

An exact analysis of decentralized MDS queues is complicated due to dependency across n
servers, and this dependency is due to batch arrivals of k jobs. We carefully remove this depen-
dency by generating n independent Poisson processes from the input arrival process of batches of
k jobs. We do so by designing a waiting room, which we call the independent Poisson processes
generator (IPPG).

Definition 2.3 (Independent Poission Processes Generator (IPPG)). An IPPG is associated to four
parameters (n, k) and (λ, λ′), where λ′ is the virtual service rate of the IPPG.

• Batches of k jobs arrive in an IPPG as a Poisson process with rate λ.

• When a batch of k jobs arrives, the batch enters the central buffer in the IPPG.

• The IPPG has n independent exponential timers each with rate λ′.

• When the ith exponential timer ticks,

1. if the central buffer is not empty, and the timer has not previously picked any job
from the first waiting batch of the central buffer, one job of the first waiting batch is
forwarded to the ith server.

2. if not, a dummy job is created and forwarded to the ith server.

• When all the k jobs of a batch are forwarded to the servers, the batch leaves the IPPG.

It is clear that in this virtual system, the k jobs of a batch will be assigned to k distinct servers,
uniformly chosen at random. Therefore, the output processes of the IPPG are independent Poisson
processes of rate λ′ as the exponential timer independently sends one job, either real or dummy,
to the corresponding server whenever its exponential timer ticks. Thus, the latency performance
of an IPPG followed by the n servers establishes a strict lower bound of that of the decentralized
MDS queues.

The following example illustrates the functioning of the IPPG followed by a decentralized
MDS queue.

Example 2.8. Consider the IPPG followed by the decentralized MDS(n = 4, k = 2) queue, as
depicted in Fig. 2.14. The dotted square with rounded corners represents the IPPG, which consists
of the central buffer and the n exponential timers (virtual servers). All the arrivals enter the central
buffer of the IPPG. Each virtual server is associated with its corresponding real server. Suppose
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Figure 2.14: Functioning of the IPPG followed by the decentralized MDS queue.

that the system is in the state as shown in Fig. 2.14(a), wherein the jobs A1, A2 are being served
by the first two servers, and there are no other jobs in the system. When the new batch B arrives,
the two jobs of the new batch enter the central buffer of the IPPG. In Fig. 2.14(b), suppose that the
virtual server 1 expires. Since the virtual server 1 has not served the waiting batch in the IPPG,
it forwards one job of the waiting batch to server 1. In Fig. 2.14(c), the new batch C arrives. In
Fig. 2.14(d), suppose that the virtual server 1 ticks. As it has already served a job from batch B, it
creates a dummy job (tagged with a number sign #) and forwards it to server 1. When the virtual
server 3 ticks, the second job of batch B is forwarded to server 3 as shown in Fig. 2.14(e). In Fig.
2.14(f), server 1 finishes its task and starts serving the first waiting job B1. In Fig. 2.14(g), the
virtual server 2 ticks, and it forwards the first job of batch C to server 2. Similarly, the virtual
server 4 ticks, and it forward the second job of batch C to server 4.
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As the latency of the constructed virtual queueing system upper bounds that of the decentralized
MDS queue, we now analyze the batch latency of the constructed virtual queueing system. We
denote by Di job i’s latency of a certain batch for 1 ≤ i ≤ k. The job latency can be decomposed
into latency in the IPPG,DI,i, and latency in a server (including its queue), DS,i: Di = DI,i+DS,i.
Then,

D = max
1≤i≤k

Di ≤ max
1≤i≤k

DI,i + max
1≤i≤k

DS,i, (2.8)

and

E[D] ≤ E
[

max
1≤i≤k

DI,i

]
+ E

[
max
1≤i≤k

DS,i

]
, (2.9)

where the expectations are over batches.
The following lemma bounds the second term of (2.9), the expected value of the maximum

waiting time in the servers.

Lemma 2.12. E [max1≤i≤kDS,i] = Hk
µ−λ′

This lemma is proved by showing that each of the k jobs of a batch sees an M/M/1 queue that
is independent of the other queues, when it exits the IPPG and enters the queue of a server. The
detailed proof is given in the appendix.

We now bound the first term in (2.9). First of all, note that this term is the time difference
between the arrival time of the batch and the latest job departure time. That is, this term can
be viewed as the waiting time of a batch in the IPPG. This term can be analyzed by studying
a (centralized) MDS queue with a scheduling policy called the ‘redundant-requests scheduler’
[103, 58]. In an MDS queue with a redundant-request scheduler, a request starts getting served
simultaneously by r (> k) servers. When the first k distinct servers complete their jobs, the request
is deemed served and leaves the system. The r−k remaining jobs are immediately cancelled upon
the departure. Even though the IPPG is not meant to model such redundant-requests schedulers,
the dynamic behavior of the IPPG is equivalent to the MDS queue with such redundant-request
schedulers that schedules k jobs of the first waiting batch to all the n servers and blocks all the
other waiting batches until the first batch is served by k distinct servers. The average batch latency
of this system coincides with a bound proposed by the authors of [58]. In order to find the average
batch latency of the IPPG, we use their results.

Lemma 2.13 (Joshi et al., 2012). For every λ < λ′

Hn−Hn−k
,

E
[

max
1≤i≤k

DI,i

]
=
Hn −Hn−k

λ′
+
λ
{

(H ′n −H ′n−k) + (Hn −Hn−k)
2
}

2λ′2
{

1− λ
λ′

(Hn −Hn−k)
} . (2.10)

When the virtual rate of the IPPG increases, the waiting time in the IPPG decreases, but the
waiting time in the actual servers increases due to an increased number of dummy jobs. Thus, for a
fixed arrival rate λ, one can optimize over λ′ in order to minimize the sum of the waiting time in the
IPPG and the latency in the actual servers. By collecting all the above lemmas and observations,
we have the following main theorem.
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Figure 2.15: The objective function in the statement of Theorem 2.14 for n = 100, k = 5, and
λ = 5. The average batch latencies in the IPPG and the servers are also plotted. The best upper
bound is obtained by computing the value for λ′ that minimizes the overall latency.

Theorem 2.14. For λ < µ
Hn−Hn−k

, the average batch latency of a decentralized MDS queue E[D]

is upper bounded as

E[D] ≤ min
λ(Hn−Hn−k)≤λ′≤µ

[
Hn −Hn−k

λ′
+
λ
{

(H ′n −H ′n−k) + (Hn −Hn−k)
2
}

2λ′2
{

1− λ
λ′

(Hn −Hn−k)
} +

Hk

µ− λ′

]
.

(2.11)

Note that the objective function can be minimized by numerically solving a polynomial equa-
tion of λ′. In Figure 2.15, we plot the objective function in the above theorem when n = 100,
k = 5, and λ = 5. Also we plot the latencies in the IPPG and the servers. In Figure 2.16, we
compare our upper and lower bounds with the simulation results. We observe that our upper bound
closely captures the latency performance of decentralized MDS queues when n is large compared
to k.

Arrival rate (λ)
0 1 2 3 4 5

A
v
e
ra

g
e
 r

e
q
u
e
s
t 
la

te
n
c
y

0

5

10

15

Upper bound
Lower bound
Simulation

(a) n = 10, k = 2

Arrival rate (λ)
0 2 4 6 8 10

A
v
e
ra

g
e
 r

e
q
u
e
s
t 
la

te
n
c
y

0

5

10

15

Upper bound
Lower bound
Simulation

(b) n = 100, k = 10

Arrival rate (λ)
0 20 40 60 80 100

A
v
e
ra

g
e
 r

e
q
u
e
s
t 
la

te
n
c
y

0

5

10

15

Upper bound
Lower bound
Simulation

(c) n = 1000, k = 10

Figure 2.16: The average batch latency of the decentralized MDS queues with its lower and
upper bounds.
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Remark 2.2. Consider a case where n� k. Then λ(Hn −Hn−k) = 1
n

+ 1
n−1 + . . .+ 1

n−k+1
' k

n
,

and hence one can choose λ′ ' kλ
n

= λeff. Also, observe that the first two terms of the bound are
negligible compared to the last term. Therefore, the upper bound can be simplified as

E[D] .
Hk

µ− λeff
. (2.12)

This approximation can be directly found with the independence assumption that the queue lengths
of n servers are independent of each other. Since the sojourn time of an M/M/1 queue is exponen-
tially distributed with rate λeff − µ [49], the maximum of k job latencies can be readily obtained,
and that gives us the above approximation. This approximation is used in some related works in-
cluding [122], and the approximation has been observed to be useful to closely capture the original
system’s performance. However, it has not been known whether such approximation indeed serves
as a bound, either lower or upper, of the original system. The fact that our upper bound asymptoti-
cally converges to this simple yet powerful approximation is an interesting theoretical contribution,
which may be of independent interest.

2.9 Discussion and Open Problems
In this work, we proposed the MDS queue, which captures the system dynamics of distributed data
storage systems that are based on MDS codes. We analyzed both centralized and decentralized
MDS queues, and provided extensive simulation results to validate our theoretical analysis.

We aim to use the results of this chapter as a starting point for analysis of more complex systems
that mimic the real world more closely. In particular, we intend to build upon the “MDS-Queue”
framework presented here to analyze queues that relax one or more of the assumptions made in
the chapter, e.g., having general service times, heterogeneous requests or servers, and non-MDS
codes.

In this chapter, while we characterized the metrics of average latency and throughput analyt-
ically, we also used simulations to examine the performance of the queues in terms of several
additional metrics. We observed in these simulations that the MDS-Reservation(t) and the MDS-
Violation(t) scheduling policies result in a performance very close to that of the exact MDS queue
for values of t as small as 3. Thus, even respect to these metrics, an analysis of the (simpler)
scheduling policies of MDS-Reservation(t) and MDS-Violation(t) may provide rather-accurate es-
timations of the performance of MDS codes.
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Chapter 3

Scheduling of Redundant Requests

3.1 Introduction
Many systems possess the flexibility to serve requests in more than one way. For instance, in a
cluster with n processors, a computation may be performed at any one of the n processors; in a
distributed storage system where data is stored using an (n, k) Reed-Solomon code, a read-request
may be served by reading data from any k of the n servers; in a network with n available paths
from the source to the destination, communication may be performed by transmitting across any
one of the n paths. In such settings, the latency of serving the requests can potentially be reduced
by sending redundant requests. Under a policy of sending redundant requests, each request is
attempted to be served in more than one way. The request is deemed served when it is served in
any one of these ways. The remaining copies of this request may then be removed from the system.

Fig. 3.1 illustrates the concept with a toy model comprising two servers. Requests arrive one-
by-one and are stored in a buffer if the servers are busy. Fig. 3.1(a) depicts the traditional policy
that does not use redundant requests. Here, each request goes to one server and is deemed served
when that server completes service. As shown in the fourth panel of Fig. 3.1(a), when a server
completes service, the first request waiting in the buffer is sent to this server. Fig. 3.1(b) illustrates
a policy that sends each request redundantly to both servers. Here, each request goes to both
servers and is deemed served when any one of the two servers completes service. As shown in the
fourth panel of Fig. 3.1(b), when a server completes service, the copy of this request at the other
servers is “cancelled”, and a new request moves into both these servers.

It is unclear whether or not such a policy of having redundant requests will actually reduce the
latency. On one hand, for any individual request, one would expect the latency to reduce since the
time taken to process the request is the minimum of the processing times of its multiple copies.
On the other hand, introducing redundancy in the requests consumes additional resources and
increases the number of jobs up for service in the system, thereby adversely affecting the latency.

Many recent works such as [110, 5, 87, 47, 2, 54, 122, 29, 69, 113, 39, 121] perform empirical
studies on the latency performance of sending redundant requests, and report reductions in latency
in several scenarios (and increases in some others). The goal of this chapter is to obtain an analyt-
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Figure 3.1: An illustration of a system with and one without redundant requests. The five
images (from left to right) respectively depict five consecutive events in the system.

ical understanding of redundant requests. In particular, we consider a model based on the ‘MDS
queue’ model [105], which captures some of the key features of such systems, and can serve as
a building block for more complex systems. The model is associated to a set of n servers such
that every request can be served by any k of the servers. The requests are served in a first-come-
first-served manner. More details of the model, in the context of redundant requests, are described
subsequently in Section 3.3 for a centralized setting and in Section 3.6 for a distributed setting.

The contributions of this chapter are summarized as follows. We derive the optimal redundant-
requesting policies under a variety of settings: these results are summarized in Table 3.1. Our novel
“stochastic coupling” proof techniques allow for arbitrary arrival sequences and are not restricted
to any specific arrival patterns. Moreover, our techniques allow for results that are not restricted
to steady-state settings. The results are applicable to both centralized (Section 3.4) and distributed
(Section 3.6) settings. In addition, we provide extensive simulation results to obtain further insights
into the problem. We also apply our results to a standard model of hard-disk service times and
use the specifications of a popular line of hard-disks to obtain analytical and numerical results
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(Section 3.5).
While we successfully characterize the optimal redundant requests scheduling policies under

a variety of settings, the results also have the following limitations. Our techniques allow us to
qualitatively compare scheduling policies. However, these techniques do not provide us quantita-
tive analysis, e.g., the value of the latency as a function of system parameters. Secondly, we make
the simplifying assumptions of homogeneity of the servers as well as requests. Thirdly, like most
literature in this area, we can prove analytical results for the expected latency (although interest-
ingly, our simulations reveal that the tail latencies also follow our predictions that were based on
the average latency).

3.2 Related Works
Policies that try to reduce latency by sending redundant requests have been studied previously,
largely empirically, in [110, 5, 87, 47, 2, 54, 122, 29, 69, 113, 39, 121]. These works evaluate
system performance under redundant requests for several applications, and report a reduction in
the latency in many cases. For instance, Ananthanarayanan et al. [2] consider the setting where
requests take the form of computations to be performed at processors. In their setting, requests
have diffferent workloads, and the authors propose adding redundancy in the requests with lighter
workloads. They observe that on the PlanetLab network, the average completion time of the re-
quests with lighter workloads decreases by 47%, at the cost of just 3% extra resources. Huang et
al. [54] consider a distributed stoage system where the data is stored using an (n = 16, k = 12)

Table 3.1: Summary of analysis of when redundant requests reduce latency, and the opti-
mal policies of redundant-requesting for various settings under the models considered in the
chapter. The ‘heavy-everywhere’ and ‘light-everywhere’ classes of distributions are defined sub-
sequently in Section 3.4. An example of a heavy-everywhere distribution is a mixture of exponen-
tial distributions; two examples of light-everywhere distributions are an exponential distribution
shifted by a constant, and the uniform distribution. By ‘high load’ we mean a 100% utilization of
the servers.

n k
Arrival
process

Service
distribution Buffers

Removal
cost Load

Optimal policy
(Theorem #)

any 1 any memoryless centralized 0 any send to all (3.1)
any any any memoryless centralized 0 any send to all (3.2)
any 1 any heavy-everywhere centralized 0 high send to all (3.3)
any 1 any light-everywhere centralized any high no redundancy (3.4)
any 1 any memoryless centralized >0 high no redundancy (3.5)
any any any memoryless distributed 0 any send to all (3.7a)
any 1 any heavy-everywhere distributed 0 high send to all (3.7b)
any 1 any light-everywhere distributed any high no redundancy (3.7c)
any 1 any memoryless distributed >0 high no redundancy (3.7d)
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Reed-Solomon code. For k′ ∈ {12, 13, 14, 15}, they perform the task of decoding the original data
by connecting to k′ of the nodes and decoding from the k pieces of encoded data that arrive first.
They empirically observe that the latency reduces upon increase in k′. In a related setup, codes
and algorithms tailored specifically for employing redundant requests in distributed storage are de-
signed in [90] for latency-sensitive settings, allowing for data stored in a busy or a failed node to be
obtained by downloading little chunks of data from other nodes. In particular, these codes provide
the ability to connect to more nodes than required and use the data received from the first subset to
respond, treating the other slower nodes as “erasures”. Vulimiri et al. [122] propose sending DNS
queries to multiple servers. They observe that on PlanetLab servers, the latency of the DNS queries
reduces with an increase in the number of DNS servers queried. Dean and Barroso [29] observe
a reduction in latency in Google’s system when requests are sent to two servers instead of one.
Liang and Kozat [69] perform experiments on the Amazon EC2 cloud. They observe that when
the rate of arrival of the requests is low, the latency is lower when the requests are sent to a higher
number of servers. However, when the rate of arrival is high, they observe that a high redundancy
in the requests increases the latency. Rashmi et al. [93] design erasure codes for distributed storage
that given the option to connect to more servers, require a lower download for recovery of partial
data. In empirical evaluations on the Facebook warehouse cluster in production, it is shown that
under their setting, the combination of higher connectivity and lower download outperforms the
lower connectivity and higher download algorithm. Venkataraman et al. [121] consider machine
learning applications which operate on subsampled data. Leveraging the fact that any randomly
selected choice of input data suffices, they query for additional data and then pick the first to arrive.
In empirical evaluations, they observe an 81% reduction in the average job duration when query-
ing for 5% redundant data. A tangential application of redundant requests lies in crowdsourcing
tasks [9]. Workers on crowdsourcing platforms are typically noisy, and hence each task is typically
given to multiple workers. The work is often required to be completed quickly, and in real-time. A
policy of recruiting a few additional workers and using the work of the first requisite number who
complete the task may allow for a faster completion of tasks (while, however, trading off with the
additional cost of paying the extra workers).

We now discuss related theoretical literature in this area. In [58], Joshi et al. consider the
arrival process to be Poisson, and the service to be i.i.d. memoryless, and provide bounds on the
average latency faced by a batch in the steady state when the requests are sent (redundantly) to all
the servers. However, no comparisons are made with other schemes involving redundant requests,
including the scheme of having no redundancy in the requests. In fact, our work can be considered
as complementary to that of [58], in that we complete this picture by establishing that under the
models considered therein, sending (redundant) requests to all servers is indeed the optimal choice.
In [69], Liang and Kozat provide an approximate analysis of a system similar to that described
in this paper under the assumption that arrivals follow a Poisson process. Using insights from
their approximations, they experiment with certain scheduling policies on the Amazon EC2 cloud.
However, no analysis or metrics for accuracy of these approximations are provided, nor is there
any treatment of whether these approximations lead to any useful upper or lower bounds.

The following two works that appeared subsequent to our conference publication offer further
insights into the properties of redundant requests. In [43], the authors study scheduling redundant
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requests of multiple classes of jobs. Each class of jobs is associated with a certain set of servers, and
all jobs of a class are scheduled to the corresponding set of servers. Under this setup, the authors
find the steady state distribution of the system, and quantify the gain of scheduling redundant
requests. The authors of [115] study the optimal scheduling of redundant requests for data retrieval
in storage clouds. The proposed model can be thought as a generalization of our model. They
consider various setups, and find the optimal or near-optimal scheduling policies for each of them.

The work perhaps closest to ours is [62], pointed out to us by the second author of [62] sub-
sequent to our conference publication [103]. The paper considers a problem of assigning multiple
copies of the same task to different computers to improve latency performance in grid comput-
ing systems. The authors defined two classes of service time distributions that are independently
defined in our conference version: ‘new worse than used (NWU)’ that corresponds to heavy-
everywhere, and ‘new better than used (NBU)’ that corresponds to light-everywhere. Our contri-
butions over [62] are that we considers the more general setting where each request has k (≥ 1)
jobs whereas [62] considers the special case of k = 1; certain results derived in [62] are appli-
cable to only n = 2 servers. Furthermore, we not only provide optimal scheduling policies but
also provide a comparison between the performances of all possible degrees of redundant requests,
analytically when k = 1 and numerically otherwise.

A related notion is that of ‘availability’ in erasure coded distributed storage systems, studied
in [97, 96], where in the presence of multiple requests, the likelihood of being able to serve any
individual ‘data-symbol’ is to be maximized. These works design erasure codes to maximize the
data availability (in the absence of redundant requests).

3.3 System Model: Centralized Buffer
We will first describe the system model followed by an illustrative example. The model is associ-
ated to three parameters: two parameters n and k that are associated to the system, and the third
parameter r that is associated to the redundant-requesting policy. The system comprises a set of
n servers. A request can be served by any arbitrary k distinct servers out of this collection of n
servers. Several applications fall under the special case of k = 1: a compute-cluster where compu-
tational tasks can be performed at any one of multiple processors, or a data-transmission scenario
where requests comprise packets that can be transmitted across any one of multiple routes, or a dis-
tributed storage system with data replicated in multiple servers. Examples of settings with k > 1
include: a distributed storage system employing an (n, k) Reed-Solomon code wherein the request
for any data can be served by downloading the data from any k of the n servers; a compute-cluster
where each job is executed at multiple processors in order to guard from possible errors during
computation; or, a machine-learning compute-cluster where jobs can be computed with any choice
of k of the n data blocks.

The policy of redundant requesting is associated to a parameter r (k ≤ r ≤ n) which we call
the request-degree. Each request is sent to at most r of the servers, and upon completion of any k
of them, it is deemed complete. To capture this feature, we consider each request as a batch of r
jobs. Each of the r jobs of a batch can be served by any arbitrary server, but with the constraint that
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Algorithm 8 First-come-first-served scheduling policy with redundant requests
on arrival of a request (“batch”)

divide the batch into r jobs
assign as many jobs (of the new batch) as possible to idle servers
append the remaining jobs (if any) as a new batch at the end of the buffer

on completion of processing by a server (say, server s0)
let set S = {s0}
if the job that departed from s0 was the kth job served from its batch then

for every server that is also serving jobs from this batch do
remove the job and add this server to set S

end for
remove all jobs of this batch from the system

end if
for each s ∈ S do

if there exists at least one batch in the buffer such that no job of this batch has been served
by s then

among all such batches, find the batch that had arrived earliest
assign a job from this batch to s

end if
end for

the r jobs of a batch must be served by r distinct servers. The batch is deemed served when any k
of its r jobs are serviced. At this point in time, the remaining (r−k) jobs of this batch are removed
from the system. Such a premature removal of a job from a server may lead to certain overheads:
the server may need to remain idle for some (random) duration before it is ready to serve another
job. We will term this idle time as the removal cost.

We assume that the time that a server takes to serve a job is independent of the arrival and
service times of other jobs. We further assume that the jobs are processed in a first-come-first-
served fashion, i.e., among all the waiting jobs that an idle server can serve, it serves the one
which had arrived the earliest. Finally, to be able to perform valid comparisons, we assume that
the system is stable in the absence of any redundancy in the requests (i.e., when r = k). The
arrival process may be arbitrary, and the only assumption we make is that the arrival process is
independent of the present and past states of the system.

We consider a centralized queueing system in this section, where requests enter into a (com-
mon) buffer of infinite capacity. The choice of the server that serves a job may be made at any point
in time. (We will consider distributed systems subsequently in Section 3.6, wherein the server must
be chosen upon arrival of the request into the system).

The goal is to evaluate whether redundant requests can help in reducing the average latency
or not. If yes, then the goal is to establish the redundant-request policy that would minimize the
average latency incurred by requests entering the system.
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Figure 3.2: An illustration of the setting for parameters n = 4, k = 2 and request-degree
r = 3, as described in Example 3.1.

The scheduling algorithm for any fixed value of r is formalized in Algorithm 8. Note that the
case of r = k corresponds to the case where no redundancy is introduced in the requests, while
r = n corresponds to maximum redundancy with each batch being sent to all the servers. The
following example illustrates the working of the system.

Example 3.1. Fig. 3.2 illustrates the system model and the working of Algorithm 8 when n = 4,
k = 2 and r = 3. The system has n = 4 servers and a common buffer as shown in Fig. 3.2(a).
Let us denote the four servers (from left to right) as servers 1, 2, 3 and 4. Each request comes as a
batch of r = 3 jobs, and hence we denote each batch (e.g., A, B, C, etc.) as a triplet of jobs (e.g.,
{A1, A2, A3}, {B1, B2, B3}, {C1, C2, C3}, etc.). A batch is considered served if any k = 2 of the
r = 3 jobs of that batch are served.
Fig. 3.2(a) depicts the arrival of batch A. As shown in Fig. 3.2(b), three of the idle servers begin
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serving the three jobs {A1, A2, A3}. Fig. 3.2(b) depicts the arrival of batchB followed by batch C.
Server 4 begins serving job B1 on arrival of batch B, while the other jobs wait in the buffer. This is
depicted in Fig. 3.2(c). Now suppose server 1 completes serving job A1 (Fig. 3.2(d)). This server
now becomes idle to serve any of the jobs remaining in the buffer. We allow jobs to be processed
in a first-come-first-served manner, and hence server 1 begins serving job B2 (assignment of B3

instead would also have been valid). Next, suppose the second server finishes serving A2 before
any other servers complete their current tasks (Fig. 3.2(e)). This results in the completion of a
total of k = 2 jobs of batch A, and hence batch A is deemed served and is removed the system. In
particular, jobA3 is removed from server 3 (this may cause the server to remain idle for some time,
depending on the associated removal cost). Servers 2 and 3 are now free to serve other jobs in the
buffer. These are now populated with jobsB3 andC1 respectively. Next suppose server 3 completes
serving C1 (Fig. 3.2(f)). In this case, since server 3 has already served a job from batch C, it is not
allowed to serve C2 or C3 (since the jobs of a batch must be processed by distinct servers). Since
there are no other batches waiting in the buffer, server 3 thus remains idle (Fig. 3.2(g)).

3.4 Analytical Results for the Centralized Buffer Setting
In this section, we consider the model presented in Section 3.3 that has a centralized buffer. We
find redundant-requesting policies that minimize the average latency under various settings. This
minimization is not only over redundant-requesting policies with a fixed value of the request-
degree r (as described in Section 3.3) but also over policies that can choose different request-
degrees for different batches.

In what follows, we will say that a probability distribution with the cumulative distribution
function F stochastically dominates another probability distribution with the cumulative distribu-
tion function G if

F (z) ≤ G(z) ∀ z ∈ R.

with a strict inequality for some interval.
The first two results, Theorems 3.1 and 3.2, consider the service times to follow an exponential

(memoryless) distribution.

Theorem 3.1 (memoryless service, no removal cost, k = 1). Consider a system with n servers
such that any one server suffices to serve any request, the service-time is i.i.d. memoryless, and
jobs can be removed instantly from the system. For any r1 < r2, the average latency in a sys-
tem with request-degree r1 is larger than the average latency in a system with request-degree r2.
Furthermore, the distribution of the buffer occupancy in the system with request-degree r1 stochas-
tically dominates that of the system with request-degree r2. Finally, among all possible redundant
requesting policies, the average latency is minimized when each batch is sent to all n servers, i.e.,
when request-degree r = n.

The proof of this result as well as all other analytical results in this chapter are deferred to the
appendix.
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Theorem 3.1 provides a total ordering of the performances of redundant requesting policies for
all possible values of r, when k = 1. Theorem 3.2 below characterizes the optimal policy for any
arbitrary value of k.

Theorem 3.2 (memoryless service, no removal cost, general k). Consider a system with n
servers such that any k of them can serve a request, the service-time is i.i.d. memoryless, and
jobs can be removed instantly from the system. The average latency is minimized when all batches
are sent to all the servers, i.e., when r = n for every batch. Furthermore, the distribution of the
buffer occupancy in the system with request-degree r = n is stochastically dominated by a system
with any other request-degree.

We conjecture that the same total ordering as in Theorem 3.1 continues to hold for general
values of k as well, that is, that the latency reduces with an increase in r when the service times
are memoryless. Fig. 3.3(a) depicts simulations that corroborate this conjecture.

We have so far considered the specific case of an exponential service time distribution. We
will now move on to some more general classes of service-time distributions. The first class of
distributions is what we term heavy-everywhere, defined as follows.

Definition 3.1 (Heavy-everywhere distribution). A distribution on the non-negative real numbers
is termed heavy-everywhere if for every pair of values a > 0 and b ≥ 0 with P (X > b) > 0, the
distribution satisfies

P (X > a+ b | X > b) ≥ P (X > a) . (3.1)

In words, under a heavy-everywhere distribution, the need to wait for a while makes it more
likely that a bad event has occurred, thus increasing the possibility of a greater wait than usual.
For example, one can verify that a mixture of independent exponential distributions (namely, a
hyperexponential distribution) satisfies (3.1) and hence is heavy-everywhere.

Note that the service times across different servers and across different jobs are independent.
However, independence does not hold if the same job is served at a server twice in a row. Thus,
cancelling and restarting the same job at the same server always incurs an increase in job latency
regardless of the service time distribution.

A second class of distributions is what we call light-everywhere distributions, defined as fol-
lows.

Definition 3.2 (Light-everywhere distribution). A distribution on the non-negative real numbers
is termed light-everywhere if for every pair of values a > 0 and b ≥ 0 with P (X > b) > 0, the
distribution satisfies

P (X > a+ b | X > b) ≤ P (X > a) . (3.2)

In words, under a light-everywhere distribution, waiting for some time brings you closer to
completion, resulting in a smaller additional waiting time. For example, one can verify that an
exponential distribution that is shifted by a positive constant is light-everywhere, and so is the uni-
form distribution. Additional properties of heavy-everywhere and light-everywhere distributions
are discussed in the appendix.
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The following theorems present results for systems with service-times in these classes of dis-
tributions.

Theorem 3.3 (Heavy-everywhere service, no removal cost, k = 1, high load). Consider a sys-
tem with n servers such that any one server suffices to serve any request, the service-time is i.i.d.
heavy-everywhere, and jobs can be removed instantly from the system. When the system has a
100% server utilization, the average latency is minimized when each batch is sent to all n servers,
i.e., when r = n for each batch.

This is corroborated in Fig. 3.3(b) which depicts simulations with the service time distributed
as a mixture of exponentials: ∼ exp( rate = 0.2) w.p. 0.1 and exp( rate = 9

5
) w.p. 0.9. Note that

Theorem 3.3 addresses only the scenario of high loads and predicts minimization of latency when
r = n in this regime; simulations of Fig. 3.3(b) further suggest that the policy of r = n minimizes
the average latency for all loads. We have also observed similar phenomena in simulations for
k > 1.

Theorem 3.4 (Light-everywhere service, any removal cost, k = 1, high load). Consider a sys-
tem with n servers such that any one server suffices to serve any request, and the service-time is
i.i.d. light-everywhere. When the system has a 100% server utilization, the average latency is
minimized when there is no redundancy in the requests, i.e., when r = k (= 1) for all batches.

This is corroborated in Fig. 3.3(c) which depicts simulations with the service time X dis-
tributed as a sum of a constant and a value drawn from an exponential distribution: P (X > x) =

e−(x−
1
2
) if x ≥ 1

2
and 1 otherwise. We observe in Fig. 3.3(c) that at high loads, the absence of any

redundant requests (i.e., r = 1) minimizes the average latency, which is as predicted by the theory.
We also observe in the simulations for this setting that redundant requests do help when arrival
rates are low, but start hurting beyond a certain threshold on the arrival rate. Similar phenomena
are observed in simulations for k > 1.

The next theorem revisits memoryless service times, but under non-negligible removal costs.

Theorem 3.5 (memoryless service, non-zero removal cost, k = 1, high load). Consider a sys-
tem with n servers such that any one server suffices to serve any request, and the service-time is
i.i.d. memoryless, and removal of a job from a server incurs a non-zero delay. When the system
has a 100% server utilization, the average latency is minimized when there is no redundancy in
the requests, i.e., when r = k (= 1) for all batches.

Fig. 3.3(d) presents simulation results for such a setting. The figure shows that under this
setting, redundant requests lead to a higher latency at high loads, as predicted by theory.

For each of the settings investigated in this section, we have observed via simulations that in-
terestingly, the tail latencies also follow the theoretical predictions that are provided in this section
for the average latency [103].

Fig. 3.4 plots the 95th percentile latency for each of the settings simulated in Fig. 3.3. Observe
that interestingly, the tail latencies also follow the same predictions as given by our theoretical
results in this section that had analytically characterized the average latency.
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Figure 3.3: The average latency in an (n = 10, k = 5) system with Poisson arrivals, and
various service time distributions. (a) Exponential with rate 1; (b) Heavy-everywhere: a mixture
of exponential distributions; (c) Light-everywhere: a shifted exponential; and (d) Exponential with
rate 1 where additionally, removing an unfinished job from a server requires the server to remain
idle for a time distributed exponentially with rate 10.

3.5 Analysis Using Disk I/O Service Specifications
In this section, we investigate the application of the results of this chapter to a popular class of
latency-models for hard disks [106, 100, 28]. Under this class of models, the latency T associated
to reading data from a disk is a sum of three components: T = Tseek +Trotation +Ttransfer. Here, Tseek

is the “seek latency,” that is, the latency for the cylinder to get positioned under the header; Trotation

is the “rotation latency,” that is, the time taken for the sector to get positioned under the header;
and Ttransfer is the “transfer time,” that is, the time taken to transfer a block using an I/O bus [125,
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Figure 3.4: The 95th percentile latency in a (n = 10, k = 5) system with Poisson arrivals, and
various service time distributions. (a) Exponential with rate 1; (b) Heavy-everywhere: a mixture
of exponential distributions; (c) Light-everywhere: a shifted exponential; and (d) Exponential with
rate 1 where additionally, removing an unfinished job from a server requires the server to remain
idle for a time distributed exponentially with rate 10.
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Table 3.2: Performance specifications of WD2500YD.

Tmin seek 2.00 ms
Tmax seek 21.0 ms

Rotation Per Minute (RPM) 7200
Trotation 8.33 ms

Transfer rate 61 MB/s

102].
In order to read/write a requested file block from/to a disk, the drive head needs to move from

the current track position to the target track position, the disk has to rotate accordingly, and then
the file can be transferred from/to the disk platter. If disk I/O requests are random, the amount of
time to seek and rotate can be modeled as an i.i.d. random variable. Modeling the random amount
of time for a random disk I/O T as the sum of seek latency (Tseek), rotational latency (Trotation), and
transfer time (Ttransfer) has been a common approach in the literature. That is,

T = Tseek + Trotation + Ttransfer. (3.3)

Each of these terms can be modeled as follows. The seek time is modeled as a linear interpolation
between the minimum and maximum seek times: Tseek time = Tmin seek+D(Tmax seek−Tmin seek). Here,
D is the “normalized seek distance” from the current head position to the target head position, and
is modelled as the distribution P (D ≤ d) = 1− (1− d)2 for 0 ≤ d ≤ 1. The rotation latency is a
random variable distributed uniformly in [0, Trotation period], and the transfer time is a constant F

Rtransfer
,

where F is the size of requested block and Rtransfer is the transfer rate [102]. The values of Tmin seek,
Tmax seek, Trotation period are fixed constants.

We first perform an analytical characterization of this class of service times. We show that this
class indeed falls under one of the classes analyzed earlier in the chapter, and hence allows for the
use of our results established earlier in Section 3.4.

Proposition 3.6 (Disk I/O time). For any Tmax seek > Tmin seek ≥ 0, Trotation period, Rtransfer > 0, the
distribution of the disk I/O time for file blocks of a fixed size F > 0 is light-everywhere.

We will now further augment the analytical characterization given by Proposition 3.6 with
numerical simulations. In Table 3.2, we list the performance specifications of Western Digital’s
hard disk model WD2500YD [24]. Using the parameters given by the specifications and the simple
model of disk I/O time discussed above, the distribution of disk read time is plotted in Fig. 3.5,
for a file block of size 100KB. We simulate a system with various values of the redundant request
degree under this service time distribution. The results from these simulations are depicted in
Fig. 3.6(a) and Fig. 3.6(b), showing the average and the 95th percentile latency respectively for a
n = 10, k = 5 disk array. From the figures, we observe that both the average latency and tail
latency exhibit tradeoffs identical to those that were established analytically in Section 3.4.



CHAPTER 3. SCHEDULING OF REDUNDANT REQUESTS 50

t (ms)
0 5 10 15 20 25 30

P
(D

is
k
 r

e
a
d
 l
a
te

n
c
y
 <

 t
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.5: Disk read latency model of the WD2500YD hard disk.
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Figure 3.6: The average request latency of an array of WD2500YD disks with
(n = 10,k = 5). The arrival process is Poisson. Plotted in (a) is the average request latency,
and in (b) is the 95th percentile latency.

3.6 Distributed Buffers
The model with distributed buffers closely resembles the case of a centralized buffer. The only
difference is that in this distributed setting, each server has a buffer of its own, and the jobs of a
batch must be routed to some r of the n buffers as soon as the batch arrives in the system. The
protocol for choosing these r servers for each batch is allowed to be arbitrary for the purposes of
this chapter, but for concreteness, the reader may assume that the r least-loaded buffers are chosen,
or the Join the r-Shortest Queue policy is used.

The setting with distributed buffers is illustrated in the following example.
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(a) (b) (c) (d)

Figure 3.7: An illustration of the setting with distributed buffers for parameters n = 4, k = 2
and request-degree r = 3, as described in Example 3.2.

Example 3.2. Fig. 3.7 illustrates the system model and the working of the system in the distributed
setting, for parameters n = 4, k = 2 and r = 3. The system has n = 4 servers, and each of these
servers has its own buffer, as shown in Fig. 3.7(a). Denote the four servers (from left to right) as
servers 1, 2, 3 and 4. Fig. 3.7(a) depicts a scenario wherein batch A is already being served by the
first three servers, and batch B just arrives. The three servers (buffers) to which batch B will be
sent to must be selected at this time. Suppose the algorithm chooses to send the batch to buffers 2,
3 and 4 (Fig. 3.7(b)). Now suppose server 1 completes service of job A1 (Fig. 3.7(c)). Since there
is no job waiting in the first buffer, server 1 remains idle. Note that in contrast, a centralized setting
would have allowed the first server to start processing either job B2 or B3. Next, suppose server
2 completes service of job A2 (Fig. 3.7(d)). With this, k = 2 jobs of batch A are served, and the
third job A3 is thus removed. Servers 2 and 3 can now start serving jobs B3 and B2 respectively.

As in the centralized setting of Section 3.4, we continue to assume that the service-time distri-
butions of jobs are i.i.d. and the system operates on a first-come-first-served basis. The following
theorems prove results that are distributed counterparts of the results of Section 3.4.

Theorem 3.7. Consider a system with n distributed servers such that any k of them can serve a
request. The service times for different jobs and different servers are i.i.d. Then
(a) Suppose the service time is memoryless and jobs can be removed instantly from the system.
Then average latency is minimized when all batches are sent to all the servers, i.e., when r = n
for every batch.
(b) Suppose the service time is heavy-everywhere, k = 1, jobs can be removed instantly from the
system and the system has a 100% server utilization. Then the average latency is minimized when
each batch is sent to all n servers, i.e., when r = n for each batch.
(c) Suppose the service time is light-everywhere and k = 1 and the system has a 100% server
utilization. Then the average latency is minimized when there is no redundancy in the requests,
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i.e., when r = k (= 1) for all batches.
(d) Suppose the service time is memoryless, and removal of a job from a server incurs a non-zero
delay and the system has a 100% server utilization. Then the average latency is minimized when
there is no redundancy in the requests, i.e., when r = k (= 1) for all batches.

We see that guidelines identical to those for the centralized setting apply to the distributed case
as well.

3.7 General Proof Technique
This section briefly describes the general proof technique employed to prove the aforementioned
results. The general proof technique is depicted pictorially in Fig. 3.8.

Consider two identical systems S1 and S2 with different redundant-requesting policies. Sup-
pose we wish to prove that the redundant-requesting policy of system S2 leads to a lower latency
as compared to the redundant-requesting policy of system S1. To this end we first construct two
new hypothetical systems T1 and T2. The construction is such that the performance of system T1
is statistically identical or better than S1, and that of T2 is statistically identical or worse than S2.
The two systems T1 and T2 are also coupled in the following manner. The construction establishes
a one-to-one correspondence between the n servers of T1 and the n servers of T2. Furthermore,
it also establishes a one-to-one correspondence between the service events occurring in both sys-
tems, i.e., the completion of any job in T1 is associated to the completion of a unique job in T2 and
vice versa. The same sequence of arrivals is applied to both systems.

Such a coupling facilitates an apples-to-apples comparison between the two systems. We ex-
ploit this and show that at any point in time, system T2 is in a better state than system T1. Putting
it all together, it implies that system S2 is better than system S1.

Most interestingly, this technique allows us to handle arbitrary arrival sequences. Furthermore,
it does not restrict the results to the (asymptotic) setting when the system is in steady state, but
allows the results to be applicable to any interval of time.

3.8 Conclusions and Open Problems
The prospect of reducing latency by means of redundant requests has garnered significant attention
among practitioners in the recent past (e.g., [110, 5, 87, 47, 2, 54, 122, 29, 69, 113, 39]). Many
recent works empirically evaluate the latency performance of redundant requests under diverse
settings. In this chapter, we propose a model that captures key features of such systems, and under
this model we analytically characterize several settings wherein redundant requests help and where
they do not. For each of these settings, we also derive the optimal redundant-requesting policy.

While we establish the performance of redundant requests for several scenarios in this chapter,
the characterization for more general settings remains open. Three questions that immediately
arise are: (a) What is the optimal redundant-requesting policy for service-time distributions and
removal-costs not considered in this paper? (b) We observed in the simulations (e.g., Fig. 3.3(c))
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Figure 3.8: A pictorial depiction of the general proof technique.

that for several service-time distributions, redundant requests start hurting when the system is
loaded beyond a certain threshold. What are the values of these thresholds? (c) What happens
when the requests or the servers are heterogeneous, or if the service-times of different jobs of a
batch are not i.i.d.? Addressing these questions constitutes a useful direction of future research. In
the following chapter, we attempt to answer the first question.
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Chapter 4

Exact Analysis of Redundant Requests
Scheduling with Cancellation Overhead

4.1 Introduction
Individual components of a large-scale distributed system exhibit highly variable response
times[29]. The high variability is due to many factors: shared resources, queueing delay in
multiple layers, and hardware failures. Unfortunately, completely removing such sources of
variability in large-scale systems is infeasible. As a result, researchers have proposed several
approaches to achieve better latency performance while living with this high variability. One of
the most promising approaches is that of scheduling redundant requests to multiple components
or servers [2, 54, 122, 29, 69]. That is, one can schedule the same job at different servers and
obtain the result from the request that responds first in order to reduce latency. Clearly, the
technique of scheduling redundant requests can be employed only if requests can be
simultaneously served at many different servers. Many systems indeed possess this desired
property: in a distributed computing and data storage system, a compute job can be served at any
of the servers that stores a copy of the input data; in a network with multiple routes between
nodes, the transmitter can choose to establish multiple flows across different paths, and can
transmit redundant packets along them.

Many recent works [2, 54, 122, 29, 69] empirically observe reductions in job latency by
scheduling redundant requests. Following the empirical efficacy of redundant requests, several
recent works propose theoretical models of redundant requests scheduling, and find the optimal
scheduling policies under the proposed models [103, 58, 69]. However, most existing models com-
monly assume immediate cancellation of straggling requests; i.e., all requests except for the fin-
ished one are immediately removed from the system. While this assumption enables an important
first step in the analysis of systems with redundant requests, it limits the studied models in several
ways. First, cancellation of requests in highly distributed systems typically takes a non-negligible
amount of time for exchange of control signals and restoration of server states. Further, job can-
cellation is not even feasible in some applications where schedulers do not have full control over
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(d) t = t4: server 2 canceled the copy of job 1, and
starts working on the replica of job 3.

Figure 4.1: An example of scheduling redundant requests with cancellation overheads. Jobs
being canceled are shaded. Job 1 experiences a faster response because two servers work on the
same job as depicted in 4.1(a), but the other jobs are delayed because server 2 takes a long time
to cancel job 1, and some system resource is not utilized during the cancellation period. The
scheduling policy used here is called π∞, and it is formally defined in Section 4.2.4.

the entire system. That is, the scheduler can issue redundant requests but cannot revoke them. For
instance, Vulimiri et al. considers requesting multiple DNS (Domain Name Servers) queries to
achieve a lower DNS response delay, and these requests cannot be canceled because the scheduler
does not have control over them [122].

Figure 4.1 illustrates how the cancellation overheads negatively affect the overall system per-
formance. In Figure 4.1(a), job 1 is replicated, and it can be served quickly because two servers
work on the same job. However, the other jobs are negatively affected if server 2 takes some time
to cancel the copy of job 1: during the cancellation period, the system’s resource is being wasted.
It is therefore no longer clear whether redundant requests will help or not due to this phenomenon.
More generally, it is unclear how one can optimally use redundant requests when accounting for
this overhead. We attempt to answer this question in this chapter.

Our contributions are as follows. First, bridging the evident gap between the existing models
and practice, we propose a new model of redundant requests with cancellation overhead. In order
to strike a balance between analytical tractability and capturing key system attributes, we propose
a ‘memoryless cancellation’ model to capture the job cancellation overheads, and study how this
cancellation overhead affects the latency performance of several scheduling policies. We show
that maximally scheduling redundant requests is inefficient even with almost negligible cancella-
tion overhead. This implies the limited applicability of theoretical results that do not consider such
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cancellation overhead. We then find the latency-optimal scheduling policies and show the neces-
sity of using dynamic policies over static policies: we show that the optimal dynamic policy can
provide up to 16% additional latency reduction over the optimal static policy. Our analysis uses a
unique combination of the Recursive Renewal Reward (RRR) technique [42], a recently developed
queueing analysis technique, and dynamic programming. To the best of our knowledge, this is the
first work to characterize the optimal dynamic policy of scheduling redundant requests.

The remainder of this chapter is organized as follows. Section 4.2 describes the queueing model
that captures redundant requests and cancellation overhead. Section 4.3 and Section 4.4 provide
analytical results for static and dynamic schedulers respectively. Finally, Section 4.5 presents
conclusions and discusses open problems.

4.1.1 Related Works
While most of the existing works consider static redundant-requests scheduling policies, a few
exceptions are as follows. Dynamic scheduling policies are considered in [69] and [123]. Liang et
al. [69] propose dynamic scheduling policies based on an approximate analysis. In [123], Wang
et al. study scheduling of finite number of jobs in the queue. Sun et al. [115] prove that a certain
class of dynamic polices are either delay-optimal or near-optimal with a constant gap. Joshi et al.
[59] analyze various scheduling policies including the one that cancels redundant requests when
one task starts getting served.

Our work differs from these works in two ways. First, we explicitly include the overhead
of canceling redundant requests in the model, and find the optimal scheduling policy. Most of the
existing works do not consider this overhead, and propose scheduling policies that may not perform
well in practice. Second, to the best of our knowledge, we provide the first dynamic scheduling
policy that is provably optimal under the new model.

4.2 Model
In this section, we describe our queueing model that can capture scheduling and canceling redun-
dant requests.

4.2.1 Arrival and Service Model
We assume that jobs arrive according to a Poisson process with rate λ and the service time of a job
at each server is exponentially distributed with rate µ. This is a common assumption in queueing
theory for analytical tractability. Further, we assume that copies of a job experience independent
service times at different servers. This is a valid assumption in many applications: in distributed
storage systems, reading an identical file at different disks of the same I/O performance incurs
different latencies due to independent random access time; in distributed computing systems, pro-
cessing an identical task may require different amounts of time depending on the status of servers,
disks, and network.
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4.2.2 Redundant Requests
We assume that a job can be scheduled at more than one server: whenever a server becomes
available, the scheduler may schedule a new job or a replica of a running job at the available server.
When redundant requests are used, the job latency is defined as the difference between the earliest
departure time of the job and the time of its arrival. When a job is scheduled at multiple servers, we
assume that the redundant jobs experience independent random service times. The independence
assumption is witnessed in previous works. For instance, [70] reports the independence between
download times of a file from the cloud server across multiple threads.

4.2.3 Memoryless Cancellation
Using redundant requests without prompt cancellation may result in resource wastage. Thus, one
would ideally like the scheduler to cancel redundant jobs at the other servers when one of the
redundant jobs is completed. We model the cancellation delay as random delays that are expo-
nentially distributed. That is, when one of the replicas is fully processed, the other replicas start
getting canceled, and the cancellation times are exponentially distributed with rate µc, the cancel-
lation rate. We name this model of cancellation overhead as memoryless cancellation model. Note
that the cancellation time of a job does not affect the latency of the job, but may delay the other
waiting jobs.

Depending on the value of µc, the memoryless cancellation model falls into one of the three
following scenarios1.

1. (µc = µ: Infeasible cancellation) In some systems, it may be impossible or too complicated
to cancel the replicas of a job. That is, one cannot cancel a running job even though copies
of that job is already served at other servers. This can be simply modeled by setting µc = µ
due to the memoryless property of the exponential distribution. Even though using redundant
requests seems very inefficient under this setup, we show that when the arrival rate is smaller
than a certain threshold, one can still reduce job latency by using redundant requests.

2. (µc = ∞: Immediate cancellation) The immediate cancellation of the redundant requests
can be supported by systems that are very centralized and have a negligible communication
delay. In other words, one can cancel any job that is submitted to a server if the identical job
is served by another server, and the cancellation happens immediately. This can be captured
by setting µc =∞.

3. (µc > µ: Slow cancellation) In most systems of interest, cancellation is possible but requires
a small yet non-negligible amount of time. For this case, we assume that the cancellation of
a job requires a random amount of time that is exponentially distributed with rate µc.

1We do not consider the degenerate case where µc < µ: by letting redundant jobs continue to run until completion
without canceling them, one can achieve µc = µ
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4.2.4 Scheduling Policies
In a queueing system, the scheduler needs to make a scheduling decision when a resource becomes
available. In this work, the system allows the scheduler to schedule a redundant request of a
running job or a waiting job in the queue. This flexibility makes the problem of finding the optimal
scheduling policy challenging. In this work, we restrict all scheduling policies to be First-come-
first-served (FCFS), work-conserving, and non-preemptive. We consider both static and dynamic
scheduling policies: a dynamic policy is one that adapts based on changes in the state of the system
(e.g., the number of jobs in the system), whereas a static policy is oblivious to the changes in state
[49].

Given a scheduling policy, say π, we consider two metrics: the maximum arrival rate and
the average job latency. The system is stable under a scheduling policy π at arrival rate λ if
Eπ[N ] < ∞. The capacity region of a scheduling policy is defined as the set of all arrival
rates at which the system is stable under π. The maximum arrival rate of a scheduling pol-
icy is defined as the supremum of its capacity region. The average job latency is defined as
Eπ[D] = limt→∞ E[(

∑Zt
i=1Di)/Zt], where Zt is the number of jobs that are completed before

time t, and Di is the latency of the ith completed job. We define a special class of scheduling
policies {πγ} as follows.

Definition 4.1. (Definition of πγ) A scheduling policy πγ schedules a redundant request of the
least-recently arrived job if and only if the number of distinct jobs in the system at the time of
decision N(t) is less than or equal to γ ∈ {0, 1, . . .}.

Note that π0 and π∞ are two special cases, and they are the only static policies among the class
of the schedulers: π0 never schedules a redundant request, which is the classic FCFS scheduler;
π∞ always schedules redundant requests regardless of the system state. All the other policies are
dynamic policies: for 1 ≤ γ <∞, πγ requires the knowledge of the system status. Note that {πγ}
does not cover the entire scheduling policies, and it is a specific family of policies.

4.2.5 M/M/2 with Redundant Requests
As a first attempt to understand the latency performance of redundant requests, and to find the
latency-optimal scheduling policy, we focus on two-servers systems: M/M/2 queueing systems
with redundant requests.

4.3 Analysis of Static Schedulers
In this section, we analyze and compare the two static schedulers: π0, which does not use any
redundant request, and π∞, which always schedules redundant requests. The analysis of these
static scheduling policies are still useful when one wants to adapt redundant requests but cannot
exploit the status of the system for some reasons. For instance, when the system is designed in a
layered way, and the scheduling layer does not have much information about the current load of
the system.
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(b) Average latency: µc = 5µ
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(c) 99th percentile latency: µc = µ
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(d) 99th percentile latency: µc = 5µ

Figure 4.2: The average and tail latency of π0(solid, blue), π1(dashed, orange), and π∞(dotted,
green) with µ = 1, µc = µ and 5µ. π0 does not schedule redundant requests, π1 schedules them
adaptively, and π∞ maximally schedules them.

By finding the average job latency performance of both schedulers, we can answer important
questions such as ‘when should one use redundant requests?’ and ‘when is π∞ better than π0?’.
In this section, we first analyze performance of π0 and π∞. We then present the optimal static
scheduling policy.

4.3.1 Without Redundant Requests: π0
Since π0 does not use any redundant request, an M/M/2/π0 is identical to an M/M/2/FCFS. Thus,
the following lemma immediately follows [49].
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Lemma 4.1. (Stability and job latency of M/M/2/π0) The maximum arrival rate and the average
job latency of an M/M/2/π0 are as follows: λπ0max = 2µ, Eπ0 [D] = 4µ/(4µ2 − λ2).

Figure 4.2 shows the average job latency of an M/M/2/π0 system as a function of λ.

4.3.2 With Redundant Requests: π∞
Now, we consider the other static scheduling policy π∞. We first illustrate how redundant requests
are scheduled using a sample evolution of M/M/2/π∞ system illustrated in Figure 4.1. In Figure
4.1(a), there are 3 jobs waiting in the queue, and job 1 is replicated, and being served by server
1 and server 2. In Figure 4.1(b), server 1 finishes job 1 earlier than the other, and starts working
on job 2 while the other server starts canceling the redundant request of job 1. Note that job 1
is deemed served at this point, and the remaining replica does not affect this job’s latency. In
Figure 4.1(c), server 1 finishes job 2 and accepts job 3. In Figure 4.1(d), server 2 completes job
cancellation, and starts working on job 3’s replica.

Since the arrival process, the service process, and the cancellation process are all memoryless
and independent, an M/M/2/π∞ system is Markovian, and the system can be modeled as a Markov
chain by defining the state of the system appropriately. We enumerate all the states of an M/M/2
system in Table 4.1. We illustrate the state notation using the example in Figure 4.1. In Figure

Table 4.1: The states of an M/M/2 system. L(S) denotes the level of state S. N(S) denotes the
number of distinct jobs in the system in state S.

S Meaning L(S) N(S)
(0) No job in the system. 0 0
(s, i), i ≥ 0 Two servers working on the same job, i waiting jobs

in the queue.
i+ 2 i+ 1

(c,−1) One job being canceled, no waiting job in the queue. 1 0
(c, i), i ≥ 0 One server working on a job, the other server cancel-

ing a job, i waiting jobs in the queue.
i+ 2 i+ 1

(d,−1) Only one server working on a job, no waiting job in
the queue.

2 1

(d, i), i ≥ 0 Two servers working on different jobs, i waiting jobs
in the queue.

i+ 3 i+ 2

4.1(a), 3 jobs are waiting in the queue, and two servers are working on the same job. We denote
this state by (s, 3), where s means that the same job is being processed by both servers, and 3
indicates the number of jobs in the queue. In Figure 4.1(b), server 1 completes the service of job
1, and starts working on job 2 while server 2 is canceling job 1. We name this state as (c, 2), where
c stands for cancellation. Similarly, Figure 4.1(c) corresponds to state (c, 1), and Figure 4.1(d)
corresponds to state (s, 1). With this definition of states, the Markov chain of the system can be
found, and it is depicted in Figure 4.3. The bottom row shows all the states in which one of the two
servers is canceling a job, and the top row shows all the states in which two servers are working on
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Figure 4.3: A Markov chain of an M/M/2/π∞. States are defined in Table 4.1. States (s, i), i ≥ 0
represent that both servers are working on the same job, and there are i jobs waiting in the queue.
States (d, i), i ≥ 0 represent that two servers are working on different jobs, and there are i jobs
waiting in the queue. State (0) represent there is no job in the system, and state (c,−1) represents
there is only one job that is being canceled by one server.

the same job. We distinguish the transitions corresponding to scheduling redundant requests with
double tips.

We are now ready to analyze the latency performance of the system. We first establish the
relationship between the average number of ‘distinct jobs’ in the system and the average job latency
of the system using the Little’s Law [73].

Lemma 4.2. (Little’s Law with Redundant Requests) The average job latency of a queueing system
that schedules redundant requests is E[D] = E[N ]/λ, where E[N ] is the average number of distinct
jobs (excluding redundant requests and those being canceled).

Proof. We ignore how redundant requests are scheduled and replicas are canceled, and consider
just when distinct jobs enter and leave the system. Then, the entire system can be thought as a
regular queueing system where distinct jobs arrive and depart. The lemma follows from the direct
application of the Little’s Law to this system.

Lemma 4.2 implies that we can analyze the average job latency if we find the average number
of distinct jobs in the system. We do so by using the recursive renewal reward technique, developed
recently in [42]. Using this technique, we can exactly analyze the system’s performance without
relying on the numerical methods. We first present the stability region and the average job latency
of an M/M/2/π∞.

Theorem 4.3. (Stability and job latency of M/M/2/π∞) An M/M/2/π∞ system is stable if and only
if the arrival rate λ is strictly less than the maximum arrival rate λmax, where λmax is as follows:

λπ∞max = 2µ(µ+ µc)(2µ+ µc)
−1. (4.1)
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If the system is stable, the average job latency is as follows.

Eπ∞ [D] =
(µ+ µc) {(2µc(µ+ µc) + λ(4µ+ µc)}

{2µc(µ+ µc) + λ(2µ+ µc)) (2µ(µ+ µc)− λ(2µ+ µc)}
(4.2)

Proof. We first choose the state (0) as the home state. A renewal cycle is defined as the process of
starting from the home state and returning back to the home state. We define earning reward as the
number of distinct jobs in the system. Then, the average reward rate is equal to the mean reward
earned over a cycle; that is,

E[N ] =
E[accumulated reward over a renewal cycle]

E[length of a renewal cycle]
def
=
R

T
. (4.3)

For notational simplicity, we define L(S), the level of state S, as shown in Table 4.1. Note that
L(S) = N(S) + 1 except for S = (0). Also, we denote ‘state s’ simply by s unless it makes any
confusion.

The average length of a renewal cycle T can be found as follows. Clearly, any renewal path
must visit (c,−1) to visit the home state. Thus, if we find the average length of the process from
(s, 0) to (c,−1), and that of the process from (c,−1) to the home state, we can find T . By defining
the average length of the process from state S to one level left of state S as TLS , T can be expressed
as follows:

T = λ−1 + TLs,0 + TLc,−1 (4.4)

Now, consider TLs,0, the average length of the process from (s, 0) to one level left of (s, 0), which is
(c,−1). Depending on the first transition from (s, 0), there are two cases: if one of the two servers
finishes the same job before a new job arrives, the process moves to (c,−1); otherwise, the process
moves to (s, 1). The average time staying at (s, 0) before any event happens is (λ + 2µ)−1. With
probability 2µ(λ+ 2µ)−1, the service event happens and the process moves to one level left. With
probability λ(λ + 2µ)−1, the arrival event happens and the process moves rightward to (s, 1). If
this happens, as the process must come back to level 1 to visit the home state, the additional time
required is TL(s,1) + TL(c,0). Similar equations can be found also for TLc,−1 and TLc,0, and we have the
following equations.

TLs,0 = (λ+ 2µ)−1
[
1 + λ(TLs,1 + TLc,0) + 2µ · 0

]
(4.5)

TLc,−1 = (λ+ µc)
−1 [1 + λ(TLc,0 + TLc,−1) + µc · 0

]
(4.6)

TLc,0 = (λ+ µ+ µc)
−1 [1 + λ(TLc,1 + TLc,0) + µ · 0 + µcT

L
s,0

]
(4.7)

We now exploit the repeating structure of the Markov chain. Observe that TLs,1, the mean time from
(s, 1) to one level left, is equal to TLs,0, the mean time from (s, 0) to one level left; two processes
cannot experience any difference other than reward because of the repeating structure. Similarly,
one can find that TLc,1 and TLc,0 are equal. Thus, we have TLs,1 = TLs,0 and TLc,1 = TLc,0. Similarly, we
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find R, the average accumulated reward over a renewal cycle. We define the average accumulated
reward of the process from state S to one level left of S asRL

S . Noting that there is no reward in (0),
R can be decomposed as R = 0

λ
+ RL

s,0 + RL
c,−1. Similarly, we can find equations for RL

c,−1, R
L
s,0,

and RL
c,0 as follows.

RL
c,−1 = (λ+ µc)

−1 [λ(RL
c,0 +RL

c,−1) + µc · 0
]

(4.8)

RL
s,0 = (λ+ 2µ)−1

[
1 + λ(RL

s,1 +RL
s,0) + 2µ · 0

]
(4.9)

RL
c,0 = (λ+ µ+ µc)

−1 [1 + λ(RL
c,1 +RL

c,0) + µ · 0 + µcR
L
s,0

]
(4.10)

We exploit the repeating structure again. Similar to the previous argument, the mean reward from
(s, 1) to one level left, is equal to RL

s,0 + TLs,0: the process starting from (s, 1) always gets one
additional reward, and the total additional reward is equal to the length of the process.

RL
s,1 = RL

s,0 + TLs,1 = RL
s,0 + TLs,0 (4.11)

RL
c,1 = RL

c,0 + TLc,1 = RL
c,0 + TLc,0 (4.12)

Now, the above equations can be solved, and the solutions of these equations are provided in
Appendix A.3. Then, using Lemma 4.2, one can find Eπ∞ [D], and λπ∞max.

Note that the maximum arrival rate of an M/M/2/π∞ system is strictly lower than that of an
M/M/2/π0 system since cancellation overheads induce wastage of system resource. However, the
job latency performance under the policy π∞ is still better if the arrival rate is low enough. Figure
4.2 compares the average job latencies of the two policies with different values for λ and µc: the
solid (blue) line shows the average job latency of an M/M/2/π0, and the dotted (green) line shows
the average job latency of an M/M/2/π∞. Observe that there exists a threshold after which π∞
becomes worse than π0, and this threshold depends on the cancellation overhead; studying this
threshold fully characterizes the optimal static scheduling policies.

4.3.3 The Latency-optimal Static Scheduler
We now compare π0 and π∞ with arbitrary cancellation overhead, and find the optimal static
scheduling policy.

Theorem 4.4. (The latency-optimal static scheduling policy for M/M/2) If the cancellation of jobs
is immediate (i.e., µc = ∞), the policy π∞ is always latency-optimal. If the cancellation of jobs
is infeasible (i.e., µc = 0), the policy π∞ is latency-optimal if and only if λ < 0.6013µ, and the
policy π0 is latency-optimal otherwise. If the job cancellation rate is µ < µc < ∞, the π∞ policy
is latency-optimal if and only if λ < βs(µc)µ, where βs(µc) is the unique solution of the following
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Figure 4.4: Threshold function βs(µc) and βd(µc) defined in Theorem 4.4 and Theorem 4.6
with µ = 1. The slow convergence of βs(µc) explains how inefficient the policy π∞ is even with
a negligible cancellation overhead. For instance, βs(µc) ' 1.25µ = (0.625) · 2µ implies that the
policy π∞ becomes inefficient at 62.5% system if µc = 10µ.

third-order polynomial equation in β.
3∑

i=0

αiβ
i = 0 (4.13)

α3 = −(µc + 1)(µc + 4), α2 = 4(µc + 2)2 − `(µc + 1)

α1 = 4(2`− µc + `µc − µ2
c), α0 = −4`(µc + 1)

` = 2µc(µc + 1)

We call βs(µc) the threshold function for static scheduling policies. For all µc > µ, 0.6013 <
βs(µc) < 2.

Proof. One can show that Eπ0 [D] − Eπ∞ [D] is strictly decreasing as λ increases. Also, when
λ ' 0, the difference is strictly positive; i.e., limλ→0 Eπ∞ [D] = (2µ)−1 < (µ)−1 = limλ→0 Eπ0 [D].
Moreover, π∞ has a smaller stability region than π0. Thus, the equation Eπ∞ [D]|λ = Eπ0 [D]|λ has
a unique solution, and we call it β(µc)µ. Thus, solving the equation gives us the third-order
equation. Further, since Eπ∞ [D]|λ is a decreasing function of µc, βs(µc) is an increasing function.
Thus, one can find the minimum value of βs(µ) by solving the equation with µc = µ.

We plot the threshold function βs(µc) in Figure 4.4 when µ = 1. Note that the threshold
function βs(µc) does not approach 2µ as quickly as one would expect. For instance, βs(µc) '
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(a)

(b)

Figure 4.5: A general Markov chain of an M/M/2 with a dynamic scheduler. The states are
defined in Table 4.1. This Markov chain involves additional states compared to those shown in
Figure 4.3. The top row shows states (d, i) for all i ≥ 0 where each represents a state where
servers are working on different job(s), and there are i jobs in the queue. For instance, (d,−1)
represents a special case where only one server is working on a job, the other server is idle, and
there is no waiting job in the queue. Transitions corresponding to scheduling redundant requests
are represented as dashed lines with double arrow tips.

1.25µ = (0.625) · 2µ, when µc ' 10µ, and βs(µc) ' 1.9µ = (0.95) · 2µ, when µc ' 1000µ: the
policy π∞ becomes worse than the policy π0 if the system load is higher than 62.5% even though
cancellation overhead is as low as µc = 10µ. That is, maximally scheduling redundant requests
can utterly fail even with a low cancellation overhead. In Section 4.4, we show that an optimal
dynamic scheduling policy can be used to avoid this phenomenon.
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4.4 Optimal Dynamic Schedulers
In this section, we consider a class of dynamic schedulers, and find the latency-optimal dynamic
scheduling policy.

4.4.1 Problem Formulation
A dynamic scheduling policy decides about scheduling redundant requests, based on the current
state of the system. To be more precise, we consider stationary deterministic policies that make
deterministic decisions based only on the current state of the system. There are three sets of events
when the scheduler needs to make a decision: when a job is completed at a server, when a job
cancellation is completed, and when a new job arrives.

Figure 4.5 shows all possible transitions using different controls on the Markov chain. In the
figure, scheduling of a redundant request is depicted as a dashed line with double arrow tip. Figure
4.5(a) shows all the transitions/controls when a job is served or a redundant job is canceled. The
scheduler can decide whether to schedule a redundant request to the idle server or not, according to
its decision rules. For instance, consider the state (d, 1), where two servers are working on distinct
jobs, and another job is waiting in the queue. Because each of the two servers finishes its service
with rate µ, the sum rate of service transitions is 2µ. When this happens, the scheduler has two
choices: it can schedule at the idle server either a copy of the running job at the other server or a
waiting job in the queue. By defining ux as an indicator of scheduling redundant requests when
a server becomes available at state x, we can draw one transition from state (d, 1) to state (s, 1)

with rate u(d,1)2µ, and the other transition to (d, 0) with rate (1 − u(d,1))2µ def
= ū(d,1)2µ. Similarly,

Figure 4.5(b) shows all the transitions/controls when a job arrives. We define vx as an indicator
of scheduling redundant requests when a job arrives at state x. When a job arrives, there is an
available resource only if the previous state is (0) or (d,−1): only these two states have associated
control variables on arrival events. Thus, any dynamic policy can be characterized by specifying
the following three sets of controls: πa(rrival), πs(ervice), or πc(ancellation).

πa = (v(0), v(d,−1)), πs = (u(d,0), u(d,1), . . .), πc = (u(c,0), u(c,1), . . .)

Due to Lemma 4.2, the problem of finding the latency-optimal dynamic scheduling policy can be
formulated as follows.

π∗ = arg min
π=(πa,πs,πc)

Eπ[D] = arg min
π=(πa,πs,πc)

Eπ[N ] (4.14)

4.4.2 The Latency-Optimal Dynamic Schedulers
In this section, we provide the main results characterizing the optimal dynamic schedulers. The
detailed proofs are presented in the Appendix. Our first result states that the average latency
performance of the dynamic scheduling policy π1 can be analyzed using the RRR technique.
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Figure 4.6: The Markov chain of an M/M/2/π1 system

Theorem 4.5. (Stability and job latency of M/M/2/π1) An M/M/2/π1 system is stable if and only if
the arrival rate λ is strictly less than the maximum arrival rate λmax = 2µ. If the system is stable,
the average job latency Eπ1 [D] can be exactly found using the RRR technique.

Proof. We defer the detailed proof of the theorem to the Appendix, and provide a brief outline of
the proof. Similar to the proof of Theorem 4.3, we first draw the Markov chain of the system under
policy π1. The Markov chain is depicted in Figure 4.6. Note that when a Markov chain starts from
a state in the repeating portion, it can enter the one left level through one of the two states, (d, i)
or (c, i + 1) for some i. Thus, one needs to find with what probabilities the process enters (d, i)
and (c, i+ 1), respectively. This complicates the analysis, but one can still obtain the exact latency
performance.

The following theorem states that depending on the arrival rate, either π1 or π0 is the optimal
dynamic scheduling policy.

Theorem 4.6. (The latency-optimal dynamic scheduling policy for M/M/2) The π1 policy is
latency-optimal if and only if λ < βd(µc)µ. Otherwise, π0 is optimal. The threshold function for
dynamic scheduling policy βd(µc) is defined as the unique solution of the following equation.

Eπ1 [D]|λ=βµ = Eπ0 [D]|λ=βµ (4.15)

For all µc > µ, 0.8685 < βd(µc) < 2.

Proof. By characterizing the structure of the optimal dynamic scheduling policy, one can show that
π0 and π1 are the only candidates for being the optimal policy. Detailed proof is in the Appendix.

In Figure 4.4, βd(µc) is plotted. Note that the threshold function βd(µc) approaches 2µ much
faster than βs(µc). For instance, βd(µc) ≈ 2µ when µc ≈ 3µ: the dynamic policy π1 becomes
optimal at almost all arrival rates if cancellation overhead is µc ≈ 3µ. This phenomenon can be
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Figure 4.7: The value of dynamic scheduling and performance of {πγ} for M/M/n systems.

also observed in Figure 4.2: when µc = 5µ, π1 is strictly better than π0 at all arrival rates. This
observation is in stark contrast to the known fact that the optimal static scheduler performs as
good as the optimal dynamic scheduler when cancellation overhead is zero [103], affirming that
misleading results may be derived if the cancellation overhead is completely ignored.

4.4.3 Performance Gap between the Optimal Static and the Optimal
Dynamic Policies

We found the optimal static schedulers and the optimal dynamic schedulers in Section 4.3 and
Section 4.4, respectively. In this section, we compare the optimal static scheduling policy and the
optimal dynamic policy. Denote the optimal static policy as π∗s and the optimal dynamic policy
as π∗d. Theorems 4.4 and 4.6 imply that π∗s achieves the lower envelope of π0 and π∞, and π∗d
achieves the lower envelope of π0 and π1. In Figure 4.4, the optimal static policy achieves the
lower envelope of the dotted (green) curve and the solid (blue) curve, whereas the dynamic policy
achieves the lower envelope of the dashed (orange) curve and the solid (blue) curve.

We define the average job latency reduction factor r by using the optimal dynamic policy over
the optimal static policy as follows: r = (Eπ∗s [D] − Eπ∗d [D])/Eπ∗s [D]. By studying the value
of dynamic scheduling, we can help system designers make a right choice between superior per-
formance of dynamic scheduling policies and (possibly) higher cost involved with building and
running such dynamic policies.

Using Theorem 4.4 and Theorem 4.6, we find r and plot it in Figure 4.7(a).
We observe that the reduction factor r ∈ [0.07, 0.16] for µ ≤ µc ≤ 100µ. That is, in general,
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the optimal dynamic schedulers can reduce the average job latency by 7% to 16% at the cost of
implementation and deployment of dynamic schedulers. The maximal reduction factor is observed
when 3 < µc < 4, which is an unexpected phenomenon.

4.5 Conclusion
We study how one can optimally schedule redundant requests in the presence of cancellation over-
heads. We propose a new queueing model of redundant requests with cancellation overheads, find
the latency-optimal scheduling policies for M/M/2 systems, and present several observations, that
may help in the design of a more efficient scheduling algorithm with redundant requests.

There are many open problems related to this work. First of all, we believe that similar struc-
tural results of the optimal dynamic policies can be shown for M/M/n, but the exact analysis of
latency performance is still open. It is empirically observed that the class of simple threshold
policies {πγ} perform well even for M/M/n systems. Figure 4.7(b) shows the average job latency
under different scheduling policies for M/M/5 systems. We compare the four policies π0, π1, π∞
and π4. Upto a certain threshold, π4 provides the best performance, and then π1 becomes dominant
beyond the threshold. We conjecture that appropriate choice of {πγ} can achieve near-optimal
latency performances for general M/M/n systems.

Another important metric to be studied is tail latency. Figure 4.2 plots the 99th percentile job
latency obtained via simulations. We observe that the tail latency tradeoffs between scheduling
policies are almost identical to the average latency tradeoffs. We conjecture similar thresholding
rules can be found for optimizing tail latency, but rigorous analysis is open.

Finally, the optimal scheduling redundant requests under general service, arrival, cancellation
models remain open.
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Chapter 5

Speeding Up Distributed Computing Using
Codes

5.1 Introduction
In recent years, the computational paradigm for large-scale machine learning and data analytics
has started to move towards massively large distributed systems, comprising individually small
and unreliable computational nodes (low-end, commodity hardware). Specifically, modern dis-
tributed systems like Apache Spark [128] and computational primitives like MapReduce [30] have
gained significant traction, as they enable the execution of production-scale tasks on data sizes
of the order of terabytes. The backbone of these large and complex platforms consists of three
functional layers: (i) a computational layer; (ii) a communication layer (to move data around the
system as needed); and (iii) a storage layer. In order to develop and deploy sophisticated solutions
and tackle large-scale problems in machine learning, science, engineering, and commerce, it is im-
portant to understand and optimize novel and complex trade-offs across the multiple dimensions
of computation, communication, storage, and the accuracy of results. Moreover, given the indi-
vidually unpredictable nature of the computational nodes in these systems, we are faced with the
challenge of securing fast and high-quality algorithmic results in the face of uncertainty. This, cou-
pled with the high level of complexity and heterogeneity of the component hardware, introduces
significant delays that represent a key bottleneck to attaining the promised speed-ups of these large
systems.

Codes have begun to transform the evolution of large-scale distributed storage systems in mod-
ern data centers under the umbrella of regenerating and locally repairable codes for distributed
storage [34, 89, 114, 117, 19, 85, 44, 81, 84, 48, 53, 83, 60, 95, 88, 108] , which are also having
a major impact on industry [54, 101, 91, 93]. Further, as we saw from the previous chapter, the
flexibility of codes even improves data retrieval performance.

We envision codes to play a similar transformational role in the other layers: the computational
layer and the communication layer. In this chapter, we use coding theory and focus on improving
the runtime performance of distributed computing. In Chapter 6, we focus on reducing the network



CHAPTER 5. SPEEDING UP DISTRIBUTED COMPUTING USING CODES 71

overhead needed for shuffling input data, which is important for large-scale distributed machine
learning algorithms.

In this chapter, we consider how one can design a coded algorithm for linear computation such
as matrix multiplication, polynomial interpolation, zero-order optimization, and etc. For these
linear computation, we show that if the number of distributed workers is n, and the runtime of
each subtask has an exponential tail, the optimal coded algorithm is Θ(log n) times faster than the
uncoded algorithm. Further, we show that the optimal repetition algorithm is still Θ(log n) slower
than the optimal coded algorithm.

We run Open MPI experiments on Amazon EC2, which highlight significant gains offered
by our proposed coded algorithms compared to uncoded ones or replication-based solutions. For
instance, our preliminary results show that coded distributed algorithms can achieve significant
speedups of up to 40% compared to uncoded distributed algorithms.

The effect of stragglers 

Task 1
Task 2
Task 3

timeline

Bulk sync. 
point

Bulk sync. 
point

Bulk sync. 
point

Figure 5.1: The effects of slow nodes. In distributed computation, the running time of a single
distributed task is governed by that of the slowest node. In this toy figure, we see how slow
nodes can significantly impact the running time of distributed computation. Can we use coding to
alleviate the straggler’s effects?

We would like to remark that a major innovation of our coding solutions in this chapter and
Chapter 6 is that they are woven into the fabric of the algorithm design, and encoding/decoding is
performed over the representation field of the input data (e.g., floats or doubles). In sharp contrast
to most coding applications, we do not need to “re-factor code" and modify the distributed system
to accommodate for our solutions; it is all done seamlessly in the algorithmic design layer, an
abstraction that we believe is much more impactful as it is located “higher up” in the system layer
hierarchy compared to traditional applications of coding that need to interact with the stored and
transmitted “bits" (e.g., as is the case for coding solutions for the physical or storage layer).

5.2 Related Works
The straggler problem has been widely observed in distributed computing clusters. The authors
of [29] show that running a computational task at a computing node often involves unpredictable
latency due to several factors such as network latency, shared resources, maintenance activities, and
power limits. Further, they argue that stragglers cannot be completely removed from a distributed
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computing cluster. The authors of [4] characterize the impacts and causes of stragglers that arise
due to resource contention, disk failures, varying network conditions, and imbalanced workload.

One approach to mitigate the adverse effect of stragglers is based on efficient straggler de-
tection algorithms. For instance, the default scheduler of Hadoop constantly detects stragglers
while running computational tasks. Whenever it detects a straggler, it relaunches the task that was
running on the detected straggler at some other available node. In [129], Zaharia et al. propose
a modification to the existing straggler detection algorithm and show that the proposed solution
can effectively reduce the completion time of MapReduce tasks. In [4], Ananthanarayanan et
al. propose a system that efficiently detects stragglers using real-time progress and cancels those
stragglers, and show that the proposed system can further reduce the runtime of MapReduce tasks.

Another line of promising approaches is based on appropriate modification of the algorithms.
That is, one can design distributed algorithms that are robust to asynchronous or delayed updates
from the workers. Such robust distributed algorithms can continuously make progress without
needing to wait for all the responses from the workers, and hence the overall runtime of these
algorithms is less affected by stragglers. For instance, the authors of [1] study the convergence
of asynchronous stochastic gradient descent (SGD) algorithms, and show that their convergence
rate is order-optimal. Moreover, in the single-node multi-core setup the authors in [99] propose
HOGWILD! an asynchronous multicore implemnentation fo SGD, that runs without any memory
locking and synchronization mechanisms between multiple threads. We would like to note that
HOGWILD! and other asynchronous approaches do not in general guarantee “correctness" of the
result, i.e., the output of the asynchronous algorithm can differ from that of a serial execution
with an identical number of iterations; this may not be an issue in statistical problems, as the end
solution will be noisy, but can become critically important if one wishes to have a high-precision
solution, e.g., as is the case for exact matrix multiplication.

Recently, replication-based approaches have been explored to tackle the straggler problem: by
replicating tasks and scheduling the replicas, the runtime of distributed algorithms can be signifi-
cantly improved [3, 103, 124, 43, 20, 66]. By collecting outputs of the fast-responding nodes (and
potentially canceling all the other slow-responding replicas), such replication-based scheduling al-
gorithms can reduce latency. In [66], the authors show that even without replica cancellation, one
can still reduce the average task latency by properly scheduling redundant requests. We view these
policies as special instances of coded computation: such task replication schemes can be seen as
repetition-coded computation. In Section 5.3, we describe this connection in detail, and indicate
that coded computation can significantly outperform replication (as is usually the case for coding
vs. replication in other engineering applications).

5.3 Coded Computation
In this section, we propose a novel paradigm to mitigate the straggler problem. The core idea is
simple: we introduce redundancy into subtasks of a distributed algorithm such that the original
task’s result can be decoded from a subset of the subtask results, treating uncompleted subtasks as
erasures. For this specific purpose, we use erasure codes to design coded subtasks.
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5.3.1 Erasure Codes
An erasure code is a method of introducing redundancy to a message that needs to be protected
against noise such as erasures in telecommunication channels, packet drops in the routing layer of
the Internet, and disk failures in data storage systems [27]. An erasure code encodes a message of
k symbols into a longer message of n coded symbols such that the original k message symbols can
be recovered by decoding a subset of coded symbols [26, 27].

An important class of erasure codes is the class of repetition codes. Given k message sym-
bols, an n

k
-repetition code simply repeats each symbol n

k
times. Thus, one can recover the original

message as long as at least one of the n
k

repeated symbols is not erased for each of the k mes-
sage symbols. Due to its simplicity, repetition codes have been widely used in many applications
including modern distributed storage systems.

Another important class of codes is Maximum-Distance Separable (MDS) codes. A well-
known example is the Reed-Solomon code used to protect CDs and DVDs. When a message
is encoded using an (n, k) MDS code, any set of k out of the n encoded symbols is sufficient
to recover the message of k symbols. As a concrete example, consider a message of two real
numbers m = (mA,mB) ∈ R2. Consider a code that transforms m into c = (mA,mB,mA +mB).
Clearly, the original message m can be recovered with any k = 2 symbols of c, so the code is an
(n = 3, k = 2) MDS code.

5.3.2 Coded Computation
We now formally define coded computation.

Definition 5.1 (Coded computation). Consider a computational task fA(·). A coded distributed
algorithm for computing fA(·) is specified by

• local functions 〈f iAi
(·)〉ni=1 and local data blocks 〈Ai〉ni=1;

• (minimal) decodable sets of indices I ∈ P([n]) and a decoding function dec(·, ·),

where [n]
def
= {1, 2, . . . , n}, and P(·) is the powerset of a set. The decodable sets of indices I is

minimal: no element of I is a subset of other elements. The decoding function takes a sequence
of indices and a sequence of subtask results, and it must correctly output fA(x) if any decodable
set of indices and its corresponding results are given.

A coded distributed algorithm can be run in a distributed computing cluster as follows. Assume
that the ith (encoded) data block Ai is stored at the ith worker for all i. Upon receiving the input
argument x, the master node multicasts x to all the workers, and then waits until it receives the
responses from any of the decodable sets. Each worker node starts computing its local function
when it receives its local input argument, and sends the task result to the master node. Once the
master node receives the results from some decodable set, it decodes the received task results and
obtains fA(x). Algorithms 9 and 10 summarize the described protocols of the master node and the
worker nodes.
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Algorithm 9 Coded computation: master node’s protocol
on Receiving an input argument x

Multicast x to all the workers.
i = 〈〉
ylist = 〈〉
while i /∈ I do

on Receiving a message y from worker j
i← 〈i, j〉
ylist ← 〈ylist,y〉

end while
y← dec(i,ylist)
Return y

Algorithm 10 Coded computation: worker node i’s protocol
on Receiving an input argument x

Compute yi = f iAi
(x)

Send yi to the master node
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Figure 5.2: An illustration of Coded Matrix Multiplication. Data matrix A is partitioned into 2
submatrices: A1 and A2. Node W1 stores A1, node W2 stores A2, and node W3 stores A1 + A2.
Upon receiving X, each node multiplies X with the stored matrix, and sends the product to the
master node. Observe that the master node can always recover AX upon receiving any 2 products,
without needing to wait for the slowest response.

The following toy example illustrates the main idea of Coded Computation.

Example 5.1. Consider a system with three worker nodes and one master node, as depicted in
Fig. 5.2. The goal is to compute a matrix multiplication AX. The data matrix A is vertically
divided into two (equally tall) submatrices A1 and A2, which are stored in node 1 and node 2,
respectively. In node 3, we store the matrix sum of the two submatrices A1 + A2. After the master
node transmits X to the worker nodes, each node computes the matrix multiplication of the stored
matrix and the received matrix X, and sends the computation result back to the master node. The
master node can compute AX as soon as it receives any two computation results. For instance,
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consider a case where it collects A1X from node 1 and (A1 + A2)X from node 3. By subtracting
A1X from (A1 + A2)X, it can recover A2X and hence AX, which is a vertical concatenation of
A1X and A2X.

Coded Computation designs parallel tasks for a linear operation using erasure codes such that
its runtime is not affected by up to a certain number of stragglers. Matrix multiplication is one of
the most basic linear operations and is the workhorse of a host of machine learning and data ana-
lytics algorithms, e.g., gradient descent based algorithm for regression problems, power-iteration
like algorithms for spectral analysis and graph ranking applications, etc. Hence, we focus on the
example of matrix multiplication in this chapter.

The algorithm described in the previous example is a coded distributed algorithm for matrix
multiplication that uses an (n, n − 1) MDS code. One can generalize the described algorithm
using an (n, k) MDS code as follows. For any 1 ≤ k ≤ n, the data matrix A is first divided
into k (equally tall) submatrices 1. Then, by applying an (n, k) MDS code to each element of the
submatrices, n encoded submatrices are obtained. Upon receiving any k task results, the master
node can use the decoding algorithm to decode k task results. Then, one can find AX simply by
concatenating them.

5.3.3 Runtime of Uncoded/Coded Distributed Algorithms
In this section, we analyze runtime of uncoded and coded distributed algorithms. We first consider
the overall runtime of an uncoded distributed algorithm, T uncoded

overall . Assuming that the runtime of
each task is identically distributed and independent of others, and denoting the runtime of the ith

worker by T i,

T uncoded
overall = T(n)

def
= max{T 1, T 2, . . . , T n}, (5.1)

where T(i) is the ith smallest one in {T i}ni=1. From (5.1), it is clear that a single straggler can slow
down the overall algorithm. A coded distributed algorithm is terminated whenever the master node
receives results from any decodable set of workers. Thus, the overall runtime of a coded algorithm
is not determined by the slowest worker, but by the first time to collect results from some decodable
set in I, i.e.,

T coded
overall = T(I)

def
= min

i∈I
max
j∈i

Tj (5.2)

We remark that the runtime of uncoded distributed algorithms (5.1) is a special case of (5.2) with
I = {[n]}. In the following examples, we consider the runtime of the repetition-coded algorithms
and the MDS-coded algorithms.

Example 5.2 (Repetition codes). Consider an n
k

-repetition-code where each local task is replicated
n
k

times. We assume that each group of n
k

consecutive workers work on the replicas of one local
1If the number of rows of A is not a multiple of k, one can append zero rows to A to make the number of rows a

multiple of k.
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task. Thus, the decodable sets of indices are all the minimal sets that have k distinct task results,
i.e., I =

∏k
i=1{(i− 1)n

k
+ 1, (i− 1)n

k
+ 2, . . . , in

k
}. Thus,

T Repetition-coded
overall = max

i∈[k]
min
j∈[n

k
]
{T (i−1)n

k
+j}. (5.3)

Example 5.3 (MDS codes). If one uses an (n, k) MDS code, the decodable sets of indices are the
sets of any k indices, i.e., I = {i|i ∈ [n], |i| = k}. Thus,

TMDS-coded
overall = T(k) (5.4)

That is, the algorithm’s runtime will be determined by the kth response, not by the nth response.

5.3.4 Probabilistic Model of Runtime
In this section, we analyze the runtime of uncoded/coded distributed algorithms assuming that task
runtimes, including times to communicate inputs and outputs, are randomly distributed according
to a certain distribution. For analytical purposes, we make a few assumptions as follows. We
first assume the existence of the mother runtime distribution F (t): we assume that running an
algorithm using a single machine takes a random amount of time T0, that is a positive-valued,
continuous random variable parallelized according to F , i.e. Pr(T0 ≤ t) = F (t). We also assume
that T0 has a probability density function f(t). Then, when the algorithm is distributed into a
certain number of subtasks, say `, the runtime distribution of each of the ` subtasks is assumed to
be a scaled distribution of the mother distribution, i.e., Pr(T i ≤ t) = F (`t) for 1 ≤ i ≤ `. Finally,
the computing times of the k tasks are assumed to be independent of one another.

We first consider an uncoded distributed algorithm with n (uncoded) subtasks. Due to the
assumptions mentioned above, the runtime of each subtask is F (nt). Thus, the runtime distribution
of an uncoded distributed algorithm, denoted by F uncoded

overall (t), is simply [F (nt)]n.
When repetition codes or MDS codes are used, an algorithm is first divided into k (< n) sys-

tematic subtasks, and then n−k coded tasks are designed to provide an appropriate level of redun-
dancy. Thus, the runtime of each task is distributed according to F (kt). Using (5.3) and (5.4), one
can easily find the runtime distribution of an n

k
-repetition-coded distributed algorithm, F Repetition

overall ,
and the runtime distribution of an (n, k)-MDS-coded distributed algorithm, FMDS-coded

overall . For an n
k

-
repetition-coded distributed algorithm, one can first find the distribution of minj∈[n

k
]{T (i−1)n

k
+j},

and then find the distribution of the maximum of k such terms:

F Repetition
overall (t) =

[
1− [1− F (kt)]

n
k

]k
. (5.5)

The runtime distribution of an (n, k)-MDS-coded distributed algorithm is simply the kth order
statistic:

FMDS-coded
overall (t) =

∫ t

τ=0

nkf(kτ)

(
n− 1

k − 1

)
F (kτ)k−1 [1− F (kτ)]n−k dτ . (5.6)
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Figure 5.3: Runtime distributions of uncoded/coded distributed algorithms. We plot the run-
time distributions of uncoded/coded distributed algorithms. For the uncoded algorithms, we use
n = 10, and for the coded algorithms, we use n = 10 and k = 5. In (a), we plot the runtime distri-
bution when the runtime of tasks are distributed according to the shifted-exponential distribution.
In (b), we use the empirical task runtime distribution measured on an Amazon EC2 cluster.

Remark 5.1. For the same value of n and k, the runtime distribution of a repetition-coded dis-
tributed algorithm strictly dominates that of an MDS-coded distributed algorithm. This can be
shown by observing that the decodable sets of the MDS-coded algorithm is strictly larger than that
of the repetition-coded algorithm.

In Fig. 5.3, we compare the runtime distributions of uncoded and coded distributed algo-
rithms. We compare the runtime distributions of uncoded algorithm, repetition-coded algorithm,
and MDS-coded algorithm with n = 10 and k = 5. For (a), we use a shifted-exponential distribu-
tion as the mother runtime distribution. That is, F (t) = 1 − et−1 for t ≥ 1. For (b), we use the
empirical task runtime distribution that is measured on an Amazon EC2 cluster 2. Observe that for
both cases, the runtime distribution of the MDS-coded distribution has the lightest tail.

5.3.5 Optimal Code Design for Coded Distributed Algorithms: the
Shifted-exponential Case

When a coded distributed algorithm is used, the original task is divided into a fewer number of
tasks at first compared to the case of uncoded algorithms. Thus, the runtime of each task of a
coded algorithm, which is F (kt), is stochastically larger than that of an uncoded algorithm, which
is F (nt). If the value that we choose for k is too small, then the runtime of each task becomes so
large that the overall runtime of the distributed coded algorithm will eventually increase. If k is too

2The detailed description of the experiments is provided in Section 5.4.
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large, the level of redundancy may not be sufficient to prevent the algorithm from being delayed
by the stragglers.

Given the mother runtime distribution and the code parameters, one can easily compute the
overall runtime distribution of the coded distributed algorithm using (5.5) and (5.6). Then, one
can optimize the design based on various target metrics, e.g., the expected overall runtime, the 99th

percentile runtime, etc.
In this section, we show how one can design an optimal coded algorithm that minimizes the

expected overall runtime for a shifted-exponential mother distribution. The shifted-exponential
distribution strikes a good balance between accuracy and analytical tractability. This model is
motivated by the model proposed in [70]: the authors used this distribution to model latency of file
queries from cloud storage systems. The shifted-exponential distribution is the sum of a constant
and an exponential random variable, i.e.,

Pr(T0 ≤ t) = 1− e−µ(t−1), ∀t ≥ 1, (5.7)

where the exponential rate µ is called the straggling parameter.
With this shifted-exponential model, we first find exact, closed-form expressions for the aver-

age runtime of uncoded/coded distributed algorithms. We assume that n is large, and k is linear in
n. Accordingly, we approximate Hn

def
=
∑n

i=1
1
i
' log n and Hn−k ' log (n− k). We first note

that the expected value of the maximum of n independent exponential random variables with rate
µ is Hn

µ
. Thus, the average runtime of an uncoded distributed algorithm is

E[T uncoded
overall ] =

1

n

(
1 +

1

µ
log n

)
= Θ

(
log n

n

)
. (5.8)

For the average runtime of an n
k

-Repetition-coded distributed algorithm, we first note that the min-
imum of n

k
independent exponential random variables with rate µ is distributed as an exponential

random variable with rate n
k
µ. Thus,

E[T Repetition-coded
overall ] =

1

k

(
1 +

k

nµ
log k

)
= Θ

(
log n

n

)
. (5.9)

Finally, we note that the expected value of the kth statistic of n independent exponential random
variables of rate µ is Hn−Hn−k

µ
. Therefore,

E[TMDS-coded
overall ] =

1

k

(
1 +

1

µ
log

(
n

n− k

))
= Θ

(
1

n

)
. (5.10)

Using these closed-form expressions of the average runtime, one can easily find the optimal
value of k that achieves the optimal average runtime. The following lemma characterizes the
optimal repetition code for the repetition-coded algorithms and their runtime performances.

Lemma 5.1 (Optimal repetition-coded distributed algorithms). If µ ≥ 1, the average runtime of
an n

k
-Repetition-coded distributed algorithm, in a distributed computing cluster with n workers, is
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minimized by not replicating tasks or setting k = n. If µ = 1
v

for some integer v > 1, the average
runtime is minimized by setting k = µn, and the corresponding minimum average runtime is
1
nµ

(1 + log(nµ)).

Proof. It is easy to see that (5.9) as a function of k has a unique extreme point. By differentiating
(5.9) with respect to k and equating it to zero, we have k = µn. Thus, if µ ≥ 1, one should set
k = n; if µ = 1

v
< 1 for some integer v, one should set k = µn.

The above lemma reveals that the optimal repetition-coded distributed algorithm can achieve
a lower average runtime than the uncoded distributed algorithm if µ < 1; however, the optimal
repetition-coded distributed algorithm still suffers from the factor of Θ(log n), and cannot achieve
the order-optimal performance. The following lemma, on the other hand, shows that the optimal
MDS-coded distributed algorithm can achieve the order-optimal average runtime performance.

Lemma 5.2 (Optimal MDS-coded distributed algorithms). The average runtime of an (n, k)-MDS-
coded distributed algorithm, in a distributed computing cluster with n workers, can be minimized
by setting k = k? where

k? =

[
1 +

1

W−1(−e−µ−1)

]
n

def
= α?(µ)n, (5.11)

and W−1(·) is the lower branch of Lambert W function 3 Thus,

min
k

E[TMDS-coded
overall ] =

−W−1(−e−µ−1)
µn

def
=
γ?(µ)

n
. (5.12)

Proof. It is easy to see that (5.10) as a function of k has a unique extreme point. By differentiating
(5.10) with respect to k and equating it to zero, we have 1

k?

(
1 + 1

µ
log
(

n
n−k?

))
= 1

µ
1

n−k? . By

setting k = α?n, we have 1
α?

(
1 + 1

µ
log
(

1
1−α?

))
= 1

µ
1

1−α? , which implies µ + 1 = 1
1−α? −

log
(

1
1−α?

)
. By defining β = 1

1−α? and exponentiating both the sides, we have eµ+1 = eβ

β
. Note

that the solution of ex

x
= t, t ≥ e and x ≥ 1 is x = −W−1(−1

t
). Thus, β = −W−1(−e−µ−1). By

plugging the above equation into the definition of β, the claim is proved.

We plot γ∗(µ) and α?(µ) in Fig. 5.4.
In addition to the order-optimality of MDS-coded distributed algorithms, the above lemma

precisely characterizes the gap between the achievable runtime and the optimistic lower bound of
1
n

. For instance, when µ > 1, the optimal average runtime is γ?(µ)
n

. 3.15
n

, which is only 3.15 away
from the lower bound.

Remark 5.2 (Storage overhead). So far, we have considered only the runtime performance of dis-
tributed algorithms. Another important metric to be considered is the storage cost. When coded

3W−1(x), the lower branch of Lambert W function evaluated at x, is the unique solution of tet = x and t ≤ −1.
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Figure 5.4: γ? and α? in Lemma 5.2. As a function of the straggling parameter, we plot γ∗ and
α∗, which help quantify the runtime overhead of the straggler problem and design the optimal
MDS-coded computation, respectively.

computation is being used, the storage overhead may increase. For instance, the MDS-coded dis-
tributed algorithm for matrix multiplication, described in Section 5.3.2, requires 1

k
of the whole

data to be stored at each worker, while the uncoded distributed algorithm requires 1
n

. Thus, the

storage overhead factor is
1
k
− 1
n

1
n

= n
k
− 1. If one uses the runtime-optimal MDS-coded distributed

algorithm for matrix multiplication, the storage overhead is n
k?
− 1 = 1

α?
− 1.

5.3.6 Coded Gradient Descent: an MDS-coded Distributed Algorithm for
Linear Regression

In this section, as a concrete application of coded matrix multiplication, we propose the coded
gradient descent for solving large-scale linear regression problems.

We first describe the (uncoded) gradient-based distributed algorithm. Consider the following
linear regression,

min
x
f(x)

def
= min

x

1

2
‖Ax− y‖22, (5.13)

where y ∈ Rq is the label vector, A = [a1, a2, . . . , an]T ∈ Rq×r is the data matrix, and x ∈ Rr is
the unknown weight vector to be found. We seek a distributed algorithm to solve this regression
problem. Since f(x) is convex in x, the gradient-based distributed algorithm works as follows.
We first compute the objective function’s gradient: ∇f(x) = AT (Ax − y). Denoting by x(t) the
estimate of x after the tth iteration, we iteratively update x(t) according to the following equation.

x(t+1) = x(t) − γ∇f(x(t)) = x(t) − γAT (Ax(t) − y) (5.14)
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Figure 5.5: An illustration of the coded gradient descent for linear regression. The coded
gradient descent computes a gradient of the objective function using coded matrix multiplication
twice: in each iteration, it first computes Ax(t) as depicted in (a) and (b), and then computes
AT (Ax(t) − y) as depicted in (c) and (d).

The above algorithm is guaranteed to converge to the optimal solution if we use a small enough
step size γ [17], and can be easily distributed. We describe one simple way of parallelizing the
algorithm, which is implemented in many open-source machine learning libraries including Spark
mllib [79]. As AT (Ax(t) − y) =

∑q
i=1 ai(a

T
i x

(t) − yi), gradients can be computed in a dis-
tributed way by computing partial sums at different worker nodes and then adding all the partial
sums at the master node. This distributed algorithm is an uncoded distributed algorithm: in each
round, the master node needs to wait for all the task results in order to compute the gradient. Thus,
the runtime of each update iteration is determined by the slowest response among all the worker
nodes.

We now propose the coded gradient descent, a coded distributed algorithm for linear regres-
sion problems. Note that in each iteration, the following two matrix-vector multiplications are
computed.

Ax(t), AT (Ax(t) − y)
def
= ATz(t) (5.15)

In Section 5.3.2, we proposed the MDS-coded distributed algorithm for matrix multiplication.
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Here, we apply the algorithm twice to compute these two multiplications in each iteration. More
specifically, for the first matrix multiplication, we choose 1 ≤ k1 < n and use an (n, k1)-MDS-
coded distributed algorithm for matrix multiplication to encode the data matrix A. Similarly for
the second matrix multiplication, we choose 1 ≤ k2 < n and use a (n, k2)-MDS-coded distributed
algorithm to encode the transpose of the data matrix. Denoting the ith row-split (column-split) of
A as Ai (Ãi), the ith worker stores both Ai and Ãi. In the beginning of each iteration, the master
node multicasts x(t) to the worker nodes, each of which computes the local matrix multiplication
for Ax(t) and sends the result to the master node. Upon receiving any k1 task results, the master
node can start decoding the result and obtain z(t) = Ax(t). The master node now multicasts z(t) to
the workers, and the workers compute local matrix multiplication for ATz(t). Finally, the master
node can decode ATz(t) as soon as it receives any k2 task results, and can proceed to the next
iteration. Fig. 5.5 illustrates the protocol with k1 = k2 = n− 1.

Remark 5.3 (Storage overhead of the coded gradient descent). The coded gradient descent requires
each node to store a ( 1

k1
+ 1

k2
− 1

k1k2
)-fraction of the data matrix. As the minimum storage overhead

per node is a 1
n

-fraction of the data matrix, the relative storage overhead of the coded gradient
descent algorithm is at least about factor of 2, if k1 ' n and k2 ' n.

5.4 Coded Computation: Experiment Results
In order to see the efficacy of coded computation, we implement the proposed algorithms and test
them on an Amazon EC2 cluster. In this section, we provide the experiment setups and the results.

5.4.1 Task Runtime
We first obtain the empirical distribution of task runtime in order to observe how frequently strag-
glers appear in our testbed by measuring round-trip times between the master node and each of
10 worker instances on an Amazon EC2 cluster. Each worker computes a matrix-vector multipli-
cation and passes the computation result to the master node, and the master node measures round
trip times that include both computation time and communication time. Each worker repeats this
procedure 500 times, and we obtain the empirical distribution of round trip times across all the
worker nodes.

In Fig. 5.6, we plot the histogram and CCDF of measured computing times; the average round
trip time is 0.11 second, and the 95th percentile latency is 0.20 second, i.e., roughly five out of
hundred tasks are going to be roughly two times slower than the average tasks. Assuming the
probability of a worker being a straggler is 5%, if one runs an uncoded distributed algorithm with
10 workers, the probability of not seeing such a straggler is only about 60%, so the algorithm is
slowed down by a factor of more than 2 with probability 40%. Thus, this observation strongly
emphasizes the necessity of an efficient straggler mitigation algorithm. In Fig. 5.3(a), we plot
the runtime distributions of uncoded/coded distributed algorithms using this empirical distribution
as the mother runtime distribution. When an uncoded distributed algorithm is used, the overall
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Figure 5.6: Histogram and CCDF of the measured round trip times. We measure round trip
times between the master node and each of 10 worker nodes on an Amazon EC2 cluster. A round
trip time consists of transmission time of the input vector from the master to a worker, computation
time, and transmission time of the output vector from a worker to the master.

runtime distribution entails a heavy tail, while the runtime distribution of the MDS-coded algorithm
has almost no tail.

5.4.2 Coded Matrix Multiplication
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Figure 5.7: Comparison of parallel matrix multiplication algorithms. We compare various
parallel matrix multiplication algorithms: block, column-partition, row-partition, and coded (row-
partition) matrix multiplication. We implement the four algorithms using OpenMPI and test them
on Amazon EC2 cluster of 25 instances. We measure the average and the 95th percentile runtime
of the algorithms. Plotted in (a) and (b) are the results with m1-small instances, and in (c) and
(d) are the results with c1-medium instances.

The coded matrix multiplication is implemented in C++ using OpenMPI[82] and benchmarked
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on a cluster of 26 EC2 instances (25 workers and a master). We manage the cluster using the
StarCluster toolkit [112]. Input data is generated using a Python script, and the input matrix was
row-partitioned for each of the workers (with the required encoding as described in the previous
sections) in a preprocessing step. The procedure begins by having all of the worker nodes read
in their respective row-partitioned matrices. Then, the master node reads the input vector and
distributes it to all worker nodes in the cluster through an asynchronous send (MPI_Isend). Upon
receiving the input vector, each worker node begins matrix multiplication through a BLAS [14]
routine call and once completed sends the result back to the master using MPI_Send. The master
node waits for a sufficient number of results to be received by continuously polling (MPI_Test) to
see if any results are obtained. The procedure ends when the master node decodes the overall result
after receiving enough partial results. Similarly, three uncoded matrix multiplication algorithms –
block, column-partition, and row-partition – are implemented and benchmarked.

We randomly draw a square matrix of size 5750 × 5750, a fat matrix of size 5750 × 11500,
and a tall matrix of size 11500 × 5750, and multiply them with a column vector. For the coded
matrix multiplication, we choose an (25, 23) MDS code so that the runtime of the algorithm is
not affected by any 2 stragglers. Fig. 5.7 shows that the coded matrix multiplication outperforms
all the other parallel matrix multiplication algorithms in most cases. On a cluster of m1-small
instances, compared to the best of the 3 uncoded matrix multiplication algorithms, the coded matrix
multiplication achieves about 40% average runtime reduction and about 60% tail reduction. On a
cluster of c1-medium instances, the coded algorithm achieves the best performance in most of
the tested cases: the average runtime is reduced by at most 39.5%, and the 95th percentile runtime
is reduced by at most 58.3%.

5.4.3 Coded Linear Regression
We evaluate the performance of the parallel gradient descent algorithms for linear regression. Since
matrix multiplication is the core block of the parallel gradient descent for linear regression, the
performance of the underlying parallel matrix multiplication algorithm significantly impacts the
performance of the overall algorithm’s performance.

The coded linear regression procedure is also implemented in C++ using OpenMPI, and bench-
marked on a cluster of 11 EC2 machines (10 workers and a master). Like the matrix multiplication
procedure, we generate the input data through a Python script. However, since both the transposed
and untransposed versions of the input matrix are used in the linear regression algorithm, we du-
plicate the data and row-partition both versions of the input matrix (with the required encoding).
The procedure begins by having all worker nodes load in their respective row-partitioned subma-
trices (both transposed and untransposed versions). Since each pass of linear regression consists
of two matrix-vector multiplications, we split each pass into two iterations – an iteration for each
matrix-vector multiplication (transposed multiply Ax(t), untransposed multiply ATz(t)). Then, for
every iteration of the procedure, the master node sends the appropriate input vector to each worker
node in the cluster through an asynchronous send (MPI_Isend). The message channel through
which the input vector is sent determines whether this particular multiplication operation should
be a transposed multiplication or not. On the worker side, each worker continually listens for work
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by probing (Iprobe) for the input vector messages. Upon reception of the input vector, the worker
computes the partial matrix multiplication through a call to the BLAS routine. When this com-
pletes, it sends the result back to the master node on the same channel from which the message
was received. During this process, the master node waits for a sufficient number of partial results
by polling for messages (IProbe). When enough partial results have been obtained, the master node
decodes the result of the matrix vector multiplication. Then, the necessary computation to move to
the next iteration is performed and the next iteration is begun. Similarly, the uncoded linear regres-
sion algorithm that is based on the uncoded row-partition matrix multiplication is implemented
and benchmarked together with the coded linear regression.

Similar to the previous benchmarks, we randomly draw a square matrix of size 2000 × 2000,
a fat matrix of size 400 × 10000, and a tall matrix of size 10000 × 400, and use them as a data
matrix. We use a (10, 8)-MDS code for the coded linear regression so that each multiplication of
the gradient descent algorithm is not slowed down by up to 2 stragglers. Fig. 5.8 shows that the
gradient algorithm with the coded matrix multiplication significantly outperforms the one with the
uncoded matrix multiplication; the average runtime is reduced by 31.3% to 35.7%, and the tail
runtime is reduced by 27.9% to 35.6%.

To thoroughly understand how the iterative algorithm with coded matrix multiplication effi-
ciently handles stragglers, we measure the progress of each worker and the master node while
running the gradient algorithm with coded matrix multiplication. The Gantt chart depicted in
Fig. 5.8(c) visualizes the experiment results. We can observe that since the master node can com-
plete an iteration as soon as it collects any n−2 = 8 workers, the master node can quickly proceed
to the next iteration even with the existence of stragglers. This flexibility allows the overall algo-
rithm to constantly progress without getting detained by ubiquitous stragglers, which significantly
reduces the overall runtime of the algorithm.

Remark 5.4 (Cancellation of stragglers). In the above experiments on the coded linear regression,
we did not cancel (or kill) straggler workers. The overhead of cancellation of stragglers in our
implementation is too high, so we choose not to cancel those stragglers. In an iterative algorithm
such as the coded gradient descent, not canceling stragglers dilutes the gain of codes because only
k workers will be available at the beginning of the following iteration. We believe that a delicate
implementation of cancellation mechanism can even further improve the runtime performance of
iterative coded distributed algorithms.

5.5 Conclusion
In this chapter, we have explored the power of coding in order to make distributed algorithms robust
to stragglers. We propose a novel Coded Computation framework that can significantly speed up
existing distributed algorithms, by cleverly introducing redundancy through codes into the compu-
tation. Our preliminary experiment results validate the power of our proposed scheme in effectively
curtailing the negative effects of system bottlenecks, and attaining a significant speedups of up to
40%, compared to the current state-of-the-art methods.
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(c) Gantt chart of coded gradient algorithm with an (10, 8)-MDS code

Figure 5.8: Comparison of parallel gradient algorithms. We compare parallel gradient al-
gorithms for linear regression problems, with different matrix multiplication algorithms: row-
partition and coded (row-partition) matrix multiplication. We implement the two gradient algo-
rithms using Open MPI, and test them on an Amazon EC2 cluster of 10 worker instances. We
measure the average and the 95th percentile runtime of the algorithms. Plotted in (a) and (b) are
the measured results. We visualize via a Gantt chart how the coded gradient algorithm handles
the stragglers in (c). In each row, we visualize which iteration each worker is in, and we visualize
the master node’s progress in the bottom row. With a (10, 8)-MDS coded matrix multiplication,
the master node can proceed to the next iteration whenever the first 8 workers complete their local
computations, treating the 2 stragglers as erasures.
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Chapter 6

Data Shuffling with Codes

6.1 Introduction
We shift our focus from solving the straggler problem to solving the communication bottleneck
problem. In this chapter, we focus on the problem of data-shuffling, propose the Coded Shuffling
algorithm, and analyze its performance.

Consider a master-worker distributed setup, where the master node has access to the entire
data-set. Before each epoch of the distributed algorithm, the master node shuffles the data points
and sends each worker node some coded functions of the data, the worker nodes use the received
information to decode and extract actual (shuffled) data points and train a local model; at the end
of an epoch, the local models are averaged, and the process is repeated. See Fig. 6.1 for a toy
illustration. We design a transmission strategy for the worker node, and caching and decoding
strategies for the worker nodes that minimize the data communicated across all the shufflings per-
formed. For completeness, we present the high-level description of a distributed machine learning
proto-algorithm. Let A ∈ Rq×r be a data matrix. Consider an optimization problem that can be
expressed as minx∈Rr f(x) =

∑q
i=1 `i(ai,x), where ai is the ith data row of A, and `i is a local

function of the variable x and data point ai. The above problem can be solved by an iterative dis-
tributed algorithm that operates on rounds, where at each round each worker locally trains a model
(variable) xi of dimension r that is communicated back to the master. Upon receiving all the local
models, the master averages them into a single model, and multicasts it back to the workers. More
precisely, at iteration t of the algorithm, the data set is partitioned randomly into n subsets, say
A1,A2, . . . ,An. Worker i computes a local update vector xi = h(xt,An), where xt is the model
(variable) at iteration t. The master node then aggregates the results by simply averaging the local
updates. The algorithm continues by iterating xt+1 = 1

n

∑n
k=1 h(xt,Ak). A prototypical exemplar

of the described parallel learning proto-algorithm is the parallel stochastic gradient descent [132].

6.1.1 Coded Shuffling Algorithm
Before we rigorously explain the technical details of the coded shuffling algorithm and our pre-
liminary results, we illustrate the main idea of the coded shuffling algorithm with a toy example,



CHAPTER 6. DATA SHUFFLING WITH CODES 88

1 2 n Worker nodes

Master node

Local caches

Figure 6.1: Distributed setup. We consider a master worker setup, where the master node commu-
nicates data points (or coded functions of them), and the worker nodes can store a limited number
of data points. The topology of the network (be it tree-like, mesh, or over a shared bus) allows for
a degree of multicasting gains. That is, we assume that multicasting the same information to all
users is “cheaper" than sending them individual messages.

shown in Fig. 6.2.
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Figure 6.2: An illustration of Coded Shuffling. The data matrix A ∈ Rq×r is partitioned into 4
submatrices: A1 ∈ Rq/4×r to A4 ∈ Rq/4×r. Before shuffling, worker 1 has cached A1 and A2

(from a previous iteration of the algorithm), and worker 2 has cached A3 and A4. Assuming that
a new shuffling requires node 1 to receive A3 and node 2 to receive A2, the master node can send
A2 + A3 (the addition is over the representation field of A, not over bits) in order to shuffle the
data stored at the two workers. Observe that in this case, and by using the cached information, the
amount of communication (assuming full multicast gain over unicasting) is 50%.

Consider a system with two worker nodes and one master node. Assume that the master node
holds the entire data set A. For clarity of exposition of this example, assume that the data is
equipartitioned into 4 batches A1, . . . ,A4. Assume that worker 1 already has A1 and A2 cached
locally, and worker 2 has A3 and A4 cached locally. To shuffle the data, the master node’s objective
is to transmit A3 to worker 1 and A4 to worker 2, so that the local functions are now computed on
the data points of (A1,A3) and (A2,A4) by worker nodes 1 and 2, respectively. For this purpose,
the master node can simply multicast a coded message A2 +A3 to the worker nodes. Since node 1
has access to A2, it can subtract A2 from the received message A2 +A3, and replace A2 with A3.
Similarly, node 2 can replace A3 with A2. Compared to the naïve (or uncoded) shuffling scheme
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in which the master node transmits A2 and A3 separately, this new shuffling scheme can save 50%
of the communication cost, speeding up the overall run-time of the distributed machine learning
algorithm. This is true assuming that multicasting a message to all workers is significantly cheaper
than sending individual messages to each worker; that is, assuming that γ(n) = n, where γ(n) is
the advantage of using multicasting over unicasting:

γ(n) =
cost of unicasting n separate messages to n workers

cost of multicasting a common message to n workers
.

In this section, our theoretical results assume that γ(n) = n. For general cases, see Remark 6.1.

General Coded Shuffling Scheme To formally describe the coded shuffling algorithm, we de-
fine some notation. Let A(J ) ∈ R|J |×r, J ⊂ [q] be the concatenation of |J | rows of matrix A
with indices in J . Assume that each worker node has a cache of size s data rows (or s × r real
numbers). In order to be able to fully store the data matrix across the worker nodes, we impose
the inequality condition q/n ≤ s. Further, clearly if s > q, the data matrix can be fully stored
at each worker node, eliminating the need for any shuffling. Thus, without loss of generality we
assume that s ≤ q. As explained earlier working on the same data points at each worker node
in all the iterations of the iterative optimization algorithm leads to slow convergence. Thus, to
enhance the statistical efficiency of the algorithm, the data matrix is shuffled after each iteration.
More precisely, at each iteration, the set of data rows [q] is partitioned uniformly at random into
n subsets Si, 1 ≤ i ≤ n so that ∪ni=1Si = [q] and Si ∩ Sj = ∅ when i 6= j; thus, each worker
node computes a fresh local function of the data. Clearly, the data set that worker i works on has
cardinality q/n, i.e., |Si| = q/n. We refer to each of these subsets as a mini-batch of the dataset.
Note that the sampling we consider here is without replacement, and hence the mini-batches are
non-overlapping.

We now provide details of the coded shuffling algorithm after each iteration of the parallel
machine learning algorithm. Let Ct

i be the cache content of node i (set of row indices stored in
cache i) at the end of iteration t. We design a transmission algorithm (by the master node) and
a cache update algorithm to ensure that (i) Sti ⊂ Ct

i ; and (ii) Ct
i \ Sti is distributed uniformly at

random without replacement in the set [q] \ Sti . The first condition ensures that at each iteration,
the workers have access to the data set that they are supposed to work on. The second condition
provides the opportunity of effective coded transmissions for shuffling in the next iteration as will
be explained later.

After iteration t, the master node aggregates the local functions by averaging them, draws a
random permutation on [q], say πt, to find St+1

i , and transmits a message m(t + 1) (i.e., a number
of “coded" data-points) such that St+1

i can be recovered by worker node i from the current cache
content Ct

i and the transmitted message m(t + 1). The cache content is then updated according
to the following rule: the new cache will contain the subset of the data points used in the current
iteration (this is need for the local computation), plus a random subset of the previous cached
contents. More specifically, q/n rows of the new cache are precisely the rows in St+1

i , and s −
q/n rows of the cache are sampled points from the set Ct

i \ St+1
i , uniformly at random without
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replacement. Since the permutation πt is picked uniformly at random, the marginal distribution of
the cache contents at iteration t + 1 given St+1

i , 1 ≤ i ≤ n is described as follows: St+1
i ⊂ Ct+1

i

and Ct+1
i \ St+1

i is distributed uniformly at random in [q] \ St+1
i without replacement.

Example 6.1. To further clarify the algorithm, we revisit our toy example again based on this
notation. Let n = 2 and s = q/2. Each worker node has half of the data stored in its cache.
Consider an iteration of the algorithm, where a new permutation of the data rows is drawn by
the master node resulting in subsets S1 and S2. As q gets large, half of the mini-batch S1 (that
should be processed by worker node 1) is stored in cache 1, i.e. |S1 ∩ C1| = q/4. Similarly,
|S2 ∩C2| = q/4. Thus, without the ability to exploit the power of coding, the master node needs to
transmit a total of q/4 + q/4 = q/2 data rows to the computing nodes that are rows corresponding
to S1 ∩ C̄1 and S2 ∩ C̄2. By contrast, in order to exploit the power of coding, the key observation
is that the data rows that are in S1 but not stored in C1, are stored in C2 (since S1 ∪ S2 = [q]),
and vice versa. Thus, the master node can code by sending only the sum of the rows indexed by
S1 ∩ C2 and S2 ∩ C1, denoted by A(S1 ∩ C2) + A(S2 ∩ C1). The transmission rate is thus q/4,
which leads to a factor of 2 reduced communication cost. For decoding, since computing node 1
has access to A(S2 ∩ C1), it can recover A(S1 ∩ C2). Similarly, node 2 can recover A(S2 ∩ C1).

We now formally describe two methods for transmitting the message m(t): (1) uncoded trans-
mission and (2) coded transmission.

Uncoded Transmission Consider the cache content Ct
i , 1 ≤ i ≤ n, and the new data rows

required by each worker, St+1
i , 1 ≤ i ≤ n. In the following description, without loss of generality,

we drop the iteration index t (and t + 1) for the ease of notation. We find how many data rows
in Si are already cached in Ci, i.e. we find |Ci ∩ Si|. Since, the new permutation (partitioning) is
picked uniformly at random, s/q fraction of the data row indices in Si are cached in Ci, so as q gets
large, we have |Ci ∩ Si| = q

n
(1 − s/q). Thus, without coding, the master node needs to transmit

q
n
(1− s/q) data points to each of the n worker nodes. The total communication rate (in data points

transmitted per iteration) of the uncoded scheme is then

Ru = n× q

n
(1− s/q) = q(1− s/q). (6.1)

Coded Transmission The delivery algorithm of the coded transmission is as follows. Define the
set of “exclusive” cache content as C̃I = (∩i∈ICi) ∩

(
∩i′∈[n]\IC̄i′

)
that denotes the set of rows

that are stored at the caches of I, and are not stored at the caches of [n] \ I. For each subset I
with |I| ≥ 2, the master node will multicast

∑
i∈IA(Si ∩ C̃I\{i}) to the worker nodes. This is the

summation (over i) of the data points that should be processed by worker i, and these data points
are not stored in the cache of worker i, but are instead stored in the caches of every other worker
in set I. Thus, this message enables simultaneous decoding of some missing data points for all the
workers in I, by exploiting this multicast coding opportunity. This completes the description of
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the coded transmission algorithm. 1 A key novelty of our scheme is that the coding is performed
over the representation field of the data matrix A, and not over bits. The following example further
illustrates the explained procedure.

Example 6.2. Let n = 3. Recall that worker node i needs to obtain A(Si ∩ C̄i) for the next
iteration of the algorithm. Consider i = 1. The data rows in S1 ∩ C̄1 are stored either exclusively
in C2 or C3 (i.e. C̃2 or C̃3), or stored in both C2 and C3 (i.e. C̃2,3). The transmitted message
consists of 4 parts:

• (Part 1) M{1,2} = A(S1 ∩ C̃2) + A(S2 ∩ C̃1),

• (Part 2) M{1,3} = A(S1 ∩ C̃3) + A(S3 ∩ C̃1),

• (Part 3) M{2,3} = A(S2 ∩ C̃3) + A(S3 ∩ C̃2), and

• (Part 4) M{1,2,3} = A(S1 ∩ C̃2,3) + A(S2 ∩ C̃1,3) + A(S3 ∩ C̃1,2).

We show that worker node 1 can recover its unstored data rows, A(S1 ∩ C̄1). First, observe
that node 1 stores S2 ∩ C̃1. Thus, it can recover A(S1 ∩ C̃2) using part 1 of the message since
A(S1∩C̃2) = M1−A(S2∩C̃1). Similarly, node 1 recovers A(S1∩C̃3) = M2−A(S3∩C̃1). Finally,
from part 4 of the message, node 1 recovers A(S1 ∩ C̃2,3) = M4 −A(S2 ∩ C̃1,3)−A(S3 ∩ C̃1,2).

6.2 Related Works
Distributed learning algorithms on large-scale networked systems have been extensively studied in
the literature [11, 80, 18, 8, 35, 21, 31, 74, 63, 111, 67]. Many of the distributed algorithms that are
implemented in practice share a similar algorithmic “anatomy": the data set is split among several
cores or nodes, each node trains a model locally, then the local models are averaged, and the process
is repeated. While training a model with parallel or distributed learning algorithms, it is common
to randomly re-shuffle the data a number of times [98, 99, 16, 130, 45, 56]. This essentially means
that after each shuffling the learning algorithm will go over the data in a different order than before.
Although the effects of random shuffling are far from understood theoretically, the large statistical
gains have turned it into a common practice. Intuitively, data shuffling before a new pass over
the data, implies that nodes get a nearly “fresh" sample from the data set, which experimentally
leads to better statistical performance. Moreover, bad orderings of the data—known to lead to slow
convergence in the worst case [98, 45, 56]—are “averaged out". However, the statistical benefits
of data shuffling do not come for free: each time a new shuffle is performed, the entire dataset is
communicated over the network of nodes. This inevitably leads to performance bottlenecks due to
heavy communication.

1The master node also needs to transmit metadata associated with each message. Note that the size of such
metadata is negligible compared to the size of coded messages.
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In this chapter, we propose to use coding opportunities to significantly reduce the communi-
cation cost of some distributed learning algorithms that require data shuffling. Our coded shuf-
fling algorithm is build upon the coded caching scheme by Maddah-Ali and Niesen [77]. Coded
caching is a technique to reduce the communication rate in content delivery networks. Mainly
motivated by video sharing applications, coded caching exploits the multicasting opportunities be-
tween users that request different video files to significantly reduce the communication burden of
the server node that has access to the files. Coded caching has been studied in many scenarios such
as decentralized coded caching [78], online coded caching [86], hierarchical coded caching for
wireless communication [61], and device-to-device coded caching [57]. Recently, [68] proposed
coded MapReduce that reduces the communication cost in the process of transferring the results
of mappers to reducers. Our proposed approach is significantly different from all related studies
on coded caching in two ways: (i) we shuffle the data points among the computing nodes to in-
crease the statistical efficiency of distributed computation and ML algorithms; and (ii) we code the
data over their actual representation (i.e., over the doubles or floats) unlike the traditional coding
schemes over bits. In the remainder of this chapter, we describe how coded shuffling can remark-
ably speed up the communication phase of large-scale parallel machine learning algorithms, and
provide extensive numerical experiments to validate our results.

We would also like to remark that there has been significant work in communication avoiding
algorithms in the context of parallel numerical analysis and linear algebra [12, 72, 33, 32]. In
contrast to this line of work, we propose the use of coding opportunities to strike a balance between
statistical efficiency due to shuffling and the cost of communicating data points across different data
passes.

6.3 Main Results
We now present the main result of this section, which characterizes the communication rate of the
coded scheme. Let p = s−q/n

q−q/n .

Theorem 6.1 (Coded Shuffling Rate). Coded shuffling achieves communication rate

Rc =
q

(np)2
(
(1− p)n+1 + (n− 1)p(1− p)− (1− p)2

)
(6.2)

(in number of data rows transmitted per iteration from the master node), which is significantly
smaller than Ru in (6.1).

The reduction in communication rate is illustrated in Fig. 6.3 for n = 50 and q = 1000 as
a function of s/q, where 1/n ≤ s/q ≤ 1. For instance, when s/q = 0.1, the communication
overhead for data-shuffling is reduced by more than 81%. Thus, at a very low storage overhead for
caching, the algorithm can be significantly accelerated. We now prove Theorem 6.1.

Proof. To find the transmission rate of the coded scheme we first need to find the cardinality of
sets St+1

i ∩ C̃t
I for I ⊂ [n] and i /∈ I. To this end, we first find the probability that a random
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Figure 6.3: The achievable rates of coded and uncoded shuffling schemes. This figure shows
the achievable rates of coded and uncoded schemes versus the cache size for parallel stochastic
gradient descent algorithm.

data row, r, belongs to C̃t
I . Denote this probability by Pr(r ∈ C̃t

I). Recall that the cache content
distribution at iteration t: q/n rows of cache j are stored with Stj and the other s − q/n rows are
stored uniformly at random. Thus, we can compute Pr(r ∈ C̃t

I) as follows.

Pr(r ∈ C̃t
I) =

n∑

i=1

Pr(r ∈ C̃t
I |r ∈ Sti ) Pr(r ∈ Sti ) (6.3)

=
n∑

i=1

1

n
Pr(r ∈ C̃t

I |r ∈ Sti ) (6.4)

=
∑

i∈I

1

n
Pr(r ∈ C̃t

I |r ∈ Sti ) (6.5)

=
∑

i∈I

1

n

(
s− q/n
q − q/n

)|I|−1(
1− s− q/n

q − q/n

)n−|I|
(6.6)

=
|I|
n
p|I|−1(1− p)n−|I|. (6.7)

(6.3) is by the law of total probability. (6.4) is by the fact that r is chosen randomly. To see (6.5),
note that Pr(r ∈ C̃t

I |r ∈ Sti , i /∈ I) = 0. Thus, the summation can be written only on the indices
of I. We now explain (6.6). Given that r belongs to Sti , and i ∈ I, then r ∈ Ci with probability
1. The other |I| − 1 caches with indices in I \ {i} contain r with probability s−q/n

q−q/n independently.

Further, the caches with indices in [n] \ I do not contain r with probability 1− s−q/n
q−q/n . By defining

p
def
= s−q/n

q−q/n , we have (6.7).

We now find the cardinality of St+1
i ∩ C̃t

I for I ⊂ [n] and i /∈ I. Note that |St+1
i | = q/n. Thus,
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as q gets large (and n remains sub-linear in q), by the law of large numbers,

|St+1
i ∩ C̃t

I | '
q

n
× |I|

n
p|I|−1(1− p)n−|I|.

Recall that for each subset I with |I| ≥ 2, the master node will send
∑

i∈IA(Si ∩ C̃I\{i}) . Thus,
the total rate of coded transmission is

Rc =
n∑

i=2

(
n

i

)
q

n

i− 1

n
pi−2(1− p)n−(i−1). (6.8)

To complete the proof, we simplify the above expression. Let x = p
1−p . Taking derivative with

respect to x from both sides of the equality
∑n

i=1

(
n
i

)
xi−1 = 1

x
[(1 + x)n − 1], we have

n∑

i=2

(
n

i

)
(i− 1)xi−2 =

1 + (1 + x)n−1(nx− x− 1)

x2
. (6.9)

Using (6.9) in (6.8) completes the proof.

Corollary 6.2. Consider the case that the cache sizes are just enough to store the data required
for processing; that is s = q/n. Then, Rc = 1

2
Ru. Thus, one gets a factor 2 reduction gain in

communication rate by exploiting coded caching.

Note that when s = q/n, p = 0. Finding the limit limp→0Rc in (6.2), after some manipulations,
one calculates

Rc = q

(
1− s

q

)
1

1 + ns/q
= Ru/2, (6.10)

which shows Corollary 6.2.

Corollary 6.3. Consider the regime of interest where n, s, and q get large, and s/q → c > 0 and
n/q → 0. Then,

Rc → q

(
1− s

q

)
1

ns/q
=

Ru

ns/q
(6.11)

Thus, using coding, the communication rate is reduced by Θ(n).

Remark 6.1. (The advantage of using multicasting over unicasting) It is clearly true that γ(n) '
n for wireless architecture that is of great interest with the emergence of wireless data centers, e.g.
[46, 131], and mobile computing platforms [6]. However, still in many applications, the network
topology is based on point-to-point communication, and the multicasting opportunity is not fully
available, i.e., γ(n) < n. For these general cases, we have to renormalize the communication cost
of coded shuffling since we have assumed that γ(n) = n in our results. For instance, in the regime
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Figure 6.4: Gains of multicasting over unicasting in distributed systems. We measure the time
taken for a data block of size of 4.15 MB to be transmitted to a targeted number of workers on an
Amazon EC2 cluster, and compare the average transmission time taken with Message Passing In-
terface (MPI) scatter (unicast) and that with MPI broadcast. Observe that the average transmission
time increases linearly as the number of receivers increases, but with MPI broadcast, the average
transmission time increases logarithmically.

considered in Corollary 6.3, the renormalized communication cost of coded shuffling Rγ
c given

γ(n) is

Rγ
c =

n

γ(n)
Rc →

Ru

γ(n)s/q
. (6.12)

Thus, the communication cost of coded shuffling is smaller than uncoded shuffling if γ(n) > q/s.
Note that s/q is the fraction of the data matrix that can be stored at each worker’s cache. Thus,
in the regime of interest where s/q is a constant independent of n, and γ(n) scales with n, the
reduction gain of coded shuffling in communication cost is still unbounded and increasing in n.

We emphasize that even in point-to-point communication networks, multicasting the same mes-
sage to multiple nodes is still significantly faster than unicasting different message (of the same
size) to multiple nodes, i.e., γ(n) � 1, justifying the advantage of using coded shuffling. For in-
stance, the MPI broadcast API (MPI_Bcast) utilizes a tree multicast algorithm, which achieves
γ(n) = Θ

(
n

logn

)
. Shown in Fig. 6.4 is the time taken for a data block to be transmitted to an

increasing number of workers on an Amazon EC2 cluster, which consists of a point-to-point com-
munication network. We compare the average transmission time taken with MPI scatter (unicast)
and that with MPI broadcast. Observe that the average transmission time increases linearly as the
number of receivers increases, but with MPI broadcast, the average transmission time increases
logarithmically.
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6.4 Simulation Results
In this section, we simulate the performance of Coded Shuffling. More specifically, we compare
the performance of parallel stochastic gradient descent (PSGD) algorithms with different shuffling
schemes: Coded Shuffling, Uncoded Shuffling, and No Shuffling.

6.4.1 Linear Regression
We first simulate the performance of PSGD algorithm for a simple linear regression. That is, given
a data matrix A ∈ Rq×r and a vector y ∈ Rq, we want to solve the following optimization problem:
minx ||Ax− y||22.
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Figure 6.5: Linear regression: Simulation results with synthetic (upper row) and real data (lower
row). Plotted in (a) and (d) are the convergence performance of the algorithm with three different
shuffling schemes: coded shuffling, uncoded shuffling, and no shuffling. In these figures, the x-
axis is the number of passes, and the y-axis is the error. Plotted in (b) and (e) are the convergence
performance of the algorithm as a function of the wall time. Plotted in (c) and (f) are the average
convergence performance in wall time: we compute the wall clock time to achieve a target error
with different values of bandwidth – high network bandwidth (α = 0.5), medium network band-
width (α = 1), and low network bandwidth (α = 2) –, and find the average convergence time in
wall clock time over 100 runs.
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We test the algorithm with both synthetic and real data. For the synthetic data, each element
of the data matrix A ∈ R104×103 , x? ∈ R103 , w ∈ R104 is chosen uniformly at random from
[0, 1]. Then, y = Ax? + w is given to the optimization problem as an input. With regard to
experimental validation using “real" data, we use the Wine Quality Data Set from UCI Machine
Learning Repository [25, 71]: Each row of the data matrix includes 11 physicochemical features
of a wine such as pH, alcohol, density, acidity, etc., and the task is to predict the quality of a wine
based on these features.

We plot in Fig. 6.5 the simulation results. The figures in the upper row are the simulation results
with the synthetic data, and those in the lower row are the simulation results with the real data. We
first compare the convergence performance of the PSGD with and without shuffling in Fig. 6.5(a).
We can see that the convergence rate is significantly improved by shuffling data between epochs.
For instance, after 20 epochs, the algorithm with shuffling achieves a 10 times lower error per-
formance compared to the one without shuffling. Let us now consider the cost of communication
to be fair in our comparison of the schemes. In order to account for the cost of communication,
we consider the wall time. The wall time consists of computation time and communication time:
computation of each iteration is assumed to take a unit time, and communication of the entire data
matrix A is assumed to take α time units. Assuming n, s, and q are large and hence using Corol-
lary 6.3, we can find the wall time after the ith epoch is completed. We denote by tNS(i) the wall
time after the ith epoch when shuffling is not used, by tNS(i) the wall time when uncoded shuffling
is used, and by tCS(i) the wall time when coded shuffling is used. Then,

tNS(i) = α + i, tUS(i) = α

{
1 + (i− 1)

(
1− s

q

)}
+ i, (6.13)

tCS(i) = α

{
1 + (i− 1)

(
1− s

q

)
1

1 + ns/q

}
+ i. (6.14)

Note that the common term α is for the communication cost of distributing the input data before
the algorithm begins, and that the common term i is for the computation cost of the algorithm. For
the uncoded shuffling and coded shuffling schemes, we take account of different shuffling costs.

Using the above equations, the convergence performance as a function of the wall time can
be found. In Fig. 6.5, we compare the convergence performance of the three different schemes.
Plotted in the upper row are the simulation results with synthetic data, and in the lower row are the
ones with real data. In Fig. 6.5(a) and 6.5(d), the convergence of the algorithm is shown without
considering the cost of communication; the algorithm that shuffles data after each iteration con-
verges significantly faster than the one that does not shuffle data. Plotted in Fig. 6.5(b) and 6.5(e)
are the convergence of the algorithm measured in wall time. Although the algorithm with uncoded
shuffling converges faster than the one without shuffling in terms of the number of epochs, when
the communication cost is taken into account, the actual convergence time, measured in wall time,
can be slower; however, the algorithm with coded shuffling still converges faster than the others
because of its reduced communication overhead. We vary the network bandwidth (communication
overhead α) and measure the average convergence time (in wall time) over 100 runs, and the results
are shown in Fig. 6.5(c) and 6.5(f). The algorithm with coded shuffling converges faster than the
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the others in all the cases, except for the cases where the bandwidth is too low (communication
cost is too high).

6.4.2 Classification
We also compare the performance of the algorithms for classification. More specifically, we solve
a logistic regression problem and classify all the data points into two classes; given a data matrix
A = (a1, a2, . . . , aq)

T ∈ Rq×r and a label vector y ∈ {0, 1}q, we want to solve the following
optimization problem: minx

∑q
i=1− log Pr(yi|ai;x), where Pr(yi = 0|ai;x) =

exp(−aTi x)
1+exp(−aTi x)

and

Pr(yi = 1|ai;x) = 1
1+exp(−aTi x)

. We run the PSGD algorithm to solve the above optimization
problem and measure the convergence performance of the algorithm with the different shuffling
schemes.

For synthetic data, each element of the data matrix A ∈ R104×103 is drawn from standard
normal distribution, and each element of x? ∈ R103 is chosen uniformly at random from [0, 1].
Then, y is drawn according to the logistic distribution and is given to the optimization problem as
an input. For the real data, we use Spambase Data Set from UCI Machine Learning Repository
[71]. Each row of the data matrix includes 48 attributes of emails, and the task is to determine
whether an email is spam or not based on these features.

Plotted in Fig. 6.6 are classification simulation results with synthetic and real data. Similar
to the simulation results with linear regression, we observe that shuffling significantly improves
the convergence performance of the PSGD algorithms, as shown in Fig. 6.6(a) and 6.6(d). When
communication overhead is considered, the algorithm with coded shuffling provides the best per-
formance among the three schemes unless the communication cost is too high.

6.5 Conclusion
In this chapter, we propose a new Coded Shuffling framework, which can significantly reduce the
overhead of data-shuffling, a costly process used in current machine-learning algorithms.

There exists a whole host of theoretical and practical open problems related to the results of this
chapter. Convergence analysis of distributed machine learning algorithms under shuffling is not
well understood. As we observed in the experiments, shuffling significantly reduces the number of
iterations required to achieve a target reliability, but missing is a rigorous analysis that compares the
convergence performances of algorithms with shuffling or without shuffling. Further, the trade-offs
between bandwidth, storage, and the statistical efficiency of the distributed algorithms are not well
understood. Moreover, it is not clear how far our achievable scheme, which achieves a bandwidth
reduction gain of O( 1

n
), is from the fundamental limit of communication rate for coded shuffling.

Therefore, finding an information-theoretic lower bound on the rate of coded shuffling is another
interesting open problem.
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Figure 6.6: Classification: Simulation results with synthetic (upper row) and real data (lower row).
Plotted in (a) and (d) are the convergence performance of the algorithm with three different shuf-
fling schemes: coded shuffling, uncoded shuffling, and no shuffling. In these figures, the x-axis
is the number of passes, and the y-axis is the error. Plotted in (b) and (e) are the convergence
performance of the algorithm as a function of the wall time. Plotted in (c) and (f) are the average
convergence performance in wall time: we compute the wall clock time to achieve a target error
with different values of bandwidth – high network bandwidth (α = 0.5), medium network band-
width (α = 1), and low network bandwidth (α = 2) –, and find the average convergence time in
wall clock time over 100 runs.
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Chapter 7

Conclusion and Future Research Directions

7.1 Conclusion
In this thesis, the problem of using codes to speed up distributed storage and computing systems is
studied.

In Chapter 2, data retrieval performance of distributed data storage systems with coded data is
studied. A novel queueing model for such systems, called the MDS queue, is proposed, and its
latency performance is rigorously analyzed via queueing theoretic tools: as a result, it is shown that
the data stored in coded systems can be accessed faster than those in uncoded systems. In Chap-
ter 3 and Chapter 4, we explore how we can maximally utilize excess resources or redundancy in
distributed systems by scheduling redundant requests. As a concrete example, distributed data stor-
age systems with coded data or replicated data can handle a data access request in multiple ways,
and one may achieve an improved level of data-retrieval performance by appropriately scheduling
redundant requests. We characterize under which conditions, one can reduce the average latency
performance by judiciously scheduling redundant requests.

In Chapter 5, we focus on designing distributed algorithms that are robust to stragglers, and
provide a systematic way to design such algorithms, inspired by the principles of coding theory. In
Chapter 6, we identify an underlying communication problem, which needs to be solved to achieve
a higher statistical efficiency for distributed machine learning algorithms. We propose an efficient
data communication and caching protocol, and show that our proposed solution can significantly
reduce the communication overhead, enabling statistically efficient distributed machine learning
algorithms.

To summarize, we show that 1) coded distributed data storage systems allows faster data access
than uncoded ones, 2) appropriately scheduled redundant requests can significantly speed up data
access in those systems, 3) coding can provide a systematic way to add redundancy into distributed
algorithms so that their runtime is not affected by stragglers, and 4) coding can curtail the network
overhead, and hence improve the statistical efficiency of distributed machine learning algorithms.
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7.2 Future Research Directions
The new idea of using codes for speeding up distributed storage and computing systems has a huge
potential for a wider range of applications but still a lot of open questions need to be addressed.
There are several interesting future research directions that are closely related to the topics covered
in this thesis, and we conclude the thesis by providing an overview of these new directions.

• Computationally effective codes for distributed computation. In Chapter 5, we provide
preliminary results on how codes can speed up distributed computing, focusing on algo-
rithms that require synchronization. In order to obtain the results of coded computation, one
needs to decode the received results of computation. The decoding complexity can be ig-
nored when the number of workers (or the block length of a code) is small enough. However,
once the computing cluster is scaled up to the point where the decoding time is prohibitive,
the coding gain might be completely nullified by the overhead of decoding. One promising
approach is to design a coded algorithm based on sparse-graph-codes, which are the codes
that allow a computationally efficient decoding algorithm based on simple “onion-peeing”
operations. Similarly, locally repairable codes can also provide a coded computation algo-
rithm that can be efficiently decoded because partial coded computation results can be locally
decoded while the other results are still being computed.

• Joint optimization of coded computation with parallel/distributed machine learning
algorithms. Parallel/distributed machine learning algorithms that are trained with a large
amount of data indeed possess inherent data redundancy. That is, one does not need to nec-
essarily run a training algorithm with the entire data: it can still achieve a high enough level
of statistical efficiency even with most of the data. This implies that for such applications,
one can design a coded computation based on a code with a small error-floor. This opens up
a new tradeoff across multiple dimensions – statistical efficiency, runtime performance, and
computation/network cost.
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Appendix A

Proof of Theorems

A.1 Proof of Theorems in Chapter 2
Table A.1 enumerates notation for various parameters that describe the system at any given time.
To illustrate this notation, consider again the system depicted in Fig. 2.2(a). Here, the parameters
listed in Table A.1 take values m = 10, z = 0, b = 3, s1 = 0, s2 = 0, s3 = 0, w1 = 2, w2 = 2 and
w3 = 2. One can verify that keeping track of these parameters leads to a valid Markov chain (under
each of the scheduling policies discussed in this paper). Note that we do not keep track of the jobs
of a batch once all k jobs of that batch have begun to be served, nor do we track what servers
are serving what jobs. This is to ensure a smaller complexity of representation an2d computation.
Further note that in terms of the parameters listed in Table A.1, the number of servers that are busy
at any given time is equal to (n − z). For batch i in the buffer (i ∈ [b]), the number of jobs that
have completed service is equal to (k − si − wi). For any integer i, wi = 0 will mean that there is
no ith waiting batch in the buffer.

Proof of Proposition 2.1. Since the scheduling policy mandates all k jobs of any batch to start
service together, the number of jobs in the buffer is necessarily a multiple of k. Furthermore, when
the buffer is not empty, the number of servers that are idle must be strictly smaller than k (since
otherwise, the first waiting batch can be served). It follows that when m ≤ n, the buffer is empty
(b = 0), and all m jobs are being served by m servers (and z = (n −m) servers are idle). When
m > n, the buffer is not empty. Assuming there are z idle servers, there must be (n − z) jobs

Table A.1: Notation used to describe state of the system.

Value Meaning Range
m number of jobs in the entire system 0 to∞
z number of idle servers 0 to n
b number of waiting batches 0 to∞

{si}bi=1 number of of jobs of ith waiting batch, in the servers 0 to k − 1
{wi}bi=1 number of of jobs of ith waiting batch, in the buffer 0 to k
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currently being served, and hence there are m − (n − z) jobs in the buffer. However, since the
number of jobs in the buffer must be a multiple of k, and since z ∈ {0, 1, . . . , k − 1}, it must be
that z = (n −m) mod k. Thus, when m > n, there are b = m−n+z

k
batches waiting in the buffer,

and wi = k, si = 0 ∀ i ∈ {1, . . . , b}. We have thus shown that the knowledge of m suffices to
completely describe the system.

Once we have determined the configuration of the system as above, it is now easy to obtain the
transitions between the states. An arrival of a batch increases the total number of jobs in the system
by k, and hence the transition from state m to (m+k) at rate λ. When m ≤ n, all m jobs are being
served, and the buffer is empty. Thus, the total number of jobs in the system reduces to (m − 1)
at rate mµ. When m > n, the number of jobs being served is n− z = n− ((n−m) mod k), and
thus there is a transition from state m to (m− 1) at rate (n− ((n−m) mod k))µ.

Proof of Proposition 2.2. Results as a special case of Theorem 2.3. As a side note, in any given
state (w1,m) ∈ {0, 1, . . . , k} × {0, 1, . . . ,∞} of the resulting Markov chain, the number of idle
servers is given by z = n −m if m ≤ n − k, and z = (n + w1 −m) mod k otherwise. The state
(w1,m) has transitions to state:

• ((m+ k − n)+,m+ k) at rate λ, if w1 = 0.

• (w1,m+ k) at rate λ, if w1 6= 0

• (w1,m− 1) at rate mµ, if w1 = 0.

• (w1,m− 1) at rate (k − w1 − z)µ, if w1 6= 0

• (w1 − 1,m− 1) at rate (n− k + w1)µ, if (w1 > 1 or (w1 = 1 & m ≤ n+ 1))

• ((k − z)+,m− 1) at rate (n− k + w1)µ, if (w1 = 1 & m > n+ 1).

Proof of Theorem 2.3. For (w1, w2, . . . , wt,m) ∈ {0, 1, . . . , k}t × {0, 1, . . . ,∞}, define

q =





0 if w1 = 0

t else if wt 6= 0

argmax{t′ : wt′ 6= 0, 1 ≤ t′ ≤ t} otherwise.
(A.1)

It can be shown that

b =





0 if q = 0

q if 0 < q < t

t+
⌊
m−

∑t
j=1 wi−n
k

⌋
otherwise,

(A.2)

z = n− (m−
t∑

j=1

wj − (b− t)+k) , (A.3)

si =





wi+1 − wi if i ∈ {1, . . . , q − 1}
k − z − wq if i = q

0 if i ∈ {q + 1, . . . , b},
(A.4)
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and
wi = k, for i ∈ {t+ 1, . . . , b}. (A.5)

Given the complete description of the state of the system as above, the characterization of the
transition diagram is a straightforward task.

It is not difficult to see that the MDS-Reservation(t) queue has the following two key features:
(a) any transition event changes the value of m by at most k, and (b) for m ≥ n− k + 1 + tk, the
transition from any state (w1, m) to any other state (w′1, m

′ ≥ n−k+1+ tk) depends onmmod k
and not on the actual value of m. This results in a QBD process with boundary states and levels
as specified in the statement of the theorem. Intuitively, this says that when m ≥ n− k + 1 + tk,
the presence of an additional batch at the end of the buffer has no effect on the functioning of the
system. (In contrast, whenm < n−k+1+tk, the system may behave differently if there was to be
an additional batch, due to the possibility of this batch being within the threshold t. For instance,
a job of this additional batch may be served upon completion of service at a server, which is not
possible if this additional batch was not present).

Proof of Proposition 2.4. The MDS-Reservation(t) scheduling policy treats the first t waiting
batches in the buffer as per the MDS scheduling policy, while imposing an additional restriction
on batches (t + 1) onwards. When t= ∞, every batch is treated as in MDS, thus making
MDS-Reservation(∞) identical to MDS.

Proof of Proposition 2.5. Under MDS-Violation(0), any job can be processed by any server, and
hence a server may be idle only when the buffer is empty. Thus, when m ≤ n, all m jobs are in the
servers, and the buffer is empty. When m > n, all the n servers are full and the remaining (m−n)
jobs are in the buffer. The transitions follow as a direct consequence of these observations. It also
follows that when m ≤ n, b = 0 and z = n − m. In addition, in state m (> n) it must be that
w1 = (m − n)modk, b = dm−n

k
e, and for i ∈ {2, . . . , b}, wi = k. Thus the knowledge of m

suffices to describe the configuration of the entire system.

Proof of Theorem 2.6. For any state (w1,w2,...,wt,m), define q as in (A.1). The values of b, z, wi,
are identical to that in the proof of Theorem 2.3. Given the complete description of the state of
the system as above, the characterization of the transition diagram is a straightforward task. It is
not difficult to see that the MDS-Violation(t) queues have the following two key features: (a) any
transition event changes the value of m by at most k, and (b) for m ≥ n + 1 + tk, the transition
from any state (w1,m) to any other state (w′1,m

′ ≥ n + 1 + tk) depends on mmod k and not on
the actual value of m. This results in a QBD process with boundary states and levels as specified
in the statement of the theorem. Intuitively, this says that when m ≥ n+ 1 + tk, the total number
of waiting batches is strictly greater than t. In this situation, the presence of an additional batch at
the end of the buffer has no effect on the functioning of the system.

Proof of Proposition 2.7. The MDS-Violation(t) scheduling policy follows the MDS scheduling
policy when the number of batches in the buffer is less than or equal to t. Thus, MDS-Violation(∞)
is always identical to MDS.
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Proof of Theorem 2.8. In the MDS queue, suppose there are a large number of batches waiting in
the buffer. Then, whenever a server completes a service, one can always find a waiting batch that
has not been served by that server. Thus, no server is ever idle. Since the system has n servers,
each serving jobs with times i.i.d. exponential with rates µ, the average number of jobs exiting the
system per unit time is nµ. The above argument also implies that under no circumstances (under
any scheduling policy), can the average number of jobs exiting the system per unit time exceed nµ.
Finally, since each batch consists of k jobs, the rate at which batches exit the system is λ∗MDS = nµ

k

per unit time. Since the MDS-Violation(t) queues upper bound the performance of the MDS queue,
λ∗Mk/M/n(t) = nµ

k
for every t.

We shall now evaluate the maximum throughput of MDS-Reservation(1) by exploiting proper-
ties of QBD systems. In general, the maximum throughput λ∗ of any QBD system is the value of
λ such that: ∃ v satisfying vT (A0 +A1 +A2) = 0 and vTA01 = vTA21, where 1 = [1 1 · · · 1]T .
Note that the matrices A0, A1 and A2 are affine transformations of λ (for fixed values of µ and
k). Using the values of A0, A1, A2 in the QBD representation of MDS-Reservation(1), we can
show that λ∗Resv(1) ≥ (1 − O(n−2))n

k
µ. For t≥ 2, each of the MDS-Reservation(t) queues upper

bound MDS-Reservation(1), and are themselves upper bounded by the MDS queue. It follows that
n
k
µ ≥ λ∗Resv(t) ≥ (1−O(n−2))n

k
µ for t≥ 1.

The value of λ∗Resv(t) can be explicitly computed for any value of n, k and t via the method
described above. We perform this computation for k = 2 and k = 3 when t= 1 to obtain the result
mentioned in the statement of the theorem. We show the computation for k = 2 here.

When k = 2 and t= 1, the j th level of the QBD process consists of states {0, 1, 2} × {n −
1 + 2j, n + 2j} for j ≥ 1. However, as seen in Fig. 2.6, several of these states never occur. In
particular, in level j, only the states (1, n − 1 + 2j), (1, n + 2j) and (2, n + 2j) may be visited.
Thus, to simplify notation, in the following discussion we consider the QBD process assuming the
existence of only these three states (in that order) in every level. Under this representation, we have

A0 =




0 µ (n− 1)µ

0 0 0

0 0 0


 , A1 =



−nµ− λ 0 0

(n− 1)µ −(n− 1)µ− λ 0

nµ 0 −nµ− λ


 , A2 =



λ 0 0

0 λ 0

0 0 λ


 .

(A.6)

⇒ A0 + A1 + A2 =



−n 1 n− 1

n− 1 −(n− 1) 0

n 0 −n


µ (A.7)

One can verify that the vector

v =
[
v1 v2 v3

]T
=
[
n− 1 1 (n−1)2

n

]T
(A.8)

satisfies
vT (A0 + A1 + A2) = 0. (A.9)
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Thus,
vTA01 = n(n− 1)µ, (A.10)

and

vTA21 = λ

(
n+

(n− 1)2

n

)
. (A.11)

According to the properties of QBD processes, the value of λ = λ∗Resv(1) must satisfy vTA01 =
vTA21. Thus,

λ∗Resv(1) =
n2(n− 1)

2n2 − 2n+ 1
=

(
1− 1

2n2 − 2n+ 1

)
n

2
µ. (A.12)

Proof of Theorem 2.11. Denote by Di the latency experienced by the job enqueued to the ith cho-
sen server. As each server is an M/M/1 queue, E[Di] = 1

µ−λeff
. The latency of a job consists of the

waiting time in the queue and the service time. That is, Di = Wi + Si, where Wi is the waiting
time in the queue of the ith server and Si is the service time at the ith server. Note that {Si} are
independent exponential random variables with rate µ. Thus, for all 1 ≤ i ≤ k, E[Wi] = 1

µ−λeff
− 1

µ
.

Therefore,

D = max
1≤i≤k

Di = max
1≤i≤k

{Wi + Si} ≥ max
1≤i≤k

Si +Wargmaxi Si . (A.13)

Note that E[Wargmaxi Si ] = E[W1] because {Wi} are i.i.d., and {Si,Wi} are mutually independent.
By taking the expectation of both sides,

E[D] ≥ E
[

max
1≤i≤k

Si

]
+ E [W1] =

Hk

µ
+

(
1

µ− λeff
− 1

µ

)
, (A.14)

where the equality is due to the fact that the expected value of the maximum of k i.i.d. exponential
random variables of rate µ is Hk

µ
.

Proof of Lemma 2.12. Assume that all the n servers are in steady state for t ≥ 0. Then, the n
servers are independent M/M/1 queues in steady state because the arrival process to the n servers
are n independent Poisson processes, generated by the IPPG. We now show that the k jobs of a
batch experiences mutually independent queue lengths (and hence mutually independent latencies),
and each queue length is distributed according to the steady-state queue length distribution of an
M/M/1 queue, say X̃ . Let Tk denote the time when the kth job of a certain batch enters in any of
the n servers. As all the n servers are independent of the arrival process and the state of the IPPG,
〈Ti〉ki=1 are independent of the queue lengths 〈Xi〉ni=1. We also denote by Si the randomly chosen
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server by the ith job of the batch. Then,

Pr(XS1(T1) = x1, XS2(T2) = x2, . . . , XSk(Tk) = xk)

= Pr(X1(T1) = x1, X2(T2) = x2, . . . , Xk(Tk) = xk)

=

∫ ∞

t1=0

· · ·
∫ ∞

tk=0

Pr(X1(t1) = x1, . . . , Xk(tk) = xk|T1 = t1, . . . , Tk = tk)fT1,...,Tk(t1, . . . , tk) dt1 . . . dtk

=

∫ ∞

t1=0

· · ·
∫ ∞

tk=0

Pr(X1(t1) = x1, . . . , Xk(tk) = xk)fT1,...,Tk(t1, . . . , tk) dt1 . . . dtk

=

∫ ∞

t1=0

· · ·
∫ ∞

tk=0

Pr(X̃ = x1) · · ·Pr(X̃ = xk)fT1,...,Tk(t1, . . . , tk) dt1 . . . dtk

= Pr(X̃ = x1) · · ·Pr(X̃ = xk),

where the first equality is due to symmetry, the third equality is due to independence of 〈Ti〉ki=1

and 〈Xi〉ni=1, and the fourth equality follows from the fact that the n queues are stationary and
independent. As the queue lengths faced by the k jobs are independent of the others, the latencies
of the k jobs are also independent. The latency of a job that enters a steady-state M/M/1 queue is
exponentially distributed with rate λ′−µ [49]. Thus, the expectation of the maximum of k latencies
in the k servers is simply Hk

µ−λ′ .

Proof of Theorem 2.9. The theorem immediately follows from the application of Lemma A.1 and
Lemma A.2. Using Lemma A.2 and Little’s law, the average job latency in the system can be
computed as:

E[Djob] =
1

2λ

[
n−1∑

l=1

lπ0,l +
∞∑

m=0

(n+ 2m+ 1)π1,n+2m+1 +
∞∑

m=0

(n+ 2m)(π2,n+2m + π1,n+2m)

]
.

(A.15)

Plugging this in the inequality of Lemma A.1, the statement of the theorem is obtained.

Lemma A.1. Let E[D] and E[Djob] be the average request delay and average job request delay
under the MDS-Reservation(1) with k = 2, then:

E[D] ≤ E[Djob] +
n− 1

n− 2

1

2µ
− 1

(n− 2)(n− 1)nµ
− 1

2(n− 1)µ
. (A.16)

Proof. Consider any request that enters and departs from the system. LetW1 andW2 be the waiting
times of its first and second jobs in the queue, and S1 and S2 be the service times of them.

We now derive a relationship between W1 and W2. Without loss of generality, job 1 always
starts getting served before job 2, thus W1 ≤ W2. Now suppose job 1 goes to server j at time t.

Case 1: At time t, only one server is idle. Then, the extra waiting time of job request 2 in the
queue is exactly the time it takes for any of the other n − 1 servers to be free. By the exponential
service time nature, this time is exponentially distributed with rate (n− 1)µ, i.e.,

W2 = W1 + τ, where τ ∼ exp((n− 1)µ). (A.17)
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Now let D1 and D2 be the total times job request 1 and 2 stay in the system, and let D be the time
the request spends in the system, we have:

D1 = W1 + S1, D2 = W1 + τ + S2, D = W1 + max(S1, S2 + τ). (A.18)

Denote Z = max(S1, S2 + τ). It can be verified that:

fZ(z) =
n− 1

n− 2
µe−µz − (n− 1)µ

n− 2
e−(n−1)µz + µe−µz − n− 1

n− 2
2µe−2µz +

1

n− 2
µe−nµz,

(A.19)

and:

E[Z] =
1

µ
+
n− 1

n− 2

1

2µ
− 1

(n− 2)(n− 1)nµ
. (A.20)

It thus follows that the difference between the average request delay and the average job delay
under the MDS-Reservation(1) is given by:

E[D]− E[Djob] = E[D]− 1

2
(E[D1] + E[D2]) (A.21)

= E[W1] + E[Z]− 1

2
(2E[W1] + 2E[S1] + E[τ ]) (A.22)

= E[Z]− E[S1]−
1

2
E[τ ] (A.23)

=
n− 1

n− 2

1

2µ
− 1

(n− 2)(n− 1)nµ
− 1

2(n− 1)µ
. (A.24)

Now, consider the other case.
Case 2: At time t, two servers are idle. Then, both job 1 and job 2 start getting served at time

t. Thus,

D1 = W1 + S1, D2 = W1 + S2, D = W1 + max (S1, S2). (A.25)

Hence,

E[D]− E[Djob] = E[max (S1, S2)]− E[S1] =
1

2µ
. (A.26)

By dividing (A.24) by (A.26), one can show that E[D] − E[Djob] is strictly larger in the first
case because

n−1
n−2

1
2µ
− 1

(n−2)(n−1)nµ − 1
2(n−1)µ

1
2µ

= 1 +
n− 2

n(n− 1)(n− 2)
> 1. (A.27)

Therefore, in any case,

E[D]− E[Djob] ≤
n− 1

n− 2

1

2µ
− 1

(n− 2)(n− 1)nµ
− 1

2(n− 1)µ
, (A.28)

which completes the proof.
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Lemma A.2. The Markov chain of MDS-Reservation(1) with (n, k = 2) is depicted in Fig. A.1.
Denoting by π the stationary distribution of the Markov chain,

π0,0 =
1− η

(1− η)
∑n−2

l=0 al + λan−2

nµ
+ an−1

, (A.29)

π0,l = alπ0,0, ∀ l ∈ {1, ..., n− 1}, (A.30)

π1,n+2m−1 =
λ

nµ
(π2,n+2m−2 + π1,n+2m−2 + π1,n+2m−3), (A.31)

π0,n = π2,n =
1

γ2
[β2(π0,n−1 + π0,n−2) + λπ0,n−2] , (A.32)

π1,n =
1

γ1
[β1(π0,n−1 + π0,n−2) + λπ0,n−2] (A.33)

π2,n+2m =
1

γ2
[β2(π2,n+2m−2 + π1,n+2m−2 + π1,n+2m−1) (A.34)

+ λπ2,n+2m−2 − (n− 1)λπ1,n+2m−2], (A.35)

π1,n+2m =
1

γ1
[β1(π2,n+2m−2 + π1,n+2m−2 + π1,n+2m−1) (A.36)

+ λπ2,n+2m−2 − (n− 1)λπ1,n+2m−2], ∀ m ≥ 1, (A.37)

where π2,n is introduced for notational simplicity, and

η =
λ

nµ
+
λ(n− 1)µ

(nµ)2
+

λµ

(n− 1)µn
, (A.38)

γ1 =
−(n− 1)µ(λ+ nµ)

nµ
− (n− 1)(λ+ (n− 1)µ), (A.39)

γ2 =
nµ(λ+ (n− 1)µ)

µ
+ (λ+ nµ), (A.40)

β1 =
−λ(λ+ nµ)

nµ
, β2 =

λ(λ+ (n− 1)µ)

µ
, (A.41)

a0 = 1, a1 =
λ

µ
a0, al =

λ

lµ
(al−1 + al−2), l ∈ {0, ..., n− 1}. (A.42)

Proof. We find the stationary distribution of the Markov chain by carefully choosing sets of global
balance equations, which we call “cuts.” Our approach is to first compute π0,0. Then starting from
π0,0, we iteratively compute all the other probabilities.

First consider the sets that contain the (2, n+ 2m) and (1, n+ 2m) states, i.e., the Type 3 cuts
in Fig. A.1 1. Note that we use a shorthand n′ for n − 1 for an improved visualization. We note
that if the system is stable, then the total transition rate going out from any set of states must be
equal to the total rate going into them. Thus, we first have the following equation for the states

1For notational simplicity, we use the following exchangeable notation: state (2, n) denotes state (0, n).
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0, 0 0, 1 0, 2 . . . . . . 0, n− 2 0, n− 1
0, n

(2, n) 1, n+ 1 2, n+ 2 1, n+ 3 2, n+ 4 1, n+ 5 2, n+ 6

1, n 1, n+ 2 1, n+ 4 1, n+ 6 · · ·

· · ·

Type 1 cuts Type 2 cuts Type 3 cuts

λ λ λ λ λ λ λ λ λ λ

λλ λ

µ 2µ (n− 2)µ n′µ nµ n′µ nµ n′µ nµ n′µ nµ

n
′ µ

n
′ µ

n
′ µ

n
′ µ

µ µ µ

Figure A.1: State transition diagram of the MDS-Reservation(1) queue for n and k = 2, where
n is an even integer larger than 2. We use a shorthand notation n′ for n − 1 for an improved
visualization. The notation at any state is (w1,m).

(2, n) and (1, n):

π2,n(λ+ nµ) + π1,n(λ+ (n− 1)µ) = π0,n−2λ+ π1,n+1nµ. (A.43)

Then for states (2, n+ 2m) and (1, n+ 2m) with m ≥ 1, we have:

π2,n+2m(λ+ nµ) + π1,n+2m(λ+ (n− 1)µ) = λ(π2,n+2m−2 + π1,n+2m−2) + π1,n+2m+1nµ.
(A.44)

Summing (A.43) and (A.44) over m = 1, 2, ..., we get:

nµ
∞∑

m=0

π2,n+2m + (n− 1)µ
∞∑

m=0

π1,n+2m = λπ0,n−2 + nµ
∞∑

m=0

π1,n+2m+1. (A.45)

Now consider the Type 2 cuts, starting from states (2, n) and (1, n). We have:

(π0,n−2 + π0,n−1)λ = π2,nnµ+ π1,n(n− 1)µ, (A.46)
(π2,n+2m + π1,n+2m + π1,n+2m+1)λ = π2,n+2m+2nµ+ π1,n+2m+2(n− 1)µ, m ≥ 0. (A.47)

Summing (A.46) and (A.47) over m = 0, 1, ..., we get:

nµ
∞∑

m=0

π2,n+2m + (n− 1)µ
∞∑

m=0

π1,n+2m = λ

[
1−

n−3∑

l=0

π0,l

]
. (A.48)

Using (A.45) and (A.48), we thus obtain:

nµ
∞∑

m=0

π1,n+2m+1 = λ

[
1−

n−2∑

l=0

π0,l

]
. (A.49)
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We now try to first find π0,0. Consider the states with w1 = 2 and m ≥ n.

pi2,n(λ+ nµ) = π0,n−2λ+ π1,n+1(n− 1)µ, (A.50)
π2,n+2m(λ+ nµ) = π2,n+2m−2λ+ π1,n+2m+1(n− 1)µ. (A.51)

Summing (A.50) and (A.51) over m ≥ 1, we obtain:

nµ
∞∑

m=0

π2,n+2m = λπ0,n−2 + (n− 1)µ
∞∑

m=0

π1,n+2m+1. (A.52)

Similarly, we can look at the states with w1 = 1 and m ≥ n.

π1,n(λ+ (n− 1)µ) = π1,n+1µ, (A.53)
π1,n+2m(λ+ (n− 1)µ) = π1,n+2m−2λ+ π1,n+2m+1µ. (A.54)

Summing these up, we get:

(n− 1)µ
∞∑

m=0

π1,n+2m = µ
∞∑

m=0

π1,n+2m+1. (A.55)

Using (A.49), (A.52) and (A.55), we obtain:

∞∑

m=0

[π2,n+2m + π1,n+2m + π1,n+2m+1] =

[
λ

nµ
+
λ(n− 1)µ

(nµ)2
+

λ

(n− 1)µn

][
1−

n−2∑

l=0

π0,l

]
+

λ

nµ
π0,n−2.

(A.56)

Therefore, we get:

[
λ

nµ
+
λ(n− 1)µ

(nµ)2
+

λ

(n− 1)µn

][
1−

n−2∑

l=0

π0,l

]
+

λ

nµ
π0,n−2 =

[
1−

n−2∑

l=0

π0,l

]
− π0,n−1.

(A.57)

We see that (A.57) provides one equation in terms of only π0,0, ..., π0,n−1. Below we show that all
the probabilities π0,1, ..., π0,n−1 can be expressed in terms of π0,0. In this case (A.57) will allow
us to compute π0,0 exactly. This in turn enables us to compute π0,1, ..., π0,n−1. To do so, we first
consider the type 1 and type 2 cuts shown in Fig. A.1 to get:

π0,1 =
λ

µ
π0,0, (A.58)

π0,2i =
λ

2iµ
(π0,2i−2 + π0,2i−1), ∀ i ∈ {1, ...,

n

2
− 1}, (A.59)

π0,2i+1 =
λ

(2i+ 1)µ
(π0,2i−1 + π0,2i), ∀ i ∈ {1, ...,

n

2
− 1}. (A.60)
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Using (A.58), (A.59) and (A.60), one can obtain:

π0,l = alπ0,0, ∀ l ∈ {0, ..., n− 1}, (A.61)

where {al, l = 0, ..., n− 1} are defined as in (A.42). Plugging (A.61) back into (A.57) and denote
η

def
= λ

nµ
+ λ(n−1)µ

(nµ)2
+ λ

(n−1)µn , we have:

1−
n−2∑

l=0

alπ0,0 = η − η
n−2∑

l=0

alπ0,0 +
λ

nµ
an−2π0,0 + an−1π0,0. (A.62)

Therefore:

π0,0 =
1− η

(1− η)
∑n−2

l=0 al + λan−2

nµ
+ an−1

. (A.63)

It is not difficult to verify that π0,0 is a valid probability if 1− η > 0, i.e.,

λ

nµ
+
λ(n− 1)µ

(nµ)2
+

λ

(n− 1)µn
< 1. (A.64)

This implies that the supportable rate is:

λ <
nµ

2

1− 1
n

1− 1
n

+ 1
2n2

=
nµ

2

(
1− 1

2n2 − 2n+ 1

)
, (A.65)

which matches the result of Theorem 2.8.
We can now use (A.61) to compute π0,0, ..., π0,n−1. To compute π2,n+2m, π1,n+2m, for allm ≥ 0,

we start from m = 0. We have from (A.46) that:

π2,nnµ+ π1,n(n− 1)µ = λ(π0,n−1 + π0,n−2). (A.66)

Now if we look at the state (2, n) and (1, n) separately, we get:

π2,n(λ+ nµ) = π0,n−2λ+ π1,n+1(n− 1)µ, (A.67)
π1,n(λ+ (n− 1)µ) = π1,n+1µ. (A.68)

Canceling the term π1,n+1 in (A.67) and (A.68), we get that:

π2,n(λ+ nµ)− π1,n(n− 1)(λ+ (n− 1)µ) = λπ0,n−2. (A.69)

With (A.66) and (A.69), we can now compute π2,n, π1,n. To make the expressions more concise,
we define:

γ2
def
=
nµ(λ+ (n− 1)µ)

µ
+ (λ+ nµ), (A.70)

γ1
def
=
−(n− 1)µ(λ+ nµ)

nµ
− (n− 1)(λ+ (n− 1)µ), (A.71)

β2
def
=
λ(λ+ (n− 1)µ)

µ
, β1

def
=
−λ(λ+ nµ)

nµ
. (A.72)
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Then we get:

π2,n =
1

γ2
[β2(π0,n−1 + π0,n−2) + λπ0,n−2] , (A.73)

π1,n =
1

γ1
[β1(π0,n−1 + π0,n−2) + λπ0,n−2] . (A.74)

Now for all the states (2, n + 2m) and (1, n + 2m) with m ≥ 1, using (A.47), (A.51) and (A.54),
we get:

nµπ2,n+2m + (n− 1)µπ1,n+2m = λ(π2,n+2m−2 + π1,n+2m−2 + π1,n+2m−1),

(λ+ nµ)π2,n+2m − (n− 1)(λ+ (n− 1)µ)π1,n+2m = λπ2,n+2m−2 − (n− 1)λπ1,n+2m−2.

We can thus obtain the following equations for all states n+ 2m,m ≥ 1:

π2,n+2m =
1

γ2
[β2(π2,n+2m−2 + π1,n+2m−2 + π1,n+2m−1) + λπ2,n+2m−2 − (n− 1)λπ1,n+2m−2] ,

π1,n+2m =
1

γ1
[β1(π2,n+2m−2 + π1,n+2m−2 + π1,n+2m−1) + λπ2,n+2m−2 − (n− 1)λπ1,n+2m−2] ,

both of which can be verified to be positive.
Finally, the probabilities π1,n+2m−1 with m ≥ 1 can be computed using type 1 cuts, i.e.,

nµπ1,n+2m−1 = λ(π2,n+2m−2 + π1,n+2m−2 + π1,n+2m−3). (A.75)
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A.2 Proof of Theorems in Chapter 3
In this section, we first derive some properties of heavy-everywhere (3.1) and
light-everywhere (3.2) classes of distributions. We also provide examples of distributions that fall
into these classes. Then, we present the proofs of the results in Section 3.

A.2.1 Heavy-everywhere and Light-everywhere Distributions
In this section we derive some properties of heavy-everywhere (3.1) and light-everywhere (3.2)
classes of distributions. We also provide examples of distributions that fall into these classes.

Proposition A.3. The expected value of the minimum of n random variables, each drawn indepen-
dently from a distribution that is heavy-everywhere, is no larger than 1

n
times the expected value of

that distribution. The expected value of the minimum of n random variables, each drawn indepen-
dently from a distribution that is light-everywhere, is no smaller than 1

n
times the expected value of

that distribution.

Proposition A.4. Consider a finite set of independent random variables X1, . . . , XL, each of
whose (marginal) distributions is heavy-everywhere, such that for every i, j and every a ≥ 0, b ≥
0,

P (Xi > a) > P (Xj > a)⇒ P (Xi > b) ≥ P (Xj > b) .

Then, any mixture of X1, . . . , XL is also a heavy-everywhere distribution.

Proposition A.5. The following distributions are heavy-everywhere:

1. A mixture of a finite number of independently drawn exponential distributions.

2. A Weibull distribution with scale parameter smaller than 1, i.e., with a pdf

f(x) =
k

λ

(x
λ

)k−1
e−(x/λ)

k

for any k ∈ (0, 1] and any λ > 0.

Proposition A.6. The sum of a finite number of independent random variables, each of which has
a (marginal) distribution that is light-everywhere, also has a distribution that is light-everywhere.

Proposition A.7. The following distributions are light-everywhere:

1. For any c > 0, the constant distribution with entire mass on c.

2. An exponential distribution that is shifted by a positive constant.

3. The uniform distribution.

4. For any pair of non-negative constants c1 and c2 with 2c1 > c2 > c1, a distribution with its
support comprising only the two constants c1 and c2.
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We now present the proofs of these claims.

Proof of Proposition A.3. LetX be a random variable with a distribution that is heavy-everywhere.
Consider any x > 0. Using the property of being heavy-everywhere, we have

P (X > nx) = P (X > nx,X > x) = P (X > nx|X > x)P (X > x)

≥ P (X > (n− 1)x)P (X > x) ≥ P (X > (n− 2)x)P (X > x)P (X > x) · · · ≥ P (X > x)n.

Now consider i.i.d. random variablesX1, . . . , Xn drawn from this distribution. The expected value
of their minimum is given by

E[min{X1, . . . , Xn}] =

∫
P (X1 > x, . . . , Xn > x)dµ(x) =

∫
P (X1 > x) · · ·P (Xn > x)dµ(x)

=

∫
P (X > x)ndµ(x) ≤

∫
P (X > nx)dµ(x) =

1

n
E[X].

If the distribution is light-everywhere, then each of the inequalities in the entire proof above
are flipped, leading to the result E[min{X1, . . . , Xn}] ≥ 1

n
E[X].

Proof of Proposition A.4. Suppose X is drawn from a mixture of L independent random variables
X1, . . . , XL for some L ≥ 1 whose (marginal) distributions satisfy the conditions stated in the
proposition. In particular, suppose X takes value Xi with probability pi ≥ 0 (with

∑L
i=1 pi = 1).

Then

P (X > a+ b) =
L∑

i=1

piP (Xi > a+ b) ≥
L∑

i=1

piP (Xi > a)P (Xi > b)

=
L∑

j=1

L∑

i=1

pipjP (Xi > a)P (Xi > b)

=

(
L∑

i=1

piP (Xi > a)

)(
L∑

j=1

pjP (Xj > b)

)

+
1

2

L∑

j=1

L∑

i=1

pipj(P (Xi > a)− P (Xj > a))(P (Xi > b)− P (Xj > b))

Our assumption of P (Xi > a) ≥ P (Xj > a)⇒ P (Xi > b) ≥ P (Xj > b) then gives

P (X > a+ b) ≥
(

L∑

i=1

piP (Xi > a)

)(
L∑

j=1

pjP (Xj > b)

)
= P (X > a)P (x > b).

Proof of Proposition A.5. Let X be a random variable drawn from the distribution under consid-
eration.
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1. A mixture of a finite number of independently drawn exponential distributions.
The exponential distribution trivially satisfies (3.1) and hence is heavy-everywhere. Further-
more, if Xi and Xj are exponentially distributed with rates µi and µj ,

P (Xi > a) > P (Xj > a)⇒ e−µia > e−µja ⇒ −µi > −µj ⇒ P (Xi > b) ≥ P (Xj > b) .

This allows us to apply Prop. A.4, giving the desired result.

2. A Weibull distribution with scale parameter smaller than 1.
The Weibull distribution has a complementary c.d.f.

P (X > x) = e−(x/λ)
k

.

For k ∈ (0, 1], and for any a, b > 0, we know that

(a+ b)k ≤ ak + bk ⇒ −
(
a+ b

λ

)k
≥ −

(a
λ

)k
−
(
b

λ

)k

⇒e−(a+bλ )
k

≥ e−( aλ)
k

e−( bλ)
k

⇒ P (X > a+ b) ≥ P (X > a)P (X > b) .

Proof of Proposition A.6. Let X1 and X2 be independent random variables whose (marginal) dis-
tributions are light-everywhere. Let X = X1 +X2, Then,

P (X > a+ b|X > b) = P (X1 +X2 > a+ b,X2 > b|X1 +X2 > b)

+ P (X1 +X2 > a+ b,X2 ≤ b|X1 +X2 > b)

= P (X1 +X2 > a+ b|X2 > b,X1 +X2 > b)P (X2 > b|X1 +X2 > b)

+ P (X1 +X2 > a+ b|X2 ≤ b,X1 +X2 > b)P (X2 ≤ b|X1 +X2 > b).
(A.76)

Now,

P (X1 +X2 > a+ b|X2 > b,X1 +X2 > b) = P (X1 +X2 > a+ b|X2 > b) (A.77)
= P (X2 > a+ b−X1|X2 > b)

≤ P (X2 > a−X1) = P (X1 +X2 > a) ,

where the final inequality utilizes the light-everywhere property of the distribution of X2. Also,

P (X1 +X2 > a+ b|X2 ≤ b,X1 +X2 > b) = P (X1 > a+ b−X2|X2 ≤ b,X1 > b−X2)

≤ P (X1 > a) ≤ P (X1 +X2 > a) ,

where the final inequality utilizes the light-everywhere property of the distribution of X1. Putting
it back together in (A.76) we get

P (X>a+b|X>b)≤P (X1+X2 > a)P (X2>b|X1+X2>b)+P (X1+X2 > a)P (X2≤b|X1+X2>b)

= P (X > a).
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Proof of Proposition A.7. Let X be a random variable drawn from the distribution under consid-
eration.

1. For any c > 0, the constant distribution with entire mass on c.
If a ≤ c then P (X > a) = 1. If a > c then P (X > a + b) = 0. Thus the constant
distribution satisfies (3.2).

2. An exponential distribution that is shifted by a positive constant.
The exponential distribution trivially satisfies (3.2) and is light-everywhere. A constant is
also light-everywhere as shown above. Applying Proposition A.6, we get the desired result.

3. The uniform distribution.
We first show that for every M > 0. the uniform distribution on the interval [0,M ] is light-
everywhere. If a + b ≥ M then P (X > a + b) = 0, thus trivially satisfying (3.2). If
a+ b < M then P (X > a) = M−a

M
and P (X > a+ b|X > b) = M−a−b

M−b . Using the fact that
a ≥ 0, b ≥ 0, some simple algebraic manipulations of these expressions lead to (3.2). Since
a constant is light-everywhere, Proposition A.6 completes the result.

4. For any pair of non-negative constants c1 and c2 with 2c1 > c2 > c1, a distribution with its
support comprising only the two constants c1 and c2.
If a + b ≥ c2 then P (X > a + b) = 0. If a < c1 then P (X > a) = 1. Finally, if
a ≥ c1 and a + b < c2 then the constraint of 2c1 > c2 implies b < c1. Thus in this setting,
P (X > a+ b|X > b) = P (X = c2) = P (X > a).

A.2.2 Proof of Theorems in Chapter 3
Proof of Theorem 3.1 (centralized, memoryless service, no removal cost, k = 1). Consider two
systems, system S1 with request-degree r1 and system S2 with request-degree r2 (> r1), both
having system parameters (n, k = 1), the same arrival process, and the same rate of service. In
the proof, we shall construct two new hypothetical systems T1 and T2 such that the statistics of T1
are identical to S1, and the statistics of T2 are identical to S2. We shall then show that system T2
outperforms system T1, and conclude that S2 outperforms S1.

The new system T1 is defined as follows. The system T1 is also associated to parameters
(n, k = 1), has the same arrival and service processes as S1, and follows the scheduling protocol
described in Algorithm 8 with request-degree r1. However, after every service-event, we perform
a specific permutation of the n servers. Since the n servers have independent and memoryless
service time distributions with identical rates, the system T1 remains statistically identical to S1.
In particular, the two systems T1 and S1 have identical distributions of the latency and buffer
occupancy. The specific permutation applied is as follows. At any point in time, consider denoting
the n servers by indices ‘1’,. . .,‘n’. Upon completion of any job at any server, the servers are
permuted such that the busy servers have the lowest indices and the idle servers have the higher
indices. In a similar manner, we construct T2 to be a system identical to S2, but again permuting
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the servers in T2 after every job completion such that the busy servers have the lowest indices.
Thus T2 is statistically identical to S2.

In the system under consideration, at any point in time, there are (n + 1) processes simul-
taneously going on: the arrival process and the processes at the n servers. The assumption of
memoryless service times allows us to assume that a (fictitious) service process continues to exe-
cute even in an idle server, although no job is counted as served upon completion of the process.
Let us call the completion of any of these processes as an event. In this proof, we assume the
occurrence of any arbitrary sequence of events, and evaluate the performance of systems T1 and
T2 under this sequence of events. Since the arrivals into the system and the memoryless processes
at the servers are all independent of the state of the system, we can assume the same sequence of
events to occur in the two systems.

We begin by showing that under an identical sequence of events (the arrivals and server com-
pletions) in systems T1 and T2, the number of batches remaining to be completely served in T2 at
any point of time is no more than number of batches remaining in T1 at that time. Without loss
of generality, we will prove this statement only at times immediately following an event, since the
systems do not change state between any two consecutive events. With some abuse of notation, for
z ∈ {0, 1, 2, . . .}, we will use the term “time z” to denote the time immediately after the zth event.

Assume that the two systems begin in identical states at time 0. For system Ti (i ∈ {1, 2}),
let bi(z) denote the number of batches remaining in system Ti at time z. The proof proceeds via
induction on z. The induction hypothesis is that at any time z, we have b1(z) ≥ b2(z). Since the
two systems begin in identical states, b1(0) = b2(0). Now suppose the induction hypothesis is
satisfied at time (z − 1). We shall now show that it is satisfied at time z as well.

Suppose the zth event is the arrival of a new batch. Then

b1(z) = b1(z − 1) + 1 ≥ b2(z − 1) + 1 = b2(z),

where the inequality results from the induction hypothesis. The hypothesis is thus satisfied at time
z.

Now suppose the zth event is the completion of the exponential timer of one of the n servers (in
both the systems). We first consider the case b1(z − 1) ≥ b2(z − 1) + 1. Since the completion of
the timer at a server can lead to the completion of the service of at most one batch, it follows that
b1(z) ≥ b2(z) in this case. Now consider the case b1(z − 1) = b2(z − 1). Since k = 1, the number
of servers occupied in system Ti (i ∈ {1, 2}) at time (z − 1) is equal to min{ribi(z − 1), n}.
Furthermore, from the construction of systems T1 and T2 described above (recall the permutation
of servers), it must be that the first min{ribi(z − 1), n} servers are occupied at time (z − 1) in
system Ti. Thus, since r1 < r2 and b1(z−1) = b2(z−1), the set of servers occupied at time (z−1)
in T1 is a subset of the servers occupied in T2. Now, since k = 1, an event at a server triggers the
completion of service of a batch if and only if that server was not idle. Thus, if this event leads to
the completion of service of a batch in T1, it also leads to the completion of service of a batch in
system T2. It follows that b1(z) ≥ b2(z). We have thus shown that at any point in time, the number
of batches remaining in system T2 is no more than that under system T1.

The arguments above show that the distribution of the number of batches remaining in T1
dominates that in T2: with B1 and B2 denoting the number of batches in the system T1 and T2
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respectively under steady state, P (B1 > x) ≥ P (B2 > x) for all x ≥ 0. Since the average latency
is proportional to the average system occupancy, it follows that the latency faced by a batch on an
average in system T2 is no more than that in T1. These properties carry over to S1 and S2 since the
statistics of S1 and S2 are identical to those of T1 and T2 respectively.

From arguments identical to the above, it follows that having a request degree of n for each
batch minimizes the average latency as compared to any other redundant requesting policy, includ-
ing ones where a different request degree may be chosen (adaptively) for different batches.

Finally, we show that if T1 employs a fixed request-degree r < n for all batches, and T2
employs r = n for all batches, then the average latency under T2 is strictly smaller. At any given
time, there is a non-zero probability of the occurrence of a sequence of service-events that empty
system T1 (which also results in T2 getting emptied). Now, upon arrival of a batch, this new batch
is served in r < n servers of T1 and in all n servers of T2, and hence there is a strictly positive
probability that the batch completes service in T2 before it completes service in T1 and also before
a new batch arrives. This event results in b2(·) < b1(·), and since this event occurs with a non-zero
probability, we can draw the desired conclusion.

Proof of Theorem 3.2 (centralized, memoryless service, no removal cost, general k). Consider
two systems, system S1 with an arbitrary redundant-requesting policy and system S2 with
request-degree n, both having system parameters (n, k), the same arrival process, and the same
rate of service. In the proof, we shall construct two new systems T1 and T2 such that the statistics
of T1 are identical to S1, and the statistics of T2 are identical to S2. We shall then show that
system T2 outperforms system T1, and conclude that S2 outperforms S1.

In either system, at any point in time, there are (n+ 1) processes simultaneously going on: the
arrival process and the processes at the n servers. The assumption of memoryless service times
allows us to assume that a (fictitious) service process continues to execute even in an idle server,
although no job is counted as served upon completion of the process. Let us term the completion of
any of these (n+1) timers as the an event. In this proof, we assume the occurrence of any arbitrary
sequence of events, and evaluate the performance of systems T1 and T2 under this sequence of
events. Since the arrivals into the system and the memoryless processes at the servers are all
independent of the state of the system, we can assume the same sequence of events to occur in the
two systems.

We shall now show that under an identical sequence of events (arrivals and server completions)
in T1 and T2, the number of batches remaining in system T1 is at least as much as that in T2 at any
given time. Without loss of generality, we shall prove this statement only at times immediately
following an event, since the states of the systems do not change in between any two events.
Abusing some notation, for z ∈ {0, 1, 2, . . .}, we shall use the term “time z” to denote the time
immediately following the zth event.

Assume that the two systems begin in the same state at time z = 0. For system Ti (i ∈ {1, 2}),
let bi(z) denote the number of batches remaining in system Ti at time z. The proof proceeds via
induction on the time z. The induction hypothesis is that at any time z:

(a) b1(z) ≥ b2(z), and
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(b) for any z′ > z, if there are no arrivals between time z and z′ (including at time z′), then
b1(z

′) ≥ b2(z
′).

The hypotheses are clearly true at z = 0, when the two systems are in the same state. Now, let us
consider them to be true for time z (≥ 0). Suppose the next event occurs at time (z + 1). We need
to show that the hypotheses are true even after this event at time (z + 1).

First suppose the event was the completion of an exponential-timer at one of the n servers.
Then there has been no arrival between times z and (z+ 1). This allows us to apply hypothesis (b)
at time z with z′ = z + 1, which implies the satisfaction of both the hypotheses at time (z + 1).

Now suppose the event at time (z + 1) is the arrival of a new batch. Then, hypothesis (a) is
satisfied at time (z + 1) since b1(z + 1) = b1(z) + 1 ≥ b2(z) + 1 = b2(z + 1). We now show that
hypothesis (b) is also satisfied. Consider any sequence of server-events, and any time z′ > z + 1
such that there were no further arrivals between times (z + 1) and z′.

Let a1(z′) and a2(z
′) be the number of batches remaining in the two systems at time z′ if

the new batch had not arrived but the sequence of server-events was the same as before. From
hypothesis (b) at time z, we know that a1(z′) ≥ a2(z

′). Also note that the scheduling protocol
described in Algorithm 8 gives priority to the batch that had arrived earliest, and as a consequence,
a server serves a job from the new batch only when it cannot serve any other batch. It follows that
under any sequence of server-events, for i ∈ {1, 2}, bi(z′) = ai(z

′) + 1 if k jobs of the new batch
have not completed service in Ti, else bi(z′) = ai(z

′). When b1(z′) = a1(z
′) + 1, it follows that

b1(z
′) = a1(z

′) + 1 ≥ a2(z
′) + 1 ≥ b2(z

′). It thus remains to show that b1(z′) = a1(z
′)⇒ b2(z

′) ≤
b1(z

′). The condition b1(z′) = a1(z
′) implies that k jobs of the new batch have completed service

in system T1 at or before time z′. Let z1, . . . , zk (z1 < . . . < zk ≤ z′) be the events when the k jobs
of the new batch are served in system T1. Then, at these times, the corresponding servers must
have been idle in system T1 if the new batch had not arrived.

Consider another sequence of events that is identical to that discussed above, but excludes the
server-events that happened at times z1, . . . , zk, and also excludes the arrival at time (z + 1). Let
ci(z

′) denote the number of batches remaining in this situation at time z′. From the arguments
above, we get c1(z′) = a1(z

′). From the second hypothesis, we also have c2(z′) ≤ c1(z
′). Thus we

already have c2(z′) ≤ c1(z
′) = a1(z

′) = b1(z
′), and hence for our goal of showing b2(z′) ≤ b1(z

′),
it now suffices to show that b2(z′) ≤ c2(z

′).
If b2(z′) = 0 then we automatically have b2(z′) ≤ b1(z

′) and there is nothing left to show.
Thus, we consider the case b2(z′) > 0, i.e., system T2 is non-empty at time z′. We shall now see
how to count the number of batches in any system at time z′, under the condition that there were
no arrivals between time (z + 1) and z′. Consider (n + 1) counters: one counter each for the n
servers and one ‘global’ counter. At time (z+1), let the value of the counter of any server be equal
to the number of jobs that this server has finished serving from the batches that are still remaining
in the system. Let the value of the global counter be 0 at this time. Now, whenever a server-event
occurs, add 1 to the counter associated to that server, irrespective of whether the server had a job
or not. Whenever the counters of any k servers become greater than zero, add 1 to the global
counter, and subtract 1 from the counters of these k servers. One can see that in this process, the
value of the global counter at any time gives the number of batches that have finished service since
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the time we started counting. With this in mind, we shall compare the sequence of events that
includes the events at z1, . . . , zk to that which excludes these events. Since the events z1, . . . , zk
must correspond to events at k distinct servers, the service-events at z1, . . . , zk cause the global
counter of system T2 to increase by one. Since T2 also had one additional arrival as compared to
the system of c2(·), it must be that b2(z′) = c2(z

′). Putting the pieces together, we get that the
number of batches served in T2 at any time is at least as much as that served in T1 at any time.

Since the average latency is proportional to the average system occupancy, it follows that the la-
tency faced by a batch on an average in system T2 is smaller than that in T1. These properties carry
over to S1 and S2 since the statistics of S1 and S2 are identical to those of T1 and T2 respectively.

Finally, we show that if T1 employs a fixed request-degree r < n for all batches, and T2
employs r = n for all batches, then the average latency under T2 is strictly smaller. At any given
time, there is a non-zero probability of the occurrence of a sequence of service-events that empty
system T1 (which also results in T2 getting emptied). Now, upon arrival of a batch, this new batch
is served in r < n servers of T1 and in all n servers of T2, and hence there is a strictly positive
probability that the batch completes service in T2 before it completes service in T1 and also before
a new batch arrives. This event results in b2(·) < b1(·), and since this event occurs with a non-zero
probability, we can draw the desired conclusion. Thus, the distribution of the system occupancy in
T2 is strictly dominated by that of T1.

Proof of Theorem 3.3 (centralized, heavy-everywhere service, no removal cost, k = 1, high load).
Consider two systems, system S1 with some arbitrary redundant-requesting policy, and system S2

with request-degree n for all batches. We shall now construct two new hypothetical systems T1
and T2 such that T1 is statistically identical to S1 and T2 is worse than S2, and show that the
performance of T1 is worse than that of T2.

The two new systems T1 and T2 are constructed as follows. Both systems have the same
parameters n and k = 1, and retain the redundant-requesting policies of S1 and S2 respectively.
The service-time distribution in T1 is identical to that in S1. On the other hand, we shall make the
service time distribution of T2 worse than that of S2 in the manner described below.

Let us fix some arbitrary one-to-one correspondence between the n servers of system T1 and
the n servers of system T2. Consider any point in time when a server in system T2 is just beginning
the service of a job. Let X denote the random variable corresponding to this service time. Let PH
denote the law associated to the heavy-everywhere service-time distribution under consideration.
Since the systems operate at 100% server utilization, the corresponding server in T1 is not idle at
this point in time and is serving some job. When this server in system T2 begins service, suppose
the job in the corresponding server of system T1 began to be serviced t > 0 units of time ago. Then
we modify the distribution of X and let it follow the law

P (X > x) = PH(X > x+ t|X > t) ∀x ≥ 0 .

Since the distribution PH is heavy-everywhere (3.1), the service under system T2 is no better than
that under S2. As a result of the construction above, whenever a job begins to be processed in
system T2, it has a service-time distribution that is identical to the distribution of the service-time
of the job in the corresponding server in T1. We couple the servers even further by assuming
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whenever a server in T2 begins a new job, the time taken for this job to be completed is identical
to that taken for the job in the corresponding server in T1 (unless, of course, some other job of
the batch completes service first and this job is removed). We also feed an identical sequence of
arrivals to the two systems T1 and T2. This completes the construction of the two systems T1 and
T2.

Note that the aforementioned coupling of service-times between corresponding servers of sys-
tems T1 and T2 only takes place when the server in T2 begins a job. The case when a server of
T1 begins serving a new job when the corresponding server of T2 is already serving a job is not
accounted for. The induction hypothesis below handles such situations.

We start at any point in time when the two systems are in an identical state, and show that the
average latency faced by the batches in T2 from then on is no larger than that faced by batches in
T1. We shall now show the following two properties via an induction on time:

a) At any point in time, the number of batches in system T2 is no more than the number of
batches in system T1.

b) At any point in time, if a server in system T1 begins service of a job, the corresponding server
in T2 also begins service of some job.

Part (b) of the hypothesis ensures that the service times of the jobs in corresponding servers of
systems T1 and T2 are always identical (via the construction above).

As mentioned previously, let us start at any point in time when the two systems are in an
identical state. Since the systems are in an identical state, both hypotheses hold true at this time.
Without loss of generality, we shall now consider only the times immediately following an event in
either system, where an event is defined as an arrival of a batch or the completion of processing by
a server. First consider any time that immediately follows an arrival. By our induction hypothesis,
just before the arrival, the number of batches in T2 was no more than that in T1. The arrival only
increases the number of batches in both systems by 1, and hence induction hypothesis (a) still
stands. Under a 100% server utilization, an arrival does not trigger the beginning of a service
in either system. Thus, hypothesis (b) continues to hold. Let us now consider an event where
a server completes processing a job. Due to hypothesis (b), the service times at corresponding
servers in the two systems were coupled. As a result, the next service completes at the same time
in corresponding servers of both systems. This reduces the number of batches in both systems
by one, thus continuing to satisfy hypothesis (a). Furthermore, since we have assumed a 100%
utilization of the servers, there is at least one batch waiting in the buffer in both the systems. In
system T2, since we had k = 1, r = n and no removal cost, at any given time each of the n
servers in system T2 will be serving jobs of the same batch. Thus jobs in all the servers of T2 are
removed from the system, and are replaced by (new) jobs of the next batch. As a result, upon any
service-event, each of the servers in T2 begin serving new jobs, thus satisfying hypothesis (b). Due
to the specific construction of the two systems, the service times of these new jobs in the servers
of T2 are identical to those of jobs in corresponding servers of T1.

This completes the proof of the induction hypothesis, and in particular that the number of
batches in T2 at any time is no more than the number of batches in system T1. The fact that the
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average latency is proportional to the average number of batches in the system implies that the
average latency in system T1 is no smaller than in T2. Finally, the constructions of the two systems
T1 and T2 ensured that system T2 is worse than S2, and system T1 is statistically identical to S1,
thus leading to the desired result.

Finally, suppose system T1 employs a fixed request-degree r < n for all batches. Further sup-
pose that the heavy-everywhere distribution is such that (3.1) holds with a strict inequality for a set
of events that have a probability bounded away from zero. Under this setting, the aforementioned
construction is such that system T2 is worse than system S2 by a non-trivial amount, and as a result,
the average latency in system S2 is strictly smaller than that of S1.

Proof of Theorem 3.4 (centralized, light-everywhere service, any removal cost, k = 1, high load).
Consider two systems, system S1 with some arbitrary redundant-requesting policy, and system S2

with request-degree r = k = 1 for all batches. We shall now construct two new hypothetical
systems T1 and T2 such that T1 is statistically identical to S1 and T2 is worse than S2, and show
that the performance of T1 is worse than that of T2.

The two new systems T1 and T2 are constructed as follows. Both systems have the same
parameters n and k = 1, and retain the redundant-requesting policies of S1 and S2 respectively.
The service-time distribution in T2 is identical to that in S2. On the other hand, we shall make the
service time distribution of T1 better than that of S1 in the manner described below.

Let us fix some arbitrary one-to-one correspondence between the n servers of system T1 and
the n servers of system T2. Consider any point in time when a server in system T1 is just beginning
the service of a job. Let X denote the random variable corresponding to this service time. Let PL
denote the law associated to the heavy-everywhere service-time distribution under consideration.
Since the systems operate at 100% server utilization, the corresponding server in T2 is not idle at
this point in time and is serving some job. When this server in system T2 begins service, suppose
the job in the corresponding server of system T1 began to be served t > 0 units of time ago. Then
we modify the distribution of X and let it follow the law

P (X > x) = PL(X > x+ t|X > t) ∀x ≥ 0 .

Since the distribution PL is light-everywhere (3.2), the service under system T1 is no better than
that under S1. As a result of the construction above, whenever a job begins to be processed in
system T1, it has a service-time distribution that is identical to the distribution of the service-time
of the job in the corresponding server in T2. We couple the servers even further by assuming
whenever a server in T1 begins a new job, the time taken for this job to be completed is identical
to that taken for the job in the corresponding server in T2 (unless, of course, some other job of
the batch completes service first and this job is removed). We also feed an identical sequence of
arrivals to the two systems T1 and T2. This completes the construction of the two systems T1 and
T2.

Note that the aforementioned coupling of service-times between corresponding servers of sys-
tems T1 and T2 only takes place when the server in T1 begins a job. The case when a server of
T2 begins serving a new job when the corresponding server of T1 is already serving a job is not
accounted for. The induction hypothesis below handles such situations.
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We start at any point in time when the two systems are in an identical state, and show that the
average latency faced by the batches in T2 from then on is no more than that faced by batches in
T1. We shall now show the following two properties via an induction on time:

a) At any point in time, the number of batches in system T2 is no more than the number of
batches in system T1.

b) At any point in time, if a server in system T2 begins service of a job, the corresponding server
in T1 also begins service of some job.

Part (b) of the hypothesis ensures that the service times of the jobs in corresponding servers of
systems T1 and T2 are always identical (via the construction above).

As mentioned previously, let us start at any point in time when the two systems are in an
identical state. Since the systems are in an identical state, both hypotheses hold true at this time.
Without loss of generality, we shall now consider only the times immediately following an event
in either system, where an event is defined as an arrival of a batch or the completion of processing
at server. First consider any time that immediately follows an arrival. By our induction hypothesis,
just before the arrival, the number of batches in T2 was no more than that in T1. The arrival only
increases the number of batches in both systems by 1, and hence induction hypothesis (a) still
stands. Under a 100% server utilization, an arrival does not trigger the beginning of a service
in either system. Thus, hypothesis (b) continues to hold. Let us now consider an event where
a server completes processing a job. Due to hypothesis (b), the service times at corresponding
servers in the two systems were coupled. As a result, the next service completes at the same time
in corresponding servers of both systems. This reduces the number of batches in both systems
by one, thus continuing to satisfy hypothesis (a). Furthermore, since we have assumed a 100%
utilization of the servers, there is at least one batch waiting in the buffer in both the systems. In
system T2, since we had k = 1 and r = k = 1, only this server begins serving a new job, while all
remaining (n− 1) servers continue processing the jobs they already have. Now, the corresponding
server in T1 also had a server-event and begins serving a new job at this moment. Thus this satisfies
hypothesis (b). Due to the specific construction of the two systems, the service times of these new
jobs in the servers of T2 are identical to those of jobs in corresponding servers of T1.

This completes the proof of the induction hypothesis, and in particular that the number of
batches in T2 at any time is no more than the number of batches in system T1. The fact that the
average latency is proportional to the average number of batches in the system implies that the
average latency in system T1 is no smaller than in T2. Finally, the constructions of the two systems
T1 and T2 ensured that system T2 is worse than S2, and system T1 is statistically identical to S1,
thus leading to the desired result.

Finally, suppose system T1 employs a fixed request-degree r < n for all batches. Further sup-
pose that the light-everywhere distribution is such that (3.2) holds with a strict inequality for a set
of events that have a probability bounded away from zero. Under this setting, the aforementioned
construction is such that system T1 is better than system S1 by a non-trivial amount, and as a result,
the average latency in system S2 is strictly smaller than that of S1.
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Proof of Theorem 3.5 (centralized, memoryless service, non-zero removal cost, k = 1, high load).
The proof is identical to that of Theorem 3.4. The system T2 is constructed to be ‘better’ than
system S2 by assuming zero removal costs in T2.

Proof of Proposition 3.6. (disk I/O time is light-everywhere) From Proposition A.6, we know that
the sum of a finite number of independent light-everywhere random variables is light-everywhere.
Thus, in order to show that T is light-everywhere, we need to show that Tseek, Trotation, and Ttransfer

are all light-everywhere. From Proposition A.7, the transfer time Ttransfer and the rotational latency
Trotation are light-everywhere. We now show that Tseek is light-everywhere. We first note that seek
distance D is a light-everywhere distribution as for every pair of values 0 ≤ a ≤ 1 − b and
0 ≤ b < 1, (a+b−1)2

(b−1)2 ≤ (a− 1)2. Thus, Tseek is also light-everywhere as it is a sum of the scaled D
and a constant Tmin seek. Therefore, T is light-everywhere.

Proof of Theorem 3.7 (distributed setting). (a) In order to get to the desired results, we shall first
compare a system with distributed buffers to an analogous system that has a central buffer. The
scheduling policy in either setting needs to make two kinds of decisions: the number of redundant
requests for each batch, and the precise set of servers to which these requests are assigned. Firstly,
observe that under the redundant requesting policy of r = n for all batches, the choice of the
r (= n) servers to which the jobs are assigned does not require any decision to be made. The
centralized and the distributed systems thus are identical in this case and hence have the same
average latency. Secondly, we know from the results of Section 3.4 that under all the arrival and
service time distributions considered here, the choice of r = n for all batches is optimal under a
centralized scheme. Thirdly, for any fixed redundant requesting policy, the average latency under
the centralized scheme will be no more than the average latency under the distributed scheme. This
is because the first-come first-served policy as described in Algorithm 8 minimizes average latency,
and moreover, the policy of the system with a centralized buffer has more information (about the
system) as compared to the one operating under distributed buffers. It thus follows that even in
the case of distributed buffers, the average latency is minimized when the request-degree for each
batch is n.
Parts (b), (c), (d) are identical to the proofs of Theorems 3.3, 3.4 and 3.5 respectively.
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A.3 Proof of Theorems in Chapter 4
Proof of Theorem 4.3. In order to complete the proof, we solve the equations (4.4)-(4.12) in The-
orem 4.5. We can exactly solve them since they are 8 linear equations with 8 variables after
replacing several terms using the recursive structure. We provide the solutions of the equations
here.

T = − µ (λµc + 2λµ+ 2µc µ+ 2µc
2)

λµc (λµc + 2λµ− 2µc µ− 2µ2)

TLc,−1 = − 2µ (µc + µ)

µc (λµc + 2λµ− 2µc µ− 2µ2)

TLs,0 = −(µc + µ)
(
λµc + 2λµ− 2µc µ− 2µ2

)−1

TLc,0 = −(µc + 2µ)
(
λµc + 2λµ− 2µc µ− 2µ2

)−1

R =
µ (µc + µ) (λµc + 4λµ+ 2µc µ+ 2µc

2)

µc (λµc + 2λµ− 2µc µ− 2µ2)2

RL
c,−1 =

λµ (2µc
2 + 6µc µ− 1λµc + 4µ2)

µc (λµc + 2λµ− 2µc µ− 2µ2)2

RL
s,0 =

µ (λ2 − λµc − λµ+ 2µc
2 + 4µc µ+ 2µ2)

(λµc + 2λµ− 2µc µ− 2µ2)2

RL
c,0 =

µ (2µc
2 + 6µc µ− 1λµc + 4µ2)

(λµc + 2λµ− 2µc µ− 2µ2)2
.

Using Lemma 4.2, one can find Eπ∞ [D], and λπ∞max.

Proof of Theorem 4.5. Recall that π1 is the policy that redundant request is used only when the
queue is empty. To analyze this policy we use the RRR technique in [42].

We first write the first step equations to find T , which is the expected return time to state (0)
starting from state (0). Let TLS be the the expected time that the Markov process hits a state that is
one level left of state S. Let q be the probability that the first left state that is visited from (s, 1) is
(s, 0). Let r be the probability that the first left state that is visited from (c, 1) is (c, 0). Then, one
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can write the following first step equations:

T = (λ)−1 + TLs,0 + TLc,−1

TLc,−1 = (µc + λ)−1
[
1 + λ(TLc,0 + TLc,−1)

]

TLs,0 = (λ+ 2µ))−1
[
1 + λ(TLs,1 + qTLs,0 + (1− q)TLc,0)

]

TLc,0 = (λ+ µ+ µc)
−1

·
[
1 + µcT

L
s,0 + λ(TLc,1 + (1− r)TLs,0 + rTLc,0)

]

TLd,0 = (λ+ 2µ)−1
[
1 + λ(TLd,0 + TLd,0)

]

TLs,1 = (λ+ 2µ)−1
[
1 + λ(TLs,1 + qTLd,0 + (1− q)TLc,1)

]

TLc,1 = (λ+ µ+ µc)
−1

·
[
1 + µcT

L
d,0 + λ(TLc,1 + (1− r)TLd,0 + rTLc,1)

]

Note that in the last three equations we used the following birth-and-death property of the Markov
chain: TLd,1 = TLd,0, T

L
c,1 = TLc,0, and TLs,1 = TLs,0. Moreover, one can find the probabilities q and r by

solving the following equations:

q = (λ+ 2µ)−1 [2µ · 0 + λ(q + (1− q)(1− r))] (A.78)

r = (λ+ µ+ µc)
−1 [µ · 1 + µc · 0 + λ · r2

]
(A.79)

Thus, solving the above equations, one can write T as a long yet closed-form expression.
Similarly we can write the first step equations to find R, the average accumulated reward over

a renewal cycle. Let RL
S be the expected reward gained from S until the first visit to a left state.

Then,

R = RL
s,0 +RL

c,−1, R
L
c,−1 = λ(λ+ µc)

−1(RL
c,0 +RL

c,−1)

RL
s,0 = (λ+ 2µ)−1

[
1 + λ(RL

s,1 + qRL
s,0 + (1− q)RL

c,0)
]

RL
c,0 = (λ+ µ+ µc)

−1

·
[
1 + µcR

L
s,0 + λ(RL

c,1 + rRL
c,0 + (1− r)RL

s,0)
]

RL
d,0 = (λ+ 2µ)−1

[
2 + λ(RL

d,0 + TLd,0 +RL
d,0)
]

RL
s,1 = (λ+ 2µ)−1

·
[
2 + λ(RL

s,1 + TLs,1 + qRL
d,0 + (1− q)RL

c,1)
]

RL
c,1 = (λ+ µ+ µc)

−1

·
[
2 + µc(R

L
c,1 + TLc,1 + (1− r)RL

d,0 + rRL
c,1)
]
.

Note that in the last three equations, we used the following relationships exploiting the structure
of the Markov chain: RL

d,1 = TLd,0 + RL
d,0, RL

s,2 = RL
s,1 + TLs,1, and RL

c,2 = RL
c,1 + TLc,1. Thus, one

can solve the equations exactly to find R in closed form. By applying Lemma 4.2, we obtain the
average job latency in closed form; that is, Eπ1 [D] = 1

λ
R
T

.
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Proof of Theorem 4.6. We first formulate a β-discounted problem whose cost function under pol-
icy π is defined as Jπ = limt→∞ Eπ

{∫ t
0
e−βtN(s(t)) dt

}
, where s(t) is the random process of

states under policy π, and the expectation is over s(t). We first find the structure of the optimal
policy of the β-discounted problem, and later we will relate the found structure to the structure of
the optimal policy of the average problem. The optimal policy for a β-discounted problem can be
found by uniformizing the continuous Markov chain and by applying Bellman’s equation. Define
the transition rate from state x to y as rxy, the sum transition rates from state x as rx, and the
maximum sum transition rate as ν = maxx rx. Recall that rxy is a function of ux as depicted in
Figure 4.5. Then, we have the following lemma.

Lemma A.8. (Bellman equation and value iteration for a continuous time Markov chain) Consider
a β-discounted problem with the objective limt→∞ Eπ

{∫ t
0
e−βtC(s(t)) dt

}
, where C(·) is the cost

function. Define J(·) as the optimal value function that satisfies the following Bellman equations,

J(x) = η

{
C(x) + (ν − rx)J(x) + min

ux

(∑

y

rxy(ux)J(y)

)}
, (A.80)

where η = 1/(β + ν)−1. Then, the optimal policy of the β-discounted problem can be constructed
from u∗x = arg minux

(∑
y rxy(ux)J(y)

)
. Also, the optimal value function can be found by using

value iteration. That is, one can initiate J0(·) with arbitrary values, and recursively update value
functions using the following update rules.

Jk+1(x) = η

{
C(x) + (ν − rx)Jk(x) + min

ux

(∑

y

rxy(ux)Jk(y)

)}
(A.81)

Then, the sequence of value functions converges to J(·); that is, Jk(·)→ J(·) as k →∞.

The proof can be found in Chapter 5 of [10]. Applying Lemma A.8 to the formulated β-
discounted problem, we have the following equations: 2

J(0) = η(N(0) + (µ+ µc)J(0) + λmin
v(0)

(v(0)J(s, 0) + v̄(0)J(d,−1))) (A.82)

J(c,−1) = η(N(c,−1) + µJ(c,−1) + λJ(c, 0) + µcJ(0)) (A.83)
J(d,−1) = η(N(d,−1) + µcJ(d,−1) + µJ(0) + λ min

v(d,−1)

(v(d,−1)J(s, 1) + v̄(d,−1)J(d, 0))),

(A.84)

2For simplicity, we abuse notations with J(·) andN(·) in order to avoid double parenthesis; e.g., J(·, i)def
= J((·, i))
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and for all i ≥ 0,

J(d, i) = η(N(d, i) + (µc − µ)J(d, i) + λJ(d, i+ 1)

+ 2µmin
u(d,i)

(u(d,i)J(s, i) + ū(d,i)J(d, i− 1))), (A.85)

J(s, i) = η(N(s, i) + (µc − µ)J(s, i)

+ λJ(s, i+ 1) + 2µJ(c, i− 1), (A.86)
J(c, i) = η(N(c, i) + λJ(c, i+ 1) + µJ(c, i− 1)

+ µc min
u(c,i)

(u(c,i)J(s, i) + ū(c,i)J(d, i− 1))). (A.87)

We now show that the optimal value function J(·) has a certain structure by identifying a
certain structure in the sequence of value functions {Jk(·)}.
Lemma A.9. (Structure of the β-optimal policy (i)) The optimal scheduling policy
π∗ = (π∗a , π

∗
s , π

∗
c ) for a β-discounted program satisfies π∗c = π∗s . Also, π∗a = (u∗(c,0), u

∗
(c,1)). That is,

the optimal policy can be fully characterized by π∗c .

Proof. From Figure 4.5(a), one can observe that states (d, i) and (c, i) share a common decision
problem. This can be formally shown by comparing inner terms in the Bellman equations (A.85)
and (A.87). Similarly, one can show that the optimal controls on arrival events are the same at
states (c, 0) and (c, 1).

Theorem A.10. (Structure of the β-optimal policy (ii)) The optimal scheduling policy π∗ for a
β-discounted program satisfies π∗c (i) = 0 for all i ≥ 2. In other words, u∗(c,i) = 0 for all i ≥ 1.

Proof. We first assume that π∗c (1) = u∗(c,0) = 0. We use the value iteration method; that is, we
consider a sequence of functions Jk with the fixed control u∗(c,0) = 0. Then, we initiate J0 with
all zeros, and iterate Jk+1 = TJk. Then, the sequence of value iterations Jk has the following
structure for all finite k: Jk(d, i) ≤ Jk(s, i+ 1), ∀i ≥ 0. This can be inductively proved as follows
by showing a stronger statement: the following sets of inequalities hold when u∗(c,0) = 0.

Jk(0) ≤ Jk(c,−1),

Jk(d, i) ≤ Jk(c, i+ 1), ∀i ≥ −1

Jk(d, i) ≤ Jk(s, i+ 1), ∀i ≥ 0

Jk(s, i) ≤ Jk(s, i+ 1), ∀i ≥ 0

Jk(d, i) ≤ Jk(d, i+ 1), ∀i ≥ −1

Jk(c, i) ≤ Jk(c, i+ 1), ∀i ≥ −1

For k = 0, the above relationships hold by the intialization. Assuming that all inequalities hold for
k, we prove the same relationship holds for k + 1. First, we prove the first inequality as follows.

Jk+1(0)− ηN(0) = η{(µ+ µc)Jk(0) + λJk(d,−1)}
≤ η{µJk(c,−1) + µcJk(0) + λJk(c, 0)}
= Jk+1(c,−1)− ηN(c,−1) = Jk+1(c,−1)− ηN(0)
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Then, we prove the second set of inequalities as follows. For the boundary case i = 0,

Jk+1(d,−1)− ηN(d,−1)

= η{µJk(0) + µcJk(d,−1) + λJk(d, 0)}
≤ η{µJk(c,−1) + µcJk(d,−1) + λJk(c, 1)}
= Jk+1(c, 0)− ηN(c, 0) = Jk+1(c, 0)− ηN(d,−1).

Then, for general cases i ≥ 1,

Jk+1(d, i)− ηN(d, i)

= η{2µJk(d, i− 1) + (µc − µ)Jk(d, i) + λJk(d, i+ 1)}
≤ η{µJk(c, i) + µcJk(d, i) + λJk(c, i+ 2)}
= Jk+1(c, i+ 1)− ηN(c, i+ 1) = Jk+1(c, i+ 1)− ηN(d, i)

Lastly, we prove the third set of inequalities as follows.

Jk+1(d, i)− ηN(d, i)

= η{2µJk(d, i− 1) + (µc − µ)Jk(d, i) + λJk(d, i+ 1)}
≤ η{2µJk(c, i) + (µc − µ)Jk(s, i) + λJk(s, i+ 2)}
= Jk+1(s, i+ 1)− ηN(s, i+ 1) = Jk+1(s, i+ 1)− ηN(d, i)

Thus, we have found the optimal structure of the policy when u∗(c,0) = 0. Similarly, we can assume
u∗(c,0) = 1, find a similar structure, and hence prove the structure.

Now, observe that the above structure directly implies that u(c,i) = 0 for i ≥ 1. Then, we use
the convergence of the value iteration policy [10]: Jk → J as k → ∞. Because Jk satisfies the
property for all k, J also satisfies the structural property. Thus, u∗(c,i) = 0 for i ≥ 1.

Theorem A.10 implies that either π0 or π1 is the optimal dynamic scheduler for the
β-discounted problem. Now, the following Lemma relates the optimal policy’s structure of the
average cost problem, and that of the β-discounted problem.

Lemma A.11. (Structure of the average optimal policy) The optimal scheduling policy π∗ for the
average program satisfies π∗c (i) = 0 for all i ≥ 2. In other words, u∗(c,i) = 0 for all i ≥ 1.

Proof. The structure of the optimal policy for a β-discounted problem does not depend on the
specific value of β. Thus, the optimal policy does not change as β → 1 because of its monotonicity.
Therefore, the policy is Blackwell optimal, and we apply Theorem 4 in [40] to show the Blackwell
optimality implies the average optimality.

With that, we conclude the proof of Theorem 4.6.
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