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Abstract

Human-in-the-Loop Reinforcement Learning for Adaptive Assistive Interfaces

by

Jensen Gao

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Sergey Levine, Chair

Machine learning has shown great potential to facilitate more e↵ective methods for human-
computer interaction. This includes artificial intelligence-based interfaces that can assist
users with performing their desired objectives with improved performance. In this technical
report, we propose two human-in-the-loop deep reinforcement learning (RL) based methods
to infer the intent of a user through only high-dimensional, noisy user inputs, while adapting
to the user’s inputs and feedback over time, in order to assist the user in performing their
desired objectives more e↵ectively. In Chapter 1, we propose a deep RL approach that
learns from human feedback for assistive typing interfaces, which we formulate as contextual
bandit problems. In Chapter 2, we propose a method that extends this style of approach
for robotics tasks, which require sequential decision making. We do this through leveraging
autonomous pre-training with deep RL. We demonstrate the e↵ectiveness of these approaches
using simulated user inputs, real user studies where participants communicate intent through
webcam eye gaze, and a pilot study using brain-computer interfaces.
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Chapter 1

X2T: Training an X-to-Text Typing
Interface with Online Learning from
User Feedback

We aim to help users communicate their intent to machines using flexible, adaptive interfaces
that translate arbitrary user input into desired actions. In this chapter, we focus on assistive
typing applications in which a user cannot operate a keyboard, but can instead supply other
inputs, such as webcam images that capture eye gaze or neural activity measured by a brain
implant. Standard methods train a model on a fixed dataset of user inputs, then deploy a
static interface that does not learn from its mistakes; in part, because extracting an error
signal from user behavior can be challenging. We investigate a simple idea that would enable
such interfaces to improve over time, with minimal additional e↵ort from the user: online
learning from user feedback on the accuracy of the interface’s actions. In the typing domain,
we leverage backspaces as feedback that the interface did not perform the desired action. We
propose an algorithm called x-to-text (X2T) that trains a predictive model of this feedback
signal, and uses this model to fine-tune any existing, default interface for translating user
input into actions that select words or characters. We evaluate X2T through a small-scale
online user study with 12 participants who type sentences by gazing at their desired words,
a large-scale observational study on handwriting samples from 60 users, and a pilot study
with one participant using an electrocorticography-based brain-computer interface. The
results show that X2T learns to outperform a non-adaptive default interface, stimulates
user co-adaptation to the interface, personalizes the interface to individual users, and can
leverage o✏ine data collected from the default interface to improve its initial performance
and accelerate online learning.
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Figure 1.1: We formulate assistive typing as a human-in-the-loop decision-making problem, in which the
interface observes user inputs (e.g., neural activity measured by a brain implant) and performs actions (e.g.,
word selections) on behalf of the user. We treat a backspace as feedback from the user that the interface
performed the wrong action. By training a model online to predict backspaces, we continually improve the
interface.

1.1 Introduction

Recent advances in user interfaces have enabled people with sensorimotor impairments to
more e↵ectively communicate their intent to machines. For example, [94] enable users to
type characters using an eye gaze tracker instead of a keyboard, and [96] enable a paralyzed
human patient to type using a brain implant that records neural activity. The main challenge
in building such interfaces is translating high-dimensional, continuous user input into desired
actions. Standard methods typically calibrate the interface on predefined training tasks for
which expert demonstrations are available, then deploy the trained interface. Unfortunately,
this does not enable the interface to improve with use or adapt to distributional shift in the
user inputs.

In this chapter, we focus on the problem of assistive typing: helping a user select words
or characters without access to a keyboard, using eye gaze inputs [94]; handwriting inputs
(see Figure 4.2 in the appendix), which can be easier to provide than direct keystrokes [96];
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or inputs from an electrocorticography-based brain implant [51, 89]. To enable any existing,
default interface to continually adapt to the user, we train a model using online learning
from user feedback. The key insight is that the user provides feedback on the interface’s
actions via backspaces, which indicate that the interface did not perform the desired action in
response to a given input. By learning from this naturally-occurring feedback signal instead
of an explicit label, we do not require any additional e↵ort from the user to improve the
interface. Furthermore, because our method is applied on top of the user’s default interface,
our approach is complementary to other work that develops state-of-the-art, domain-specific
methods for problems like gaze tracking and handwriting recognition. Figure 2.1 describes
our algorithm: we initialize our model using o✏ine data generated by the default interface,
deploy our interface as an augmentation to the default interface, collect online feedback, and
update our model.

We formulate assistive typing as an online decision-making problem, in which the interface
receives observations of user inputs, performs actions that select words or characters, and
receives a reward signal that is automatically constructed from the user’s backspaces. To
improve the default interface’s actions, we fit a neural network reward model that predicts
the reward signal given the user’s input and the interface’s action. Upon observing a user
input, our interface uses the trained reward model to update the prior policy given by the
default interface to a posterior policy conditioned on optimality, then samples an action from
this posterior (see Figure 2.1). We call this method x-to-text (X2T), where x refers to the
arbitrary type of user input; e.g., eye gaze or brain activity.

Our primary contribution is the X2T algorithm for continual learning of a communication
interface from user feedback. We primarily evaluate X2T through an online user study
with 12 participants who use a webcam-based gaze tracking system to select words from a
display. To run ablation experiments that would be impractical in the online study, we also
conduct an observational study with 60 users who use a tablet and stylus to draw pictures
of individual characters. The results show that X2T quickly learns to map input images
of eye gaze or character drawings to discrete word or character selections. By learning
from online feedback, X2T improves upon a default interface that is only trained once using
supervised learning and, as a result, su↵ers from distribution shift (e.g., caused by changes in
the user’s head position and lighting over time in the gaze experiment). X2T automatically
overcomes calibration problems with the gaze tracker by adapting to the mis-calibrations
over time, without the need for explicit re-calibration. Furthermore, X2T leverages o✏ine
data generated by the default interface to accelerate online learning, stimulates co-adaptation
from the user in the online study, and personalizes the interface to the handwriting style of
each user in the observational study.

1.2 Learning to Infer Intent from User Input

In our problem setting, the user cannot directly perform actions; e.g., due to a sensorimotor
impairment. Instead, the user relies on an assistive typing interface, where the user’s intended
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action is inferred from available inputs such as webcam images of eye gaze or handwritten
character drawings. As such, we formulate assistive typing as a contextual bandit problem
[49, 100, 56, 48, 30]. At each timestep, the user provides the interface with a context x 2 X ,
where X is the set of possible user inputs (e.g., webcam images). The interface then performs
an action u 2 U , where U is the set of possible actions (e.g., word selections). We assume
the true reward function is unknown, since the user cannot directly specify their desired
task (e.g., writing an email or filling out a form). Instead of eliciting a reward function or
explicit reward signal from the user, we automatically construct a reward signal from the
user’s backspaces. The key idea is to treat backspaces as feedback on the accuracy of the
interface’s actions.

Our approach to this problem is outlined in Figure 2.1. We aim to minimize expected
regret, which, in our setting, is characterized by the total number of backspaces throughout
the lifetime of the interface. While a number of contextual bandit algorithms with lower
regret bounds have been proposed in prior work [50], we use a simple strategy that works
well in our experiments: train a neural network reward model to predict the reward given the
user’s input and the interface’s action, and select actions with probability proportional to
their predicted optimality. Our approach is similar to prior work on deep contextual multi-
armed bandits [17] and NeuralUCB [101], except that instead of using Thompson sampling
or UCB to balance exploration and exploitation, we use a simple, stochastic policy.

Modeling User Behavior and Feedback

Unlike in the standard multi-armed bandit framework, we do not get to observe an extrinsic
reward signal that captures the underlying task that the user aims to perform. To address
this issue, we infer rewards from naturally-occurring user behavior. In particular, in the
assistive typing setting, we take advantage of the fact that we can observe when the user
backspaces ; i.e., when they delete the most recent word or character typed by the interface.
To infer rewards from backspaces, we make two assumptions about user behavior: (1) the
user can perform a backspace action independently of our interface (e.g., by pressing a
button); (2) the user tends to backspace incorrect actions; and (3) the user does not tend
to backspace correct actions. Hence, we assign a positive reward to actions that were not
backspaced, and assign zero reward to backspaced actions. Formally, let r 2 {0, 1} denote
this reward signal, where r = 0 indicates an incorrect action and r = 1 indicates a correct
action.

Training the Reward Model to Predict Feedback

In order to perform actions that minimize expected regret – i.e., the total number of
backspaces over time – we need to learn a model that predicts whether or not the user will
backspace a given action in a given context. To do so, we learn a reward model p✓(r|x,u),
where p✓ is a neural network and ✓ are the weights. Since the reward r 2 {0, 1} can only take
on one of two values, p✓ is a binary classifier. We train this binary classifier on a dataset D
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Algorithm 1 X-to-Text (X2T)
Require ⇡̄, ✓init . default interface, pretrained reward model parameters
while true do

x ⇠ puser(x) . user gives input
u ⇠ ⇡(u|x) / p✓(r = 1|x,u)⇡̄(u|x) . interface performs action
r  0 if user backspaces else 1 . infer reward from user feedback
D  D [ {(x,u, r)} . store online input-action-reward data
✓  ✓ +r✓

P
(x,u,r)⇠D log (p✓(r|x,u)) . update reward model w/SGD

of input-action-reward triples (x,u, r). In particular, we fit the model p✓ by optimizing the
maximum-likelihood objective; i.e., the binary cross-entropy loss (see Equation 4.1 in the
appendix).

Since X2T learns from human-in-the-loop feedback, the amount of training data is limited
by how frequently the user operates the interface. To reduce the amount of online interaction
data needed to train the reward model, we use o✏ine pretraining. We assume that the user
already has access to some default interface for typing. We also assume access to an o✏ine
dataset of input-action pairs generated by the user and this default interface. We assign zero
rewards to the backspaced actions and positive rewards to the non-backspaced actions in this
o✏ine dataset, and initially train our reward model to predict these rewards given the user’s
inputs and the default interface’s actions. Thus, when X2T is initially deployed, the reward
model has already been trained on the o✏ine data, and requires less online interaction data
to reach peak accuracy.

Using the Reward Model to Select Actions

Even with o✏ine pretraining, the initial reward model may not be accurate enough for
practical use. To further improve the initial performance of our interface at the onset of
online training, we combine our reward model p✓(r|x,u) with the default interface ⇡̄(u|x).
We assume that ⇡̄ is a stochastic policy and that we can evaluate it on specific inputs, but
do not require access to its implementation. We set our policy ⇡(u|x) = p(u|x, r = 1) to
be the probability of an action conditional on optimality, following the control-as-inference
framework [52]. Applying Bayes’ theorem, we get p(u|x, r = 1) / p(r = 1|x,u)p(u|x). The
first term is given by our reward model p✓, and the second term is given by the default
interface. Combining these, we get the policy

⇡(u|x) / p✓(r = 1|x,u)⇡̄(u|x). (1.1)

This decomposition of the policy improves the initial performance of our interface at the onset
of online training, and guides exploration for training the reward model. It also provides a
framework for incorporating a language model into our interface, as described in Section 1.4.

Our x-to-text (X2T) method is summarized in Algorithm 1. In the beginning, we assume
the user has already been operating the default interface ⇡̄ for some time. In doing so, they
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generate an ‘o✏ine’ dataset that we use to train the initial reward model parameters ✓init.
When the user starts using X2T, our interface ⇡ already improves upon the default interface
⇡̄ by combining the default interface with the initial reward model via Equation 1.1. As
the user continues operating our interface, the resulting online data is used to maintain or
improve the accuracy of the reward model. At each timestep, the user provides the interface
with input x ⇠ puser(x). Although standard contextual bandit methods assume that the
inputs x are i.i.d., we find that X2T performs well even when the inputs are correlated due
to user adaptation (see Section 1.4) or the constraints of natural language (see Section 1.4).
The interface then uses the policy in Equation 1.1 to select an action u. We then update
the reward model p✓, by taking one step of stochastic gradient descent to optimize the
maximum-likelihood objective in Equation 4.1. Appendix 4.2 discusses the implementation
details.

1.3 Related Work

Prior methods for training interfaces with supervised learning typically collect a dataset
of input-action pairs, then fit a model that predicts actions given inputs. These methods
tend to either assume access to ground-truth action labels from the user [3, 93, 42], or
assume the user always intends to take the optimal action [29, 23, 22, 66]. Unfortunately,
the user may not always be able to provide ground-truth action labels. Furthermore, in
order for the system to compute optimal actions, the user must be instructed to perform
specific calibration tasks for which the optimal policy is already known. These calibration
tasks may not be representative of the tasks that the user intends to perform. This can
lead to a distribution mismatch between the inputs that the model is trained on during
the calibration phase, and the inputs that the model is evaluated on at test time when the
user performs their desired tasks. Standard methods address this problem by periodically
repeating the calibration process [96, 79], which can be time-consuming, disruptive, and
requires assumptions about when and how frequently to re-calibrate. X2T overcomes these
issues by continually learning from user feedback on tasks that naturally arise as the user
types, rather than imposing separate training and test phases.

Extensive prior work on text entry systems [60] enables users to type using eye gaze [94],
Braille [74], gestures [40], and palm keyboards for wearable displays [92]. X2T di↵ers in that
it enables the user to type using arbitrary inputs like eye gaze or handwriting, rather than
a fixed type of input that restricts the flexibility of the system and must be anticipated in
advance by the system designer.

X2T trains a typing interface through reinforcement learning (RL) with human-in-the-
loop feedback instead of an explicit reward function. COACH [59, 6], TAMER [45, 95], and
preference learning [85, 15] also train an RL agent without access to extrinsic rewards, but
require explicit user feedback on the agent’s behavior. X2T di↵ers in that it learns from
naturally-occurring feedback, which requires no additional e↵ort from the user to train the
agent. Other prior work trains RL agents from implicit signals, such as electroencephalog-
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raphy [99], peripheral pulse measurements [63], facial expressions [36, 19], and clicks in web
search [80]. X2T di↵ers in that it trains an interface that always conditions on the user’s
input when selecting an action, rather than an autonomous agent that ignores user input
after the training phase. Furthermore, X2T focuses on the assistive typing domain, where, to
the best of our knowledge, backspaces have not yet been used to train an interface through
RL. Related work on assistive robotic teleoperation interfaces proposes human-in-the-loop
RL methods that minimally modify user actions [78, 10, 83, 86, 24, 39]. X2T di↵ers in that
it learns to operate on arbitrary types of user inputs, instead of assuming the user provides
suboptimal actions.

1.4 Experimental Evaluation

We seek to answer the following questions: Q1 (Sec. 1.4): Does X2T improve with use and
learn to outperform a non-adaptive interface? Q2 (Sec. 1.4): Does the user adapt to the
interface while the interface adapts to the user? Q3 (Sec. 1.4): Does X2T personalize the
interface to di↵erent input styles? Q4 (Sec. 1.4): Do o✏ine pretraining and an informative
prior policy accelerate online learning? Q5 (Sec. 1.4): Does online learning improve the
interface beyond the initialization provided by o✏ine pretraining? Q6 (Sec. 1.4): Can X2T
improve the accuracy of a brain-computer interface for typing? To answer Q1-2, we run a
user study with 12 participants who use webcam images of their eyes to type via gaze (see
Figure 4.3). To answer Q3-5, we conduct an observational study with prerecorded images
of handwritten characters drawn by 60 users with a tablet and stylus (see Figure 4.2). To
answer Q6, we conduct a pilot study with one participant using an electrocorticography-
based brain-computer interface. In our experiments, we use default interfaces that are not
necessarily the state of the art in gaze tracking or handwriting recognition, but are instead
chosen to test the hypotheses in Q1-6. Appendix 4.2 describes the experiment design in
detail.

Adapting the Interface to the User

In this experiment, we aim to test X2T’s ability to improve over time, relative to a non-
adaptive, default interface. To that end, we formulate a gaze-based word selection task in
which we display a list of words to the user (see Figure 4.3), ask them to look at their
desired word, record an image from their webcam that captures their eye gaze, and predict
their desired word. To measure objective performance, we ask the user to type specific goal
sentences. To simplify the experiment, we restrict the action space U = {1, 2, 3, ..., 8} to the
eight buttons on the screen, and always assign the next word in the sentence to one of those
eight buttons (see Figure 4.3).

We evaluate (1) a default interface that uses iTracker [47] to estimate the user’s 2D gaze
position on the screen and select the nearest button, and (2) X2T. We calibrate the default
interface once at the beginning of each experimental condition for each user, by asking the
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Default interface is inaccurate, 
but X2T is accurate

Default interface is accurate

(a) (b) (c)

Figure 1.2: An online user study with 12 participants in the gaze tracking domain that addresses Q1:
does X2T improve with use and learn to outperform a non-adaptive interface? (a) X2T predicts the user’s
intended action more accurately than the default interface, and the gap between the two methods grows over
time. We smooth the curves using a moving average with a window size of 20 interactions, and measure
standard error across the 12 users. (b) X2T improves the performance of 10 out of the 12 users, and the
improvement from X2T is smaller when the default interface already performs well. Each orange circle
represents one of the 12 users. The dashed gray line shows default-equivalent performance, and the dotted
orange lines show the di↵erence between X2T and default performance. Per-user accuracy is averaged across
250 interactions. (c) As shown in the screenshot in Figure 4.3, the user is shown a display of eight words
arranged in a circle. Here, we plot the default interface’s 2D gaze position estimates given user inputs
intended to select the bottom-most button. The widely-scattered 2D estimates show that action prediction
is particularly hard for this button, perhaps because the user’s eyes tend to be more obscured when they are
looking down. By training a reward model on user feedback, X2T helps the interface recover from incorrect
gaze estimates.

user to look at each of the eight buttons one by one, recording 20 eye image samples for each
button in 2 cycles, and training a 2D gaze position estimator using the iTracker method.
After calibration, the default interface stays fixed, and does not adapt to the user within the
session; in part, because we do not know in advance which word the user intends to select,
so we cannot automatically harvest the necessary paired data of gaze images and targets to
re-calibrate the interface. Instead of periodically interrupting the user to gather new paired
data and re-calibrate, X2T continually adapts to the user throughout the session, following
Algorithm 1. Appendix 4.2 describes the implementation of the default interface and X2T in
further detail. We measure the performance of each method using the ground-truth accuracy
of action selections. To access ground-truth actions for calculating accuracy, we instruct the
user to try to select a specified word from the list displayed on their screen. Note that this
instruction is not an essential component of X2T, and is used purely to evaluate objective
performance in this experiment.

The results in panel (a) of Figure 1.2 show that at the onset of online learning, both
X2T and the default interface predict the user’s intended action with the same accuracy,
but quickly diverge. The default interface’s performance degrades over time, potentially due
to distribution shift in the user’s inputs caused by changes in head position, background
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lighting, and other visual conditions. In contrast, X2T maintains the interface’s strong
initial performance throughout the experiment, by continually updating the reward model
to reflect changes in the user’s inputs. Panel (b) shows that X2T significantly improves the
performance of 10 out of 12 participants, and that there are diminishing returns to X2T
when the default interface already performs well. We ran a one-way repeated measures
ANOVA on the action prediction accuracy dependent measure from the default and X2T
conditions, with the presence of X2T as a factor, and found that f(1, 11) = 17.23, p < 0.01.
The subjective evaluations in Table 4.1 in the appendix corroborate these results: users
reported feeling that X2T selected the words they wanted and improved over time more
than the default interface. Panel (c) qualitatively illustrates how X2T helps the interface
recover from incorrect 2D gaze position estimates: each green ‘x’ shows that even when
the default interface estimates a gaze position far from the intended button, which would
normally cause an incorrect action prediction, the reward model can adjust the overall action
prediction back to the correct button via Equation 1.1. We also find that X2T performs well
even when the user’s feedback is slightly noisy: the user backspaces mistakes, and does not
backspace correct actions, in 98.6% of their interactions.

User Adaptation to the Interface

In the previous experiment, we tested X2T’s ability to adapt the interface to the user. Prior
work on human-machine co-adaptation [91, 12, 88, 73] and the evolution of communication
protocols between humans [35] suggests that an adaptive interface may not only learn to
assist a static user, but even stimulate the user to adapt their input style to the interface. In
this experiment, we investigate whether the user adapts to the gaze-based interface described
in Section 1.4. To do so, we perform a counterfactual experiment: instead of training and
evaluating X2T on inputs x generated by the user while they were typing with X2T, we train
and evaluate X2T on inputs x generated by the user while they were typing with the default
interface. During the counterfactual experiment, instead of asking the user for new inputs,
we simply replay the old inputs that were intended for the default interface, and automate
backspaces. This enables us to test if the user adapted their inputs to X2T, or if the user
provided the same distribution of inputs to both the default interface and X2T.

The results in Figure 1.3 suggest that the user does indeed adapt their input style to
the interface, and that this user adaptation improves performance. Comparing X2T’s actual
performance (orange curve) to X2T’s counterfactual performance on replayed user inputs
that the user originally intended for the default interface (teal curve), we see that X2T is
able to perform much better with inputs intended for X2T compared to inputs intended for
the default interface. From this result alone, one might infer that the user provided X2T with
inputs that were more generically predictable than the inputs they provided to the default
interface. However, by comparing the default interface’s performance on replayed user inputs
that the user originally intended for X2T (gray curve) to X2T’s performance on the same
inputs (orange curve), we see that X2T performs better than the default interface on the
same inputs. This suggests that the user’s inputs to X2T are not merely easier to predict,
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Figure 1.3: A counterfactual experiment with the online user study data that addresses Q2: does the
user adapt to the interface while the interface adapts to the user? Training and evaluating X2T on user
inputs originally intended for the default interface leads to worse performance than doing so on user inputs
intended for X2T (orange vs. teal). Evaluating the default interface on inputs intended for X2T leads to
worse performance than evaluating X2T on the same inputs (orange vs. gray). These results suggest that
the user adapts their input style specifically to X2T, and that this user co-adaptation improves performance.
We smooth the curves using a moving average with a window size of 20 interactions, and measure standard
error across the 12 users.

but in fact adapted specifically to X2T. In other words, X2T stimulates user co-adaptation
to the interface.

Personalizing the Interface for Di↵erent Users

In this experiment, we demonstrate X2T’s ability to operate on a di↵erent type of user
input: drawings of characters (see Figure 4.2 in the appendix); which, for some users, can
be easier to provide than direct keystrokes [96]. We also investigate to what extent X2T
learns a personalized interface that is uniquely adapted to the individual user. To that end,
we analyze handwriting samples from 60 users, collected through a tablet and stylus, from
the UJI Pen Characters Database [57]. Each sample consists of a sequence of 2D positions
that traces the trajectory of the user’s pen tip as they draw a known character. We conduct
an observational study with this data by sampling goal sentences, replaying a randomly-
selected handwriting sample of the user’s desired next character from the goal sentence, and
treating each drawing as the user input x; akin to the replay experiment in Section 1.4.
This observational study is equivalent to an online study, except that it does not permit
user co-adaptation to the interface since it replays logged user inputs, and assumes that the
feedback signal is not noisy when automating backspaces. To test X2T’s robustness to noise
and distributional shift in the user’s input, we perturb the replayed pen tip positions by
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Evaluation

Training User 1 User 2 User 3 User 4

User 1 .995 .033 .025 .017
User 2 .018 .463 .009 .061
User 3 .000 .002 .975 .039
User 4 .018 .002 .025 .993

Table 1.1: An observational study with 60 users in the handwriting recognition domain that addresses Q3:
does X2T personalize the interface to di↵erent input styles? We measure action prediction accuracy across
1000 interactions, and randomly sample users 1-4 from the pool of 60 users. The interface trained on user i
is substantially more accurate when evaluated on inputs from user i than on inputs from user j, suggesting
that the learned interface is personalized to each individual user.

adding Brownian noise (see Figure 4.2 in the appendix).
We evaluate (1) a default interface trained to classify handwritten EMNIST characters

[16], and (2) X2T. We intentionally train the default interface on EMNIST images instead of
UJI Pen Characters drawings, to model real-world applications with a distribution mismatch
between the training data and test data, as discussed in Section 1.3. To address the challenge
of selecting from 27 possible character actions, we use a language model [21] to predict the
prior likelihood of an action pLM(ut|u0:t�1) given the preceding characters u0:t�1 in the user’s
text field. We use this language model in both the default interface and X2T. In particular,
we set ⇡̄(u|x) / p�(u|x)pLM(u|u0:t�1), where p� is the EMNIST image classifier. As in
Section 1.4, the default interface stays fixed throughout the experiment and does not adapt
to the user, since re-training the default interface would require interrupting the user to
collect paired data.

The results in Figure 1.4 show that X2T significantly outperforms the default interface
(orange vs. gray). We ran a one-way repeated measures ANOVA on the action prediction
accuracy dependent measure from the default and X2T conditions, with the presence of X2T
as a factor, and found that f(1, 59) = 37.46, p < 0.0001. Furthermore, Table 1.1 shows that
X2T learns an interface that is particularly suited to the user whose data it was trained on:
when an interface trained on user i’s data is evaluated on data from user j 6= i instead of
user i, performance degrades substantially.

Ablation Experiments

In this experiment, we aim to test the importance of three components of X2T: o✏ine
pretraining, an informative prior policy, and online learning. As discussed in Sections 1.2
and 1.2, to improve the initial performance of X2T and accelerate online learning, we pretrain
on o✏ine data collected using the default interface, and incorporate prior knowledge from the
default interface into the prior policy ⇡̄ in Equation 1.1. Using the handwriting recognition
task from Section 1.4, we conduct ablation experiments in which we drop out each of the
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Figure 1.4: An observational study with 60 users in the handwriting recognition domain that addresses Q4-
5: do o✏ine pretraining and an informative prior policy accelerate online learning, and does online learning
improve the interface beyond the initialization provided by o✏ine pretraining? In this ablation experiment,
we remove each of the three components – o✏ine pretraining, an informative prior policy, and online learning
– one by one, and find that each component is critical for maintaining high action prediction accuracy at
di↵erent stages of the experiment.

three components, one by one, and measure any resulting changes in performance. In the first
condition, we test the e↵ect of not performing o✏ine pretraining, by initializing X2T with
random weights ✓init. In the second, we test the e↵ect of not incorporating prior knowledge
into our policy, by setting the prior policy ⇡̄ to be a uniform distribution over actions. In the
third, we test the e↵ect of not learning online and instead relying solely on o✏ine pretraining,
by freezing the reward model parameters after o✏ine pretraining and not storing online data.

The results in Figure 1.4 show that o✏ine pretraining is helpful at the onset of online
learning (orange vs. teal), but does not have a substantial e↵ect on performance after some
online data has been collected. This is unsurprising, since leveraging o✏ine data is only
necessary when insu�cient online data has been collected. Using the default interface as
a prior policy in Equation 1.1 is critical for X2T’s performance throughout the experiment
(orange vs. red). This is also unsurprising, given that the default interface contains useful
prior knowledge about how to interpret user inputs. Online learning is not particularly
helpful at the onset of the experiment (orange vs. purple), but has a substantial e↵ect on
performance over time. This result shows that learning from on-policy data is critical for
X2T. In other words, X2T learns best when it learns from its own mistakes, rather than the
mistakes of the default interface.
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Pilot Study with a Brain-Computer Interface

Figure 1.5: A pilot study with one participant that
addresses Q6: can X2T improve the accuracy of a
brain-computer interface (BCI) for typing? We find
that X2T adapts to recent input-action-reward data
and outperforms a default interface that is trained via
supervised learning on older, paired input-action data.

In this experiment, we demonstrate X2T’s
ability to improve the typing accuracy of
a brain-computer interface (BCI) that uses
a 128-channel chronic electrocorticography
(ECoG) implant to measure neural activ-
ity [51, 89]. Each user input has 128 fea-
tures, which are obtained by pre-processing
the raw ECoG signals (Appendix 4.1 dis-
cusses the details). The results in Figure
1.5 show that, after o✏ine pretraining on a
dataset of 2913 input-action-reward tuples,
X2T achieves 60.7% action prediction accu-
racy during a new session of 300 steps. We
train a default interface on paired data of in-
puts and ground-truth actions collected be-
fore the o✏ine data. To evaluate the default
interface, we conduct a counterfactual ex-
periment (similar to those in previous sec-
tions) on the 300 steps of data from the
X2T evaluation session. The default inter-
face only achieves 46.3% accuracy. Interest-
ingly, the default interface never predicts the top-most button action, leading to a 0% recall
rate for that action. This is most likely due to changes in the feature processing pipeline or
other kinds of distributional shift in the user inputs over time. In contrast, X2T achieves
70.2% recall on the top-most button action, suggesting that it can overcome these challenges.

1.5 Discussion

In our online user study on gaze-based word selection, we show that X2T learns to outperform
a non-adaptive interface in under 30 minutes (including o✏ine data collection), and that
the user simultaneously adapts their input style to the interface. The observational study
on handwritten character recognition shows that X2T can also personalize the interface to
individual users.Additionally, our pilot study with a brain-computer interface user shows that
X2T improves the recall rate of one particular action from 0% to 70.2%. These experiments
broadly illustrate how online learning from user feedback can be used to train a human-
machine interface.

One limitation of this work is that we assume backspaces can be generated independently
of X2T. This assumption restricts X2T to settings where the user can communicate a binary
signal; e.g., through a button press or a sip-and-pu↵ interface. One direction for future work
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is to relax this assumption by training a binary classifier to generate feedback signals from,
e.g., facial expressions or brain activity. X2T is also limited in that the benefit from using
X2T to fine-tune the default interface may decrease as the default interface is improved,
as suggested by the diminishing returns in Figure 1.2. One direction for future empirical
work is to test X2T with state-of-the-art default interfaces. In spite of these limitations,
methods like X2T that learn from their mistakes and stimulate user co-adaptation provide
a general mechanism for improving user interfaces; not only for assistive typing, but also for
other domains, such as brain-computer interfaces for prosthetic limb control and augmented
reality devices for visually-impaired users.
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Chapter 2

ASHA: Assistive Teleoperation via
Human-in-the-Loop Reinforcement
Learning

Building assistive interfaces for controlling robots through arbitrary, high-dimensional, noisy
inputs (e.g., webcam images of eye gaze) can be challenging, especially when it involves in-
ferring the user’s desired action in the absence of a natural ‘default’ interface. Reinforcement
learning from online user feedback on the system’s performance presents a natural solution
to this problem, and enables the interface to adapt to individual users. However, this ap-
proach tends to require a large amount of human-in-the-loop training data, especially when
feedback is sparse. In this chapter, we propose a hierarchical solution that learns e�ciently
from sparse user feedback: we use o✏ine pre-training to acquire a latent embedding space
of useful, high-level robot behaviors, which, in turn, enables the system to focus on using
online user feedback to learn a mapping from user inputs to desired high-level behaviors.
The key insight is that access to a pre-trained policy enables the system to learn more from
sparse rewards than a näıve RL algorithm: using the pre-trained policy, the system can make
use of successful task executions to relabel, in hindsight, what the user actually meant to
do during unsuccessful executions. We evaluate our method primarily through a user study
with 12 participants who perform tasks in three simulated robotic manipulation domains
using a webcam and their eye gaze: flipping light switches, opening a shelf door to reach
objects inside, and rotating a valve. The results show that our method successfully learns
to map 128-dimensional gaze features to 7-dimensional joint torques from sparse rewards in
under 10 minutes of online training, and seamlessly helps users who employ di↵erent gaze
strategies, while adapting to distributional shift in webcam inputs, tasks, and environments.
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Figure 2.1: In this example, the user directs their gaze to control a wheelchair-mounted Jaco arm to push
di↵erent light switches. During the autonomous pre-training phase, ASHA learns a task-conditioned policy
⇡spec
 ,� that can flip various switches. This policy is decomposed into a latent variable model with two

components: a specification encoder f spec
 , which maps a task specification ⌧ spec (e.g., goal state) to a latent

embedding z; and a latent-conditioned policy g�. In phase 1, we jointly pre-train f spec
 and g� to flip switches.

In phase 2, we use human-in-the-loop RL to train an interface ⇡inpt
✓,� that enables the user to control the arm

using their eye gaze, and perform new tasks sampled from the same distribution as the pre-training tasks.
To speed up learning, this interface is also represented as a latent variable model with two components: an
input encoder f inpt

✓ , which maps the user’s control input x (e.g., webcam image) to a high-level, latent action
z; and the pre-trained latent-conditioned policy g�.

2.1 Introduction

Shared-control teleoperation interfaces can help users control systems like robotic arms and
wheelchairs more e↵ectively [43, 65, 11, 4, 37]. For example, they can help users perform
dexterous robotic manipulation tasks by automatically maximizing contact area with grasped
objects [102], or enable control via complex user input streams like eye gaze [7, 5] and brain-
computer interfaces [67]. In this paper, we focus on the problem of e�ciently training an
interface to infer the user’s desired action (e.g., robot arm motion) from an arbitrary, high-
dimensional, noisy control input (e.g., webcam image of eye gaze). This stands in contrast to
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prior work on shared autonomy that assumes the user already has a viable interface for direct
teleoperation and only aims to improve the user’s performance by minimally intervening in
the user’s actions to avoid collisions [10, 83, 86, 24], preserving the reachability of potential
goals [39], or inferring goals and acting to reach them [33, 38, 76, 46, 68]. Other prior
methods do not require a direct teleop interface, and instead perform supervised calibration
on paired examples of inputs and actions [29, 23, 22, 66, 93, 3, 42, 27]. However, this
approach can also be limiting, in that it does not learn from the user’s online interactions
with the system during deployment, and as a result, does not improve with use or adapt to
distributional shift in the user’s inputs, tasks, and environments.

In this paper, we consider a di↵erent problem setting than the aforementioned prior work:
instead of requiring a direct teleop interface or limiting data collection to explicit calibration
phases, we elicit user feedback on the system’s online performance and train the interface
through reinforcement learning (RL) [90]. Our adaptive interface observes the user’s input,
takes an action, receives a sparse, binary reward signal from the user at the end of each
episode that indicates task success or failure, and learns to optimize this feedback. This
approach is appealing because it scales with regular use: the more the user uses the interface
to perform the activities of daily living [82, 62, 77], the more competent and personalized
the interface becomes. Note that, in contrast to prior work on human-in-the-loop RL like
COACH [59, 6], TAMER [45, 95], and preference learning [85, 15], we aim to train an
interface that enables the user to control the robot at test time and perform di↵erent tasks,
instead of training the robot to autonomously perform a single task. The main challenge is
that, due to the sparsity of rewards, it can require a large amount of training data, which
may be impractical for an individual user operating a physical robot.

We propose a hierarchical solution to this challenge: use o✏ine pre-training to learn
to perform potentially-useful tasks, then use online user feedback to learn a mapping from
user inputs to robot behaviors (see Figure 2.1). In the pre-training phase, we train a task-
conditioned policy to perform a wide variety of tasks without the user in the loop (e.g.,
rotating a valve to various target angles), and automatically discover useful, high-level robot
behaviors in the process (e.g., rotating the valve clockwise or counter-clockwise). Then, in
the online learning phase, we bring the user into the loop, and use RL with sparse, user-
provided rewards to learn how to interpret the user’s inputs as desired high-level behaviors.
We leverage the pre-trained policy to extract more information from the user’s sparse online
rewards than standard RL algorithms: (a) when the user successfully completes a task, we
observe information (e.g., the final state) that enables us to compute an optimal policy for
that task in hindsight using our pre-trained task-conditioned policy, then train the interface
to imitate that optimal policy; and (b) assuming that when the user fails, they attempt the
same task again until they succeed, we can also relabel actions from failed trajectories with
an optimal policy calculated in hindsight after an eventual success. We call this algorithm
ASsistive teleoperation via HumAn-in-the-loop reinforcement learning (ASHA).

We primarily evaluate ASHA through a user study with 12 participants who use a webcam
and their eye gaze to perform tasks in three simulated manipulation domains: flipping light
switches, opening a shelf door to reach objects inside, and rotating a valve (see Figure 2.2 for
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screenshots). The results show that our method successfully learns to map 128-dimensional
gaze features to 7-dimensional joint torques from sparse rewards in under 10 minutes of online
training, while adapting to distributional shift in the user’s webcam input caused by changes
in ambient lighting and head position (Section 2.3); changes in the user’s set of desired
tasks, like the addition of a new light switch (Section 2.3); and changes in environmental
conditions, like whether a shelf door is initially open or closed (Section 2.3). In both domains,
ASHA increased success rates for the majority of users, compared to a non-adaptive baseline
interface. Even though users employed a variety of strategies to operate the interface – e.g.,
looking directly at the target, looking at distant parts of the screen to indicate di↵erent
targets, exaggerating their gaze to correct the robot, and dynamically guiding the robot to
subgoals – ASHA was able to seamlessly adapt to the di↵erent communication styles by
learning from individual user data.

2.2 Training an Assistive User Interface

In our setting, the user cannot directly operate the robot. Instead, the user relies on an
assistive interface that infers the user’s intended action from available inputs, such as webcam
images of eye gaze, or signals recorded by a brain implant. We do not require prior knowledge
of how to parse the user’s input, and instead treat the user’s input as a raw, undi↵erentiated
bitstream. The user’s desired task is typically not directly observable to the robot, and this
desired task may change between episodes. As such, we formulate the assistance problem as a
partially-observable Markov decision process (POMDP) [41]. The state consists of the state
of the environment st (e.g., the position and orientation of the robot) and the user’s desired
task T (e.g., flipping a particular light switch). The observation consists of the state of the
environment st and the user’s control input xt (e.g., an image of their eyes that captures
gaze direction), but not the task T . The user’s control input xt communicates their intent
to the robot. We do not assume access to the user’s desired task T , since this can be di�cult
for the user to specify. Instead, we elicit a sparse, binary reward signal rt 2 {0, 1} from the
user, in the form of a button press that indicates task success or failure at the end of each
episode. We aim to learn an interface ⇡inpt(at|s0:t,x0:t) that optimizes this user-provided
reward feedback. We also aim to minimize the number of human interactions required to
learn this interface.

Our approach to this problem is outlined in Figure 2.1. Training an assistive interface
through human-in-the-loop RL with sparse rewards typically requires many hours of inter-
actions with users, in part due to the di�culty of simultaneously learning to control the
environment and infer the user’s intent [83]. However, in typical teleoperation tasks, there
are aspects of controlling the environment that can be learned separately from the user.
Hence, we decompose the problem into two phases: (1) pre-training a policy g(at|st, z) that
is parameterized by a high-level latent variable z and can perform potentially-useful tasks;
and (2) learning a mapping f inpt(z|s0:t,x0:t) from the user’s control inputs x to the user’s
desired high-level behavior z.
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Phase 1: Autonomous Pre-Training of a Task-Conditioned Policy

In many teleoperation domains, we can conservatively define a task distribution that covers
a wide variety of behaviors that the user may potentially want to execute in the future –
e.g., opening and closing cupboards in a kitchen, or flipping light switches on a wall – and
then pre-train the robot to perform those tasks, without the user in the loop. Our final
system is not necessarily limited to selecting from among these pre-training tasks. Rather,
the space of skills acquired in phase 1 is meant to act as a kind of ‘basis’ for the tasks
that the user might want to perform in phase 2, and continuous input from the user will
be used to infer the desired behavior in terms of this basis. This space can also be viewed
as a reparameterization of the policy space: instead of searching over all possible policy
parameters during the human-in-the-loop learning phase, the system will search over high-
level behaviors in the latent space acquired during this autonomous pre-training phase.

During phase 1, we assume the ability to sample tasks Ti ⇠ p(T ), a specification ⌧ speci

of each task, and a reward function Ri(st, at) for each task. These reward functions Ri

are only used for pre-training, and are not required during phase 2 of human-in-the-loop
learning, when the user will perform new, unknown tasks drawn from the same distribution
p(T ). Also note that the specification ⌧ speci does not have to be a full trajectory, but merely
a representation of the task that can be extracted from a successful trajectory – in our
experiments, we define a set of goal-reaching tasks, set each specification ⌧ speci to be the 3D
position of the target object or 1D target angle of the valve, and define a reward function
Ri for each task. To ensure that we learn a basis of skills, rather than a separate policy for
each of the pre-training tasks, we follow prior work [34] and represent the robot’s policy as
a latent variable model,

⇡spec
 ,� (at|st; ⌧ speci ) , Ez⇠f spec

 (z|⌧ speci )[g�(at|st, z)], (2.1)

where f spec
 is the ‘specification encoder’, g� is the ‘latent-conditioned policy’, ⇡spec

 ,� is the
composition of f spec

 and g�, z 2 Rd is a latent variable that characterizes the task (we set
d = 3 in our experiments), the prior distribution of z is the standard normal distribution
N (0, Id), and the action at is conditionally independent of the specification ⌧ speci given the
state st and latent embedding z. At the beginning of each pre-training episode, we sample a
task Ti ⇠ p(T ). We then jointly pre-train the latent-conditioned policy g� and specification
encoder f spec

 to optimize the task rewards Ri using RL – in our implementation, we use
the soft actor-critic algorithm (SAC) [32]. An important consequence of the latent variable
model in Equation 2.1 is that, in addition to optimizing the task rewards Ri, we regularize
the latent embedding z to its prior distribution N (0, Id) using a variational information
bottleneck (VIB) [2, 1]. The VIB encourages the model to learn a smooth, compressed
latent space that shares information across tasks, and encourages the specification encoder
f spec
 to discard task-irrelevant information about the specification ⌧ speci from the embedding
z – this is critical to phase 2 of our method, because it prevents the interface from attempting
to infer these task-irrelevant details from the user’s control inputs (see Q2 in Section 2.4).
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Phase 2: Human-in-the-Loop Reinforcement Learning of a User
Interface

Now that we have acquired a latent embedding space of high-level robot behaviors (the left
half of Figure 2.1), we turn to the problem of learning an interface that maps user inputs
to desired high-level behaviors (the right half of Figure 2.1). We represent the interface as a
latent variable model that reuses the pre-trained latent-conditioned policy g�,

⇡inpt
✓,� (at|s0:t,x0:t) , Ez⇠f inpt

✓ (z|s0:t,x0:t)
[g�(at|st, z)], (2.2)

where f inpt
✓ is the ‘input encoder’, ⇡inpt

✓,� is the composition of f inpt
✓ and g�, and the prior

distribution of z is the standard normal distribution N (0, Id). Note that the input encoder
f inpt
✓ di↵ers from the specification encoder f spec

 learned in the pre-training phase: f inpt
✓

reads in the user’s control input x (e.g., gaze), while f spec
 takes a specification ⌧ spec (e.g.,

goal state) as input instead. Since the user’s inputs x are only partial observations of the
state variable T that defines the task, the interface ⇡inpt

✓,� is generally conditioned on the full
sequence of states s0:t and inputs x0:t. However, in our switch and bottle experiments, we
find that conditioning on only the most recent state st and input xt works well empirically.

Given the latent variable model in Equation 2.2, we train f inpt
✓ through RL from user

feedback. Recent work in this area [28] suggests a straightforward method: assign a reward
of 1 to successes, 0 to failures, and run a standard RL algorithm that essentially imitates
the successful trajectories while down-weighting the failed trajectories. Unfortunately, due
to the sparsity of the rewards, this approach would typically require a prohibitive amount
of human interaction (see Q3 in Section 2.4). However, we contribute a novel insight that
makes the method practical: we can extract more information from successful trajectories,
by not simply imitating the actions that were actually taken (since some of them may be
suboptimal), but instead imitating an optimal policy for the task that was completed. We
can also extract more information from failed trajectories in the same manner, if we assume
that when the user fails to perform a task, they reset the robot to its initial state (e.g.,
retract the robotic arm on their wheelchair back to its mount), and try to perform the same
task again and again until they succeed. We now operationalize these two ideas, then arrive
at our final method.
Learning e�ciently from successes in hindsight. Instead of simply imitating a suc-
cessful trajectory, we imitate an optimal policy conditioned on task information extracted
from the successful trajectory. Let D denote the set of successful trajectories. From each
of these successes, we extract a specification ⌧ spec of the user’s desired task at the time –
e.g., in the switch and bottle domains, we set ⌧ spec to be the final 3D position of the object
manipulated in the successful trajectory, analogous to the pre-training phase in Section 2.2.
We then combine this task specification ⌧ spec with the pre-trained task-conditioned policy
⇡spec
 ,� to represent the optimal policy ⇡spec

 ,� (at|st, ⌧ spec) via Equation 2.1. The key idea is to
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match the interface ⇡inpt
✓,� with the optimal policy ⇡spec

 ,� , by optimizing the loss,

L(✓) =
X

⌧2D,t

DKL(⇡
spec
 ,� (·|st, ⌧

spec) k ⇡inpt
✓,� (·|s0:t,x0:t))

+�DKL(f
inpt
✓ (·|s0:t,x0:t) k N (0, Id)), (2.3)

where the second term is the VIB for the latent variable model in Equation 2.2, and � is a
regularization constant. By minimizing the divergence between the policies induced by the
input encoder f inpt

✓ and the pre-trained specification encoder f spec
 , we force f inpt

✓ to infer
a latent embedding that induces the same low-level action distribution as the embedding
inferred by f spec

 . This helps to reduce the amount of human interaction required to train
the system (see Q5 in Section 2.4). Note that optimizing Equation 2.3 does not necessarily
force both encoders to produce the same embedding, since di↵erent embeddings can induce
the same low-level action distribution. This keeps our method flexible, and enables the user
to guide the robot to subgoals.
Learning e�ciently from failures in hindsight. Instead of simply treating failed tra-
jectories as examples of behavior that achieved zero reward, we take the final, successful
trajectory at the end of a string of failed trajectories that attempted to perform the same
task, extract a task specification ⌧ spec from this successful trajectory, compute the optimal
policy ⇡spec

 ,� (at|st, ⌧ spec) for all the states in the success and the failures, and optimize the loss
in Equation 2.3. The key idea is that successful episodes enable us to compute the optimal
policy for the most recent failure episodes, because a string of failures and eventual success
are all attempts to perform the same task. This helps to minimize the human interaction
required to train the system (see Q4 in Section 2.4).

Algorithm Summary

Our complete assistive teleoperation method is summarized in Algorithm 2. We initially
pre-train the latent-conditioned policy g� and specification encoder f spec

 with a set of task
specifications and reward functions {⌧ speci , Ri}i using a standard RL algorithm with a VIB
– our implementation constructs several goal-reaching tasks and pre-trains on them with
SAC. We then begin training the input encoder f inpt

✓ with the user in the loop. First, the
user decides on a task T , which we assume is sampled from the same distribution p(T ) as
the pre-training tasks. At each timestep t, the environment generates the next state st, and
the user provides the system with input xt. After seeing the input xt, the robot takes an
action at sampled from the interface ⇡inpt

✓,� defined by the input encoder f inpt
✓ and the pre-

trained latent-conditioned policy g� via Equation 2.2. At the end of each trajectory, we ask
the user whether the robot succeeded or failed. If the robot fails, we reset and assume the
user attempts to perform the same task again. If the robot succeeds, we take the successful
trajectory, extract a task specification ⌧ spec from it, use the pre-trained specification encoder
f spec
 and latent-conditioned policy g� to define an optimal policy for the task via Equation

2.1, and train the input encoder f inpt
✓ to induce actions that match that optimal policy, by
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Algorithm 2 Assistive Teleoperation via Human-in-the-Loop Reinforcement Learning
(ASHA)

1: g�, f
spec
  RL({⌧ speci , Ri}i) . pre-train the latent-conditioned policy and specification

encoder autonomously
2: while true do
3: T ⇠ p(T ) . user chooses a task
4: D  [] . initialize empty list of trajectories for current task
5: while robot has not succeeded at task T yet do
6: ⌧  [] . initialize empty trajectory
7: s0 ⇠ p(s0) . reset environment
8: for t 2 {0, 1, 2, ..., T � 1} do
9: xt  user’s control input
10: at ⇠ ⇡inpt

✓,� (at|s0:t,x0:t) . robot performs action
11: ⌧ .append(st,xt)
12: st+1 ⇠ p(st+1|st,at) . environment evolves

13: D.append(⌧) . store trajectory (even if a failure)

14: ⌧ spec  final, successful trajectory ⌧ in D
15: ✓  ✓ �r✓

P
⌧2D,tDKL(⇡

spec
 ,� (·|st, ⌧ spec) k ⇡inpt

✓,� (·|s0:t,x0:t))
16: +VIB(✓) . update input encoder

optimizing the loss in Equation 2.3. We find that training f inpt
✓ to convergence in line 16

using mini-batch stochastic gradient descent on all past data, including data D from previous
tasks T , works well empirically. The user then decides on a new task, and we repeat with
the updated input encoder f inpt

✓ .

2.3 User Studies

In our experiments, we evaluate to what extent ASHA can adapt to the user’s inputs (Section
2.3), to users that want to perform new tasks (Section 2.3), and to changes in the environment
(Section 2.3). We conduct a user study with 12 participants who control a simulated 7-DoF
Jaco robotic arm using gaze (see Figure 2.2). The interface receives 128-dimensional feature
vectors that represent the user’s webcam image inputs xt, and outputs 7-dimensional joint
torques as actions at. The users perform tasks in three simulated manipulation domains
implemented with the PyBullet real-time physics simulator [18] using assets from Assistive
Gym [25]: flipping light switches, opening a shelf to reach objects inside, and rotating a
valve.

Adapting to Distributional Shift in Gaze Inputs

In this experiment, we aim to test ASHA’s ability to improve over time by learning from
user feedback. We compare to a non-adaptive baseline interface that is initially calibrated
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Task: flip the light switch

User’s desired 
switch

(a)

Task: open the sliding 
door, then reach the bottle

User’s desired 
bottle

(b)

User’s target
position for 

puck

“Puck”

(c) (d)

Task: rotate 
valve 

to target angle

Task: push puck 
to target position

Webcam 128-dim. 
gaze 

features

Pre-trained 
iTracker model

(Krafka et al., 2016)

Webcam inputs

Figure 2.2: The user sees the simulated environment through the point of view of someone sitting in the
wheelchair, and directs their gaze to communicate what they want the robot to do. In the switch domain
(a), the user must push down on the blue lever. In the bottle domain (b), the user must open the sliding
door if necessary, then reach for the blue bottle. In the valve domain (c), the user must rotate the valve so
that the blue tip points at the red sphere. In the puck domain (d), the user must push the white puck to
the blue target.

via supervised learning, but does not adapt during deployment (analogous to the prior work
discussed in Section 2.1). To train this baseline interface, we collect paired data by showing
a small number of pre-recorded videos of the robot autonomously performing tasks to the
user, and recording the user’s passive gaze inputs as they watch the videos. We show 2 videos
per task in each domain, totalling 6 videos in switch, 8 in bottle, and 8 in valve. We then
train the baseline’s input encoder f inpt

✓0
on the objective in Equation 2.3, treating the paired

data as a set of successful trajectories D. We refer to this supervised learning procedure as
‘calibration’. Note that this implicitly assumes that the user’s passive inputs are equivalent
to their active control inputs, which is often not the case in practice [20, 97]. To improve
the initial performance and sample e�ciency of our method, we initialize ASHA’s input
encoder f inpt

✓ with the calibrated baseline parameters ✓0, and initialize ASHA’s replay bu↵er
with the same paired data that was used to calibrate the baseline. We measure the online
performance of both methods by asking the user to complete particular tasks (e.g., flipping
the switch indicated in blue), and computing the success rate of the user’s first attempt
at each task (including subsequent attempts would introduce selection e↵ects for di�cult
tasks). We calibrate and evaluate on the same distribution of tasks: in the switch domain, a
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ASHA improves performance 
for these users

ASHA performs worse 
than the baseline 

for these users

Figure 2.3: Each circle represents the success rate for one participant, averaged over 50 online episodes (11
minutes).

uniform distribution over flipping one of the three switches in the middle; and in the bottle
domain, a uniform distribution over reaching one of the two bottles. To establish a lower
bound on performance, we also compare to a baseline that randomly samples a latent z and
executes the policy g�(at|st, z), without taking any user input.

The results in Figure 2.3 show that ASHA improves the success rates of the majority
of users, relative to the non-adaptive baseline. ASHA initially performs the same as the
non-adaptive baseline, executing coherent but undesirable behaviors like moving toward the
wrong target, then begins to outperform the baseline after 20 online episodes of RL. One
potential explanation for the gap between ASHA and the non-adaptive baseline is that most
users have a substantial distribution mismatch between passive and active inputs, and that
ASHA helps those users by fine-tuning on active inputs instead of only initially calibrating
on passive inputs. Another possibility is that ASHA adapts to changes in ambient lighting
or head position over time, while the non-adaptive baseline performs increasingly worse
over time. We ran a one-way repeated measures ANOVA on the success rates from the
baseline and ASHA conditions, with the presence of ASHA as a factor, and found that
f(1, 11) = 8.26, p < .05 in the switch domain, and f(1, 11) = 7.28, p < .05 in the bottle
domain. Subjective evaluations corroborate these results: users reported feeling more in
control of the robot with ASHA compared to the baseline.

Learning to Perform the User’s Desired Tasks

The previous experiment showed that ASHA can adapt to distributional shift in the user’s
gaze input. In this next experiment, we show that ASHA can also adapt to individual
di↵erences in the user’s desired task distribution. In the switch domain in particular, we
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Figure 2.4: Shift in Task Distribution or Environment

(a) (b)

calibrate the input encoder on paired data generated from one distribution of tasks – a
uniform distribution over the 2nd and 3rd switches from the left – then evaluate online on
a di↵erent distribution of tasks – a uniform distribution over the 2nd, 3rd, and 4th switches
from the left. This is challenging, since examples of the 4th switch being pressed are not
included in the calibration data. RL o↵ers a natural solution to this problem by fine-tuning
the model on the user’s online attempts to perform new tasks. The results in Figure 2.4a
show that ASHA can indeed adapt to the new task distribution, substantially improving
upon its initial success rate by the end of the online training period.

Adapting to a Changing Environment

Adaptation is useful, not only because the user’s input might drift or their desired tasks
might be novel relative to the training tasks, but also because the environment may have
changed since the interface was previously calibrated. RL again o↵ers a natural solution to
this problem by incorporating new experiences into its replay memory as the user interacts
with their changing environment. To illustrate this idea, we run an experiment in the bottle
domain in which we calibrate on paired data where the sliding door never covers the desired
bottle, then evaluate online in scenarios where the sliding door may randomly cover the
desired bottle. Figure 2.4b shows that ASHA adapts to the new environmental conditions,
increasing the success rate over time.
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Table 2.1: Ablation Experiments

Switch Bottle

Random Latent (Baseline) 0.19± 0.02 0.44± 0.02
Non-Adaptive (Baseline) 0.50± 0.05 0.53± 0.02
ASHA (Ours) 0.83± 0.02 0.79± 0.03
ASHA w/ Det. Input Enc. (Q1) 0.70± 0.03 0.73± 0.02
ASHA w/ Det. Pre-train Enc. (Q2) 0.66± 0.06 0.46± 0.03
SAC from Scratch (Q3) 0.00± 0.00 0.00± 0.00
ASHA w/o Failure Relabeling (Q4) 0.54± 0.03 0.55± 0.02
ASHA w/ Latent Regression (Q5) 0.41± 0.04 0.57± 0.02

Success rates across 100 episodes and 10 random seeds

2.4 Simulation Experiments

Ablation Study

To run ablation experiments at a scale that would be impractical in a user study, we simu-
late user input x 2 R3 as the 3D position of the target switch or bottle with i.i.d. isotropic
Gaussian noise added at each timestep. We seek to answer the following questions. Q1:
Does sampling from a stochastic input encoder f inpt

✓ improve exploration, relative to a de-
terministic encoder? Q2: Does pre-training with a VIB improve downstream performance
during human-in-the-loop learning, relative to pre-training without a VIB? Q3: Does pre-
training the latent-conditioned policy g� speed up human-in-the-loop learning, relative to
end-to-end training the interface from scratch online? Q4: Does relabeling failures speed
up human-in-the-loop learning, relative to ignoring failures and only training on successes?
Q5: Does regressing onto the optimal policy in Equation 2.3 perform better than regress-
ing onto sampled latents that led to a success? The results in Table 2.1 show that all the
ablated variants of ASHA perform worse than the full ASHA method, suggesting that sam-
pling from a stochastic input encoder f inpt

✓ improves exploration (Q1), pre-training with a
VIB and reusing the pre-trained latent-conditioned policy g� speed up downstream learn-
ing (Q2, Q3), relabeling failures makes human-in-the-loop learning more e�cient (Q4), and
regressing onto an optimal policy is more e↵ective than regressing onto sampled latents (Q5).

Demonstration on Continuous Task Spaces

The switch and bottle environments tested in the previous experiments have discrete task
spaces: the user either wants to flip one of five switches, or reach one of two bottles. However,
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ASHA can also e↵ectively assist users who have continuous task spaces. To demonstrate
this capability, we ran experiments with simulated users and three expert human users who
rotate a valve to a desired target angle ✓ ⇠ Unif(0, 2⇡) – i.e., a continuous, 1D task space (see
Figure 2.2c). In addition to the expert human input, we tested various types of simulated
user inputs, including static inputs that noisily encode the target angle, dynamic inputs
that noisily encode subgoals on a path to the goal state, and directional inputs that noisily
indicate whether to rotate clockwise, counter-clockwise, or remain. The results in Figure
2.5a show that ASHA learns to perform the desired task with an 80% success rate when an
expert human provides input (pink), a 90% success rate when we simulate user input that is
static and simple to decode (orange), and performs substantially better than a random-latent
baseline policy (red) when we simulate user input that encodes nearby subgoals (blue) or
desired direction of rotation (gray).

Demonstration on Structured User Inputs

This paper focuses on the problem of interpreting raw user inputs like webcam images as
commands. However, ASHA can also be used to assist users who already have access to
a direct teleoperation interface for translating raw user inputs into robot actions, but still
require help to perform their desired tasks. To illustrate this capability, we ran experiments
with simulated users who push a puck on a table to a desired target position, which is
sampled uniformly at random from a continuous, 2D task space (see Figure 2.2d). We
simulated user inputs by training an oracle policy to perform the pushing task, then adding
lag to the oracle actions, which models real-world conditions like network latency – as a
result, the user inputs to ASHA are (suboptimal) 7-dimensional joint torques. The results in
Figure 2.5b show that, when the user’s input is laggy, ASHA (orange) achieves substantially
higher success rates than the direct teleop interface alone (gray), eventually reaching the
performance of a hypothetical direct teleop interface that receives user input without lag
(green).

2.5 Discussion

We presented a system that e�ciently trains an adaptive interface through RL from sparse
user feedback. Our user studies in three simulated robotic manipulation domains show that,
in under 10 minutes of online learning, our method can adapt to distributional shift in
webcam inputs, tasks, and environments. One limitation of our method is that it assumes
the ability to sample pre-training tasks and accompanying reward functions (see Section
2.2). Future work could use a self-supervised RL algorithm to discover a latent skill space
without a pre-determined distribution of tasks [26, 72, 58]. Despite this limitation, ASHA
illustrates how RL can provide a general mechanism for e�ciently adapting user interfaces
to individual needs; not only for assistive robotic teleoperation, but also potentially for other
domains, such as brain-computer interfaces for speech decoding [31, 8].
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Figure 2.5: Continuous Task Spaces and Structured User Inputs

(a) (b)
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Chapter 3

Conclusions and Future Work

In this technical report, we presented two di↵erent approaches that enable assistive systems
to adapt to human input over time in order to infer a user’s intent, and assist them in
performing their desired objectives. While our experimental studies demonstrated the e↵ec-
tiveness of these approaches compared to static interfaces that do not adapt to human input,
the scope of these evaluations were limited to controlled, simulated settings that are not nec-
essarily reflective of potential e↵ectiveness in the real world. For deep learning systems to
be e↵ective in such settings, it is possible they will need to leverage large amounts of diverse
data in order to generalize to the complexities of the real world [9]. This need is further
exacerbated in human-interactive systems by the complexity and unpredictable nature of
human behavior, and it would also be di�cult to scale up online human interaction data to
the levels needed for this.

The methods outlined in this paper make preliminary steps towards leveraging o✏ine and
autonomously collected data for human-interactive systems, which reduces the reliance on
online interaction data for learning. However, there remain limitations that future work will
need to address to obtain real-world e↵ectiveness. In X2T, we first pre-train our model on
data collected from a user operating a static default interface, which we show significantly
improves both initial and overall performance. However, our simple supervised learning-
based approach is limited to bandit settings, while more complex real-world tasks will require
reasoning about sequential decision making. In ASHA, we pre-train our model autonomously
to perform a variety of tasks in its environment, using deep RL and optionally human
demonstrations. However, we make the assumption that we can specify all possible tasks the
user would like to perform apriori, which limits the scalability of this approach. Furthermore,
training multi-task deep RL algorithms in the real world remains a di�cult open problem,
due to challenges such as reward specification, perception, and safety.

One promising approach that can potentially better leverage o✏ine data is o✏ine RL
[53]. In o✏ine RL, we assume access to a static dataset of environment interaction data, and
seek to train a policy that can perform tasks e↵ectively using only this data and no online
interaction. We would also like for such policies to be able to further improve once deployed
by fine-tuning using online interaction data. This o✏ine RL with fine-tuning framework
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is particularly appealing in human-interactive settings, due to the cost and di�culty of
collecting online human-in-the-loop data, and the potential abundance of o✏ine human-
interaction data with prior human-computer interfaces. O✏ine RL in general is still an
unsolved problem, but with better o✏ine RL algorithms and clever ways of leveraging them in
human-interactive settings, we can hope to scale assistive systems, similar to those presented
in this work, using large amounts of diverse data to be e↵ective and robust in the real world.
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[79] Krsto Proroković, Michael Wand, and Jürgen Schmidhuber. “Meta-Learning for Re-
calibration of EMG-Based Upper Limb Prostheses”. In: (2020).

[80] Filip Radlinski and Thorsten Joachims. “Evaluating the robustness of learning from
implicit feedback”. In: arXiv preprint cs/0605036 (2006).

[81] Kate Rakelly et al. “E�cient o↵-policy meta-reinforcement learning via probabilistic
context variables”. In: International Conference on Machine Learning. 2019.
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Chapter 4

Appendices

4.1 X2T: Training an X-to-Text Typing Interface
with Online Learning from User Feedback

Implementation Details

Stochastic gradient descent. We use Adam [44] to optimize the binary cross-entropy loss
described in Section 1.2,

`(✓) = �
X

(x,u,r)2D

r log (p✓(r = 1|x,u)) + (1� r) log (1� p✓(r = 1|x,u)). (4.1)

We set gradient norm clipping to 10 in all experiments.
O✏ine pretraining. To pretrain X2T on o✏ine data, we first train the reward model p✓ to
convergence on the o✏ine data, and store the learned network weights ✓init. Once a minimum
of four online input-action-reward triples have been collected, after every interaction, we
update the reward model p✓ by taking one gradient step. We use the values ✓init to initialize
the network weights (e.g., instead of a random initialization).

Online User Study: Typing with Eye Gaze

Eye image features. Instead of operating directly on 224x224 images of the user’s eyes, we
use the activations of the last fully-connected layer in the iTracker model [47] as the input x
to our reward model p✓(r|x,u). When training the reward model p✓, we freeze the iTracker
network weights used to generate this 128-dimensional input x.
Reward model architecture and learning. We set the learning rate for Adam to 10�3,
and batch size to 128. We do not perform online updates to the reward model parameters
✓ while |D|< 4. In our experiments, for every input x, there is exactly one desired action
u⇤ that will result in a positive reward r = 1, while all other actions u 6= u⇤ result in a zero
reward r = 0. In other words, p(r = 1|x,u) = p(u = u⇤|x). Hence, we structure the reward
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model for X2T as p✓(r = 1|x,u) = f✓(u|x), where f✓ is an action classifier. Furthermore,
since we expect the reward model to learn to implicitly estimate the user’s gaze position
in order to predict actions, we directly incorporate this inductive bias into the model: we
structure the action classifier as f✓(u|x) / exp (�kg✓(x)� pos(u)k2), where g✓(x) outputs a
2D position of the user’s estimated gaze, and pos(u) is the known 2D position of the button
for action u. Note that even though g✓(x) outputs a 2D position, the parameters ✓ are
still trained on the reward prediction objective in Equation 4.1 (e.g., instead of a 2D gaze
position prediction objective). We represent g✓ using a feedforward neural network with one
hidden layer containing 64 units, a dropout layer with a dropout rate of 0.3 between the
hidden layer and the output layer, and ReLU activations. At each timestep t, we record 10
eye images {xi

t}10i=1 at a sampling rate of 10 Hz, and average our predictions over these 10
inputs. Specifically, for X2T, we set g✓(xt) =

1
10

P10
i=1 g✓(x

i
t). For the default interface, we

average the 2D gaze position estimates across the 10 samples before predicting the action
whose button position is nearest to the average gaze position estimate. We initialize ✓init
with the o✏ine pretraining scheme described in Section 1.2, using 250 input-action-reward
triples collected with the default interface.
Experiment design. We recruited 11 male and 1 female participants, with an average
age of 21. Each participant was provided with the rules of the task and a short practice
period of 20 interactions to familiarize themselves with the system. Each interaction – which
consisted of providing an input, observing the interface’s action, and deciding whether or
not to backspace – took an average of 4 seconds. Each participant completed three phases
of experiments: A, B, and C. In phase A, they operate the default interface for 250 steps,
generating an o✏ine dataset of input-action-reward triples that we use to initialize X2T. In
phase B, they operate X2T for 250 steps. In phase C, they operate the default interface
for 250 steps. To avoid the confounding e↵ects of user learning or fatigue over time, we
counterbalance the order of phase B and C: six randomly-selected participants completed
phase B before C, and the other six participants completed phase C before B. Phase A is
used solely to generate o✏ine data to initialize X2T in phase B. One participant’s room
lighting changed substantially during phase B. Since their performance during phase A was
substantially better than during phase B, we use their phase A data (instead of phase B
data) to measure the default interface’s performance on this one participant. We sample goal
sentences from the MOCHA-TIMIT database [98], following prior work on speech interfaces
[61]. We set the same goal sentences for each user in each condition.
Deterministic policy. In our experiments, we find that sampling actions u ⇠ ⇡(u|x) from
the stochastic policy ⇡ does not substantially improve exploration, and can in fact degrade
performance by not always choosing the optimal action. This is most likely due to the use
of the default interface ⇡̄ in Equation 1.1, which already provides an e↵ective exploration
mechanism. Hence, instead of randomly sampling actions, we deterministically select the
highest-likelihood action: u argmaxu ⇡(u|x).
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Observational Study: Typing by Drawing Characters

Perturbing user inputs. We perturb the character drawings in the UJI Pen Characters
Database by decomposing each drawing into a sequence of pen tip velocity vectors, adding
Brownian noise to each velocity, then integrating over the perturbed velocities to yield a
complete, perturbed drawing (see Figure 4.2 in the appendix). We compute the Brownian
noise by sampling an independent Gaussian noise vector with zero mean and variance of
2 · 10�4 at each timestep, and summing over these noise vectors from time 0 to time t to
compute the Brownian noise vector for time t. The same Brownian noise vector is applied
to all the velocity segments in a given drawing. Each user input x is a 28x28 image of the
user’s complete, perturbed drawing of a given character. There are 27 possible characters in
the action space U : 26 lower-case letters, and space (which we represent using the digit 7).
Reward model architecture and learning. We set the learning rate for Adam to 5·10�4,
batch size to 128, pretrain on the o✏ine data for 20 epochs, and sample actions from the
stochastic policy described in Equation 1.1 (instead of the deterministic policy described
in Appendix 4.1). We also limit the size of the replay bu↵er D in Algorithm 1 to the
latest 500 input-action-reward triples. We do not perform online updates to the reward
model parameters ✓ while |D|< 100. We represent the reward model p✓ as a neural network
with the following architecture: 28x28 input layer, 32x5x5 convolutional layer, 2x2 max pool
layer, dropout layer with dropout rate of 0.5, 64x5x5 convolutional layer, 2x2 max pool layer,
dropout layer with dropout rate of 0.3, and a fully-connected output layer. We structure
the reward model as an action classifier, as in Section 4.1. We initialize ✓init with the o✏ine
pretraining scheme described in Section 1.2, using 1000 input-action-reward triples collected
with the default interface.
Experiment design. The UJI Pen Characters Database [57] contains handwriting samples
from 60 users. For each user, it includes two repetitions of lowercase letters, uppercase letters,
and 10 digits, for a total of 1364 samples per user. In our observational study, we randomly
sample target sentences, and replay user inputs that attempt to type the characters in those
target sentences. In the replays, we automatically backspace incorrect actions; a realistic
modeling choice, given that in the online user study in Section 1.4, the user did indeed
backspace mistakes, and did not backspace correct actions, in 98.6% of their interactions.
As in the online user study, we run each user’s data through two conditions: default and X2T.
Since this is an observational study, we do not need to counterbalance the order of the two
conditions. For the personalization experiment in Table 1.1, we assign a randomly-selected,
constant value to the random seed of the Brownian noise for each user in each condition.
This ensures that comparisons between entry (i, i) and entries (i, j 6= i) in the 4x4 table
are not confounded by di↵erences in the input noise, and are only influenced by systematic
di↵erences in the users’ individual handwriting styles. As in the online user study, we sample
goal sentences from the MOCHA-TIMIT database [98], and set the same goal sentences for
each user in each condition.
Language model. We use the Transformer-XL language model [21] – specifically, the
word-level version that is pretrained on the One Billion Word dataset [13] – to compute
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the prior likelihood pLM(ut|u0:t�1). To compute character-level likelihoods, we marginalize
over the 60000 words in the language model’s vocabulary that occur the most frequently in
the One Billion Word training corpus, not including words with punctuation and converting
upper-case to lower-case characters. We feed the previously-typed characters in the current
sentence (i.e., not including the previous sentences) as context to the language model.

Pilot Study with a Brain-Computer Interface

Due to constraints on the duration and number of sessions we were able to conduct with the
participant, we made two simplifications to the interface: we simplified the display to use 4
buttons instead of 8 buttons, and we automated backspaces.
Reward model architecture and learning. We set the learning rate for Adam to 10�4,
batch size to 128, and maximum bu↵er size |D| to 1000. Unlike the previous experiments, we
did not use dropout. We used an L2 regularization constant of 0.001 for X2T, and 0.01 for
the default interface. For both the default interface and reward model, we used a feedforward
network architecture with 3 layers of 256 hidden units each. We deterministically selected
actions with the maximum conditional likelihood under the policy, instead of sampling from
the stochastic policy in Equation 1.1. When pretraining the reward model on o✏ine data,
we initialized the reward model network weights with the default interface network weights.
We set the prior policy ⇡̄ in Equation 1.1 to be a uniform prior, instead of using the default
interface. To accommodate noise in the user inputs, we require 4 consecutive bins of input
to be mapped to the same action by the policy before executing that action; after 10 bins
with no string of 4 consecutive, equal actions, the majority action is executed. In the
counterfactual experiment with the default interface, if we reach the end of the bins for a
given step without a string of 4 consecutive, equal actions, the majority action is executed.
After an action is executed and reward collected, we add an input-action-reward tuple for
the input at each bin to the bu↵er D.
Experiment design. We conducted three experimental sessions: the first on 2/26/21, in
which we collected 997 input-action-reward samples; the second on 3/5/21, which yielded
1916 samples; and the third on 3/13/21, which yielded 1984 samples. The default interface
was trained on 3686 samples (left button intended: 959, down: 916, right: 897, up: 914)
recorded prior to 2/26/21. There were 3 seconds of no input before each word selection. The
interface was paused intermittently during each session to accommodate user fatigue.
Feature processing. The ECoG signals were binned at a frequency of 2 Hz. Each user input
has 128 dimensions, which consist of high-band frequencies of raw ECoG signal recorded
during each binning period. The remaining implementation details are described in [89].
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p-value Default Interface X2T
The system selected the words I wanted < .05 4.50 5.42
The system improved over time < .05 3.17 4.75
I improved at using the system over time > .05 4.08 4.42
The system did not select the words I wanted < .05 4.08 2.83
The system got worse over time > .05 3.25 2.42
I got worse at using the system over time > .05 3.25 2.67
I backspaced when there was a mistake > .05 5.42 5.83
I ignored mistakes (did not backspace them) > .05 2.33 2.17

Table 4.1: Subjective evaluations from the 12 participants in the online user study. Means reported below
for responses on a 7-point Likert scale, where 1 = Strongly Disagree, 4 = Neither Disagree nor Agree, and 7
= Strongly Agree. p-values from a one-way repeated measures ANOVA with the presence of X2T as a factor
influencing responses.

Figure 4.1: To measure X2T’s sensitivity to noise in the reward signal, we conduct a counterfactual exper-
iment with the eye gaze user study data, similar to Section 1.4. In this experiment, we flip the reward r
to 1� r with probability p, which we call the reward mislabeling rate. We then train our reward model on
these noisy rewards. X2T outperforms the default interface for a wide range of mislabeling rates, and only
performs worse than the default interface when the rewards are completely random (i.e., the mislabeling rate
is 50%). In practice, we find that users’ backspaces tend to follow the assumptions in Section 1.2, which
leads to a relatively low empirical mislabeling rate of 1.4%.
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Figure 4.2: Handwriting samples from the UJI Pen Characters Database that have been perturbed by adding
Brownian noise to pen tip velocities. The left-most column shows the true input, and each successive column
shows the perturbed input after 100-timestep intervals. We used the character ’7’ in place of the space
character.
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User sees list of words Webcam records image of user’s eye gaze

Reward model
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Figure 4.3: An illustration of the eye gaze experiments in Section 1.4
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4.2 ASHA: Assistive Teleoperation via
Human-in-the-Loop Reinforcement Learning

Additional Related Work

ASHA’s use of a pre-training phase to learn a low-level policy g� that accelerates downstream
learning of a high-level user interface f inpt

✓ resembles hierarchical RL methods [64, 75], which
generally aim to improve exploration and credit assignment by dividing the original Markov
decision process (MDP) into simpler high- and low-level MDPs. Recent work in this area
focuses on solving the divided MDPs concurrently [54, 69, 55] and combining the results [70].
Our problem setting and assumptions are markedly di↵erent, in that the engineered reward
function used to pre-train the low-level policy in phase 1 of ASHA may di↵er substantially
from the user-provided reward that is used to train the interface online in phase 2, while
standard hierarchical methods assume that these two reward functions are equivalent.

Prior work on myoelectric interfaces for prosthetic limb control explores unsupervised
learning [87] and RL [78] methods for online adaptation to the user’s EMG signals, but only
evaluates on simple motion-tracking tasks with small, discrete state spaces, whereas our work
focuses on more complex manipulation tasks with large, continuous state spaces (see Figure
2.2 and Appendix 4.2).

ASHA’s approach to relabeling trajectories with an optimal policy (see line 16 in Algo-
rithm 2) is analogous to the DAgger imitation learning algorithm, which relabels on-policy
trajectories of an imitation policy with expert action labels [84].

Implementation Details

Timeouts

To ensure that the user studies do not get stalled on a single task, if the user does not
succeed at a given task after 5 episodes of attempts, we ‘timeout’ and ask them to move on
to a new task. We do not learn from these 5 episodes in our method, since we do not have a
success that we can use to compute the optimal policy in hindsight (see Section 2.2). Across
all methods tested and all experimental conditions in the user studies, timeouts occurred in
6% of tasks in the bottle domain, and 20% of tasks in the switch domain.

Simulator Setup for Switch and Bottle Domains

We setup our switch and bottle domains using assets from Assistive Gym [25]. The sizes of
the simulated Jaco arm and wheelchair are proportional to those of their real-world counter-
parts. In the switch domain, the switches are placed 0.22 units of distance apart horizontally.
The horizontal position of the switches vary uniformly at random within an interval of 0.3
units, but all switches share the same positional noise (i.e., all switches move together). The
distance between the user and the wall varies uniformly at random within an interval of



CHAPTER 4. APPENDICES 46

0.2 units during the pre-training and calibration phases – during online evaluation, it only
varies within half that range. The initial arm end-e↵ector position varies within a uniform
box of size (1, 0.2, 0.2). In the bottle domain, the bottles are placed 0.3 units of distance
apart horizontally. The horizontal position of the table varies uniformly at random within
an interval of 0.4 units. The bottles always maintain the same relative position with respect
to the table. The initial arm end-e↵ector position varies uniformly at random within a box
of size (0.8, 0.2, 0.2). Due to the noise added to the positions of switches and bottles at
the beginning of each episode, the positions for di↵erent switches and bottles can overlap
across episodes (e.g., switch 1 may be located very close to the previous position of switch 2
in a past episode). While the arm is reset to its initial position at the start of each episode,
regardless of the success or failure of the previous episode, the other conditions of the envi-
ronment (e.g., the positions of the switches, table, or wall) are only reset after a successful
episode or a timeout. The arm is reset by first sampling a 3D position, then solving for the
joint positions of the arm using an inverse kinematics function.

The environments use a frame skip of 5 steps, and a maximum episode length of 200
steps (approximately 13 seconds of wall-clock time).

Representation of States, Actions, Task Specifications, and Latent Embeddings

In all domains, the low-level action a 2 R7 consists of 7 joint forces for the Jaco arm. Each
action dimension is clipped to (-0.25, 0.25) before being executed in the simulator. In the
switch domain, the state s 2 R48 consists of the 7 joint positions of the arm, the 3D position
and 4D orientation of the end e↵ector, and the 3D position and 1D angle of each of the 5
switches. In the bottle domain, the state s 2 R37 consists of the 7 joint positions of the
arm, the 3D position and 4D orientation of the end e↵ector, the 3D position of each of the
2 bottles, and the 3D position of door handle. We set each specification ⌧ spec 2 R3 to be
the 3D position of the target switch or bottle. In both domains, we set the dimensionality
of the latent embedding space to d = 3.

Recording the User’s Eye Gaze

With a standard webcam, we record a 224x224x3 segmented image of the user’s face,
224x224x3 image of each of the user’s eyes, and a 25x25 binary grid that characterizes the
overall position of the face in the webcam image, then feed these as input to a pre-trained
iTracker model [47] (see Figure 2.2c). We treat the 128-dimensional activations of the last
linear layer in the pre-trained iTracker neural network as the user’s control input x 2 R128.
Gaze is recorded by having an asynchronous thread that takes the webcam image, segments
it, feeds it into the iTracker network, then extracts the features, sets it equal to the most
recent features, and terminates. On every step of the environment simulator, we restart the
gaze update thread if it has terminated, then pull the most recent gaze features and treat
them as the user input xt for that timestep.
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Network Architecture and Optimization

In all phases (i.e., pre-training, calibration, and online learning), we use the Adam opti-
mizer [44] with a batch size of 256 to train our models. We use the same network architecture
to represent all encoders f spec

 , f inpt
✓0

, and f inpt
✓ : a feedforward network with ReLU activations

and a single hidden layer of 64 units.
In all phases, we set the regularization constant � for the VIB (e.g., see Equation 2.3) to

0.01.
In the pre-training phase, we run SAC with default hyperparameters: a 2-layer, 256-unit

feedforward network to represent both the policy and Q-function, a learning rate of 3 · 10�4,
a reward scale of 1, automatic entropy tuning with a heuristic of setting the target entropy
to the negative dimensionality of the action space, a target Q-function update period of 1,
Polyack update ⌧ set to 5 · 10�3, epochs of 1000 environment steps followed by 1000 training
steps, 1000 steps before training starts, and a replay bu↵er size of 5 ·105 in the switch domain
and 2 · 107 in the bottle domain. We pre-train for 1000 epochs in the switch domain, and
for 3150 epochs in the bottle domain. In the bottle domain, we initialize the pre-training
replay bu↵er with 5000 demonstrations obtained from a scripted agent. When we execute
the pre-training policy ⇡spec

 ,� , we feed the expected value of the specification encoder output
z to the latent-conditioned policy g�, instead of sampling from the posterior of the encoder.

During the online learning phase, we set the learning rate to 5 · 10�4, perform 1000
gradient updates on the calibration data (which is typically su�cient for convergence), keep
the calibration data in the replay bu↵er during online learning, perform 100 gradient updates
after each successful episode (which is typically su�cient for convergence), and do not limit
the size of the replay bu↵er (i.e., never discard old data).

We use the same random seeds for each user, and use a di↵erent random seed for each
method and experimental condition within a given user. We use 10 di↵erent random seeds
for each ablation experiment, and use the same 10 seeds across the ablations.

We set the optimal policy ⇡spec
 ,� used in Equation 2.3 during the online learning phase

to be deterministic. Implicitly assuming that the interface ⇡inpt
✓,� has some fixed, diagonal

covariance I�2, this enables us to simplify the KL divergence loss between the two policies
⇡spec
 ,� and ⇡inpt

✓,� in Equation 2.3 to the mean-squared error loss between the mean actions
outputted by both policies.

We do not use a recurrent input encoder f inpt
✓ (z|s0:t,x0:t), and instead use a feedforward

encoder f inpt
✓ (z|st,xt) that operates on only the most recent state st and user input xt.

To simplify the optimization of Equation 2.3, we do not integrate over the posterior
distribution of latents z when computing the optimal policy ⇡spec

 ,� and interface ⇡inpt
✓,� , and

instead only feed the expected value of z to the latent-conditioned policy g� – i.e., we
represent the optimal policy as g�(at|st,Ez⇠f spec

 (z|⌧ spec)[z]) (instead of Equation 2.1), and the

interface as g�(at|st,Ez⇠f inpt
✓ (z|s0:t,x0:t)

[z]) (instead of Equation 2.2).
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Pre-Training Tasks

In the switch domain, we have 5 pre-training tasks (one for each switch on the wall in Figure
2.2). In the bottle domain, we have 2 pre-training tasks (one for each bottle inside the
shelf in Figure 2.2). The pre-training reward in the switch domain is 0 upon success, and
exp (�kend e↵ector pos.� target switch pos.k�0.2)� 1 otherwise. The pre-training reward
in the bottle domain is �1 + 0.5 · [door opened] + 0.5 · [bottle reached].

Episode Termination and User Feedback

During the pre-training phase, episodes only end if the task is successfully completed or the
environment times out – we set the terminal flag to true only when the task is successfully
completed. During the online learning phase, episodes also end if the wrong task is performed
(e.g., the wrong switch is flipped).

If the episode ends in a success or in completing the wrong task, the user’s binary feedback
(provided through a button press) is treated as the reward signal. However, when the episode
ends due to a timeout, we automatically generate a negative feedback signal. The user’s
button presses matched the automated feedback in 98% of episodes in the user study.

Calibration Videos

To generate the 6 videos in the switch domain and 8 videos in the bottle domain that are
used to calibrate the non-adaptive baseline interface and our method (see Section 2.3), we
execute the pre-trained robot policy ⇡spec

 ,� . In the switch domain, we generate successful
videos for 3 di↵erent switches, with 2 episodes per switch. In the bottle domain, we generate
successful videos for 2 di↵erent bottles and 2 di↵erent settings of the door (the door can
cover either one of the 2 compartments), with 2 episodes in each of the 4 configurations.

Simulated User Model Parameters

For the simulated user input in Section 2.4, we set the standard deviation of the Gaussian
user input noise to 0.1 in the switch domain, and 0.15 in the bottle domain.

Valve Rotation Experiment Details

We use a similar pre-training procedure as the one described earlier in Appendix 4.2 for
the switch and bottle domains, except that we train for 8000 epochs, train on 50 hu-
man demonstrations, initialize the encoder and critic networks by running AWAC [71]
on the human demonstrations for 25000 iterations, set the pre-training reward function
to exp (�5 · |di↵. between current and target angle in radians|) � 1, and only terminate an
episode upon reaching 200 timesteps. Each observation includes the 3D end e↵ector position,
4D end e↵ector orientation, 3D end e↵ector velocity, 3D valve position, 2D representation
of the current valve orientation (sin and cos), 1D velocity of the valve joint, 7D arm joint
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positions, and 7D arm joint velocities. To speed up human-in-the-loop learning, our encoders
only operate on a subset of the observation features: the 3D end e↵ector position, 2D valve
orientation, and 3D valve position. The task specification ⌧ spec is the 2D valve orientation.
Each action consists of 7D joint torques, clipped to [�0.25, 0.25], as in the switch and bot-
tle domains. During the pre-training phase, the initial valve angle is sampled uniformly at
random from [0, 2⇡), and the target angle is sampled uniformly at random from the same
interval but excluding points within ⇡

32 radians of the initial angle. During the calibration
phase, the initial angle is always 0, and 7 videos are shown to the user, where the target angle
is sampled uniformly at random from the discrete set {⇡4 · k}

7
k=1. During the online learning

phase, the initial angle is always 0, and the target angle is sampled uniformly at random from
[0, 2⇡) but excluding points within ⇡

16 radians of the initial angle. The user is only allowed
to end an episode when the valve angle has been within ⇡

16 radians of the target angle for
20 consecutive steps. The episode automatically times out after 200 steps, but the user can
still indicate a successful task completion after a timeout. Note that the task specification
for each successful trajectory is extracted from the final state that was actually reached –
since the user only needs to be within ⇡

16 radians of the target to succeed, we may extract
a specification that is near, but not necessarily identical to, the ground-truth specification.
During the online learning phase, we use a batch size of 256, where each batch consists of
128 examples from the calibration dataset and 128 examples from the online dataset. The
simulated static user input consists of a 2D target position on a circle centered at the valve.
The simulated dynamic user input consists of a similar 2D target position, but dynamically
adjusted so that it is always at most ⇡

8 radians from the current valve angle, and also on
the shortest arc from the current state to the target state. The simulated directional user
input are 3D one-hot encodings for the actions {clockwise, counter-clockwise, remain} – the
remain input is generated when the current valve angle is within ⇡

16 radians of the target
angle. All the simulated user inputs have i.i.d. isotropic Gaussian noise ✏ ⇠ N (0, 0.2I)
added to them at each timestep. Following prior work on deep set encoders [81], we generate
latent embeddings using an encoder that first processes individual (st,xt) pairs, and outputs
the mean and variance of an isotropic Gaussian for each pair. The Gaussian factors for the
most recent 10 timesteps are multiplied, and the latent embedding for the current timestep
is sampled from this new Gaussian. During training, we sample the latent embedding from
this Gaussian. During online episodes, we set the latent embedding to be the mean of the
Gaussian. We set the dimensionality of the latent embedding space to d = 2. After a max-
imum number of 3 failed attempts to complete the current task, we automatically timeout
and sample a new task. At the start of each episode, we add uniform random noise of mag-
nitude 0.1 to the horizontal position of the valve, initialize the arm position with the same
noisy procedure described in Appendix 4.2, and do not add noise to any other state variables
(e.g., the distance to the wall).
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Puck Pushing Experiment Details

We pre-train for 10000 epochs without any human demonstrations, and set the pre-training
reward function to 1� ��(↵(change in distance of block position from goal+
.5 · change in distance of tool position from block), where � is the sigmoid function. The
puck and goal positions are initialized uniformly at random within a square of half extent
(0.25, 0.15), which is the area that the end e↵ector can reliably reach. The positions are
constrained to be at least 0.1 apart. The puck is a cube with a half extent of 0.05, and
is kept on the table by a gravity of 10, with mass of 0.1 and friction of 0.5. Each episode
terminates automatically when the robot pushes the puck within 0.05 distance of the goal, or
200 timesteps expires. Each observation consists of the 3D tool position, 4D tool orientation,
3D block position, and 7D arm joint angles. The task specification ⌧ spec is the 3D position
of the goal. As in the valve domain, note that the task specification for each successful
trajectory is extracted from the final state that was actually reached – since the user only
needs to be within 0.05 distance of the target to succeed, we may extract a specification that
is near, but not necessarily identical to, the ground-truth specification. During the online
learning phase, we use a batch size of 256, where each batch consists of 128 examples from
the calibration dataset and 128 examples from the online dataset. The simulated user input
is a 7D vector of arm joint torques, which is generated using a pre-trained oracle policy. The
simulated user inputs are smoothed using an exponential moving average with smoothing
factor ↵ = 0.99 – i.e., we set xt  1

1�↵(↵xt�1+(1�↵)xt). We use the same deep set encoder
architecture as in the valve domain to represent the input encoder, and operate on the most
recent 20 timesteps of observations and user inputs. We set the dimensionality of the latent
embedding space to d = 4. As in the switch and bottle domains, after a maximum number
of 5 failed attempts to complete the current task, we automatically timeout and sample a
new task.

Details of User Study

Experiment Design

We recruited 10 male and 2 female participants, with an average age of 21. Each participant
was provided with the rules of each domain (see Figure 4.4) and a short practice period of
10 episodes to familiarize themselves with the simulation. Each episode took an average
of 13 seconds. Each participant completed three phases of experiments – A, B, and C –
in each of the two domains. Before each phase in the switch domain, each participant
generated 6 episodes of calibration data; in the bottle domain, 8 episodes. In phase A, they
use the non-adaptive baseline interface to complete 50 episodes. In phase B, they use our
method to complete 50 episodes. In phase C in the switch domain, they use our method
to complete 50 episodes in which the task distribution is intentionally mismatched with the
calibration data (see Section 2.3). In phase C in the bottle domain, they use our method
to complete 50 episodes in which the environment conditions are intentionally mismatched
with the calibration data (see Section 2.3). To control for the confounding e↵ects of the user
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learning or getting fatigued over the course of the full study, we counterbalanced the order of
the three phases (i.e., 2 participants followed the order ABC, another 2 participants followed
BAC, etc.).

Subjective Evaluations and Additional Quantitative Results

When prompted to “please describe your input strategy”, participants responded as follows.
User 1:

Switch Domain:
After Phase A:
gaze at target switch 100% of the time, hold same gaze throughout
After Phase B:
same as phase A
After Phase C:
same as phase A
Bottle Domain:
After Phase A:
If door needs to be opened, then stare at door and then slide gaze to open the door
once hand reaches door. After door is opened, stare at vase. If no door needs to be
openend, just stare at vase.
After Phase B:
same as phase A
After Phase C:
same as phase A

User 2:
Switch Domain:
After Phase A:
I looked as far in the left/right direction as possible until the system reached the
target
After Phase B:
same as phase A
After Phase C:
same as phase A
Bottle Domain:
After Phase A:
I looked as far in the left/right direction as possible until the system reached the target
After Phase B:
same as phase A
After Phase C:
I looked as far in the left/right direction as possible until the system reached the target. I stopped
looking at the door to “pull” it once the system had grasped the handle.
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User 3:
Switch Domain:
After Phase A:
Look towards a direction I wanted the arm to move in, then stare down the location
when I wanted it to flip.
After Phase B:
exaggerate movement when it was wrong
After Phase C:
same as A
Bottle Domain:
After Phase A:
continuous movement
After Phase B:
try to gaze relative to the arm instead of at item
After Phase C:
left blank

User 4:
Switch Domain:
After Phase A:
I looked at the target and if the arm was going in the wrong place I compensated by
looking further in the necessary direction
After Phase B:
Same strategy as before, more compensating because missed more often
After Phase C:
Same as before Bottle Domain:
After Phase A:
Just looked in the direction of the target, sometimes a little bit o↵ to side of the shelf
it was on.
After Phase B:
Same as before, but more often on target
After Phase C:
Same as before

User 5:
Switch Domain:
After Phase A:
look in direction to move
After Phase B:
exaggerated looking in direction
After Phase C:
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same
Bottle Domain:
After Phase A:
lok left oor right
After Phase B:
same
After Phase C:
same, sometimes looko strraright

User 6:
Switch Domain:
After Phase A:
Exaggerate look in desired direction and look at target if robot was performing correct
task
After Phase B:
Same as phase A
After Phase C:
Look at final target
Bottle Domain:
After Phase A:
Exaggerate for left side, look directly at target for right side
After Phase B:
Same as phase A
After Phase C:
Same as phase A

User 7:
Switch Domain:
After Phase A:
When the robot is close to the goal, gaze at some middle point between robot and
goal; when robot is faraway from goal, gaze at some point that goes beyond the goal
in the goal direction.
After Phase B:
Almost always look to the right of the goal; the farther the goal is, the farther the
gaze will be from the goal as well.
After Phase C:
Look at a point slightly beyond the goal in the goal direction and adjust the gaze
location according to robot behavior.
Bottle Domain:
After Phase A:
Look at a point beyond the goal in the goal direction, as far as possible, and holding
the same gaze; it seems to be working most of the time unless the bottles are far away
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from the middle.
After Phase B:
Same as phase A above.
After Phase C:
Same as phase A above.

User 8:
Switch Domain:
After Phase A:
Looked at target and exaggerated/altered gaze if arm moved too far in one direction
After Phase B:
Same as above
After Phase C:
Same as above
Bottle Domain:
After Phase A:
Same as above
After Phase B:
Same as above
After Phase C:
left blank

User 9:
Switch Domain:
After Phase A:
I started out looking at the final target, but also tried sweeping my gaze over the
intended trajectory and also exaggeratedly looking in the direction I wanted the arm
to go
After Phase B:
I did much the same, but when the arm seemed to be way o↵ the intended trajectory,
I’d test out looking in di↵erent directions to see how it would a↵ect the trajectory. I
wasn’t sure how it was actually a↵ecting the trajectory
After Phase C:
I would try looking directly at the target, then exxagerate my gaze a bit when the
arm wasn’t doing exactly what I wanted
Bottle Domain:
After Phase A:
I would look at points on the shelf that I wanted the arm to go to, even if not the final
bottle. If the bottle was blocked, I’d look at the outer top left corner, then middle
of outer edge, then middle divider to move the glass door. If the arm wasn’t moving
exactly in the direction I wanted, I’d exaggerate my gaze. If it wasn’t blocked, I would
look directly at the bottle.
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After Phase B:
In this phase, I mainly exaggerated my gaze in the direction I wanted the arm to go,
while relying on peripheral vision for tellling where the robot is and relying on the
color change for telling if the episode was over
After Phase C:
I basically had the same strategy as last time, except I exaggerated my gaze even
more. I also did the exaggeration in the calibration phase, when I hadn’t before.

User 10:
Switch Domain:
After Phase A:
left blank
After Phase B:
left blank
After Phase C:
left blank
Bottle Domain:
After Phase A:
left blank
After Phase B:
left blank
After Phase C:
left blank

User 11:
Switch Domain:
After Phase A:
Gazing in the far extreme direction that I wanted the arm to move towards
After Phase B:
Gazing at the neighbor of the correct switch in the direction I wanted the arm to move
in. (I.e., if I wanted the arm to move farther left, I gazed at the neighbor on the left).
After Phase C:
Same as above
Bottle Domain:
After Phase A:
Gazing in the extreme direction I wanted the arm to move in
After Phase B:
I fixed my gaze directly at the bottle I wanted the system to grab.
After Phase C:
Same as above

User 12:
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Switch Domain:
After Phase A:
I stared at the blue sphere for most of the time and would try to correct the robot if
it went to the wrong one by exaggerating my look in a certain direction.
After Phase B:
I started with the same strategy as in phase 1 where I would stare at the blue sphere
above the switch until the arm went there. However, I noticed that this only worked
for the switches on the right side, and it wouldn’t ever go to the first two switches on
the left side–this made me try to compensate for the arm by looking more to the left
but it still did not work so I tried di↵erent corners of the screen.
After Phase C:
I started again by trying to stare at the blue sphere and track it with my eyes. How-
ever, it seemed like the robot had the opposite problem as phase 2. Instead of always
going for the right, it would only go for the second switch on the left. I also tried
compensating by looking as far right as I could, but it did not seem to a↵ect the arm.
Bottle Domain:
After Phase A:
If the bottle was behind the glass door, I would stare at the edge of the door and then
pretend to slide it with my eyes. Then I would stare at the blue part of the bottle. If
the bottle was not behind a door, I looked at the bottle directly.
After Phase B:
I used a similar strategy to phase 1, where if the bottle was behind the glass door I
looked at the edge of the glass door. Once the arm reached the handle of the door, I
panned my eyes over to the opposite edge of the box. Once the door was fully open,
I would look at the blue part of the bottle.
After Phase C:
I used my strategy from phase 2 with some slight modifications. I noticed that the
arm would get caught on the wrong side of the handle sometimes after opening the
door and it would close the door again, so I would sometimes try moving my eyes
up and down to get the arm out of the way. There were also times where the arm
would open the door half way and then it would move away from the handle, so I tried
looking at the opposite corner of the box to keep the arm on the handle.

These responses show that users employed a variety of di↵erent communication styles,
including looking directly at the target (users 1, 4, and 8), looking at distant parts of the
screen to indicate di↵erent targets (users 2 and 3), exaggerating their gaze to correct the
robot (users 3-6 and 8), and dynamically guiding the robot to subgoals (users 1, 2, and 7).
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Table 4.2: User Study - Subjective Evaluation

Bottle Switch

ASHA Baseline p ASHA Baseline p

The system performed the task I wanted 4.8 3.9 > .1 4.2 3.2 < .1
I felt in control 4.0 3.0 > .1 3.6 3.1 > .1
The system responded to my input...
...in the way that I expected 4.5 3.4 > .1 3.5 3.2 > .1
The system was competent at performing tasks...
...even if they weren’t the tasks I wanted 5.2 4.9 > .1 5.1 4.7 > .1
The system improved over time 4.9 3.5 < .05 3.9 3.0 > .1
I improved at using the system over time 4.0 3.2 > .1 3.9 3.7 > .1
I always looked directly at my final target...
...holding the same gaze throughout an episode 4.2 3.5 > .1 3.5 2.9 > .1
I compensated for flaws in the system...
...by changing my gaze over time 4.7 4.0 > .1 5.4 5.5 > .1

Subjective evaluations from the 12 participants in the user study. ‘Baseline’ refers to the non-adaptive
baseline interface. Means reported below for responses on a 7-point Likert scale, where 1 = Strongly Disagree,
4 = Neither Disagree nor Agree, and 7 = Strongly Agree. p-values from a one-way repeated measures
ANOVA with the presence of ASHA as a factor influencing responses. While none of the di↵erences shown
here are statistically significant, ASHA does outperform the baseline method in terms of the objective metrics
analyzed in Section 2.3.

Table 4.3: User Study - Quantitative Evaluation

Switch Bottle

Success Rate Failed Attempts Success Rate Failed Attempts

Random Latent (Baseline) 0.20± 0.02 2.7± 0.1 0.49± 0.02 1.0± 0.1
Non-Adaptive (Baseline) 0.41± 0.04 1.8± 0.2 0.65± 0.04 1.8± 0.2
ASHA (Ours) 0.52± 0.04 1.6± 0.2 0.74± 0.04 0.8± 0.2
ASHA with Task/Env. Shift (Ours) 0.43± 0.08 2.1± 0.4 0.74± 0.06 0.6± 0.2

Means measured across 50 episodes, and standard errors measured across the 12 participants. ‘Failed At-
tempts’ refers to the number of failed attempts per task, for which the maximum value is 5 due to timeouts
(see Appendix 4.2). In the switch domain, ‘ASHA with Task/Env. Shift’ refers to task distribution shift (see
Section 2.3). In the bottle domain, ‘ASHA with Task/Env. Shift’ refers to environment shift (see Section
2.3). These results show that ASHA outperforms the baselines, not just in terms of learning speed or final
performance, but also in terms of cumulative regret throughout the experiment.
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Thanks for taking part in this user study! Please follow these steps:

Setup before the Zoom call:
1. Download and sign this consent form
2. Download and sign this receipt for an Amazon gift card. Your claim code is [N/A for pilot].
3. Download the code here, unzip it, and cd into the folder
4. `conda create -n ashaenv python=3.7`
5. `source activate ashaenv`
6. `pip install -r requirements.txt`

a. If you run into errors installing dlib, follow the installation tips here
b. Install torch separately with

i. pip install torch==1.7.0+cpu torchvision==0.8.1+cpu torchaudio===0.7.0 -f
https://download.pytorch.org/whl/torch_stable.html

7. `pip install -e rlkit/`
8. `pip install -e image/`
9. `pip install -e assistive-gym/`

Setup during the Zoom call:
10. Place your laptop on a steady surface and do not move it during the study.
11. Make sure that your face can be clearly seen in the center of the webcam frame (i.e.

make sure lighting and laptop placement is good).
12. Start screen sharing and recording the video call
13. Open the survey spreadsheet

Instructions:
● DO NOT touch your mouse at any time during an experiment, either during calibration or

online episodes. Scrolling on your mouse may cause the camera angle in the
visualization to change, which is not allowed

● Calibration:
○ Each experiment will begin with a set of calibration episodes, where you will

observe a robotic arm perform different tasks.
○ At the beginning of each calibration episode, you will be presented with a still

visualization of the robotic arm, and the environment in which it needs to perform
the task.

○ You should first identify the situation in the scene, what the goal is, and imagine
what actions the robot should take to achieve the goal. Some target locations will
be indicated in the visualization, in some way specific to the task.

○ Once you have identified the desired goal, press the “SPACE” button on your
keyboard to start the episode, which will cause the arm to begin moving.

○ You will not be in control of the robotic arm, but please direct your eye gaze as if
you were guiding the arm to perform the task correctly.

○ Your method of guiding the arm can be
■ Looking at the next location the arm needs to be at to accomplish the task
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■ Looking at the final location the arm needs to be at to accomplish the task
■ Looking in the general direction of where you want the arm to go to

accomplish the task
■ Any other strategy you find natural to guide the robot
■ Any combination of different strategies

○ During calibration episodes, the robot will usually successfully complete the task,
but not always.

○ When the episode is over, either via a successful completion of the task or after a
timeout, you will immediately be presented with the next episode, where you will
again attempt to guide the arm using your gaze after pressing “SPACE” on your
keyboard to start the next episode.

○ Calibration episodes will have an orange background. Once the background of
the environment is no longer orange, the calibration phase is complete.  And an
example of an episode can be found here.

● Online
○ During the online phase of the experiment, your gaze will now influence the

movement of the robotic arm, and you will attempt to actively use your gaze to
guide the robotic arm to perform the task.

○ Each episode during the online phase will be indicated with a gray background,
as opposed to the orange background during calibration episodes.

○ Each episode will begin by presenting you with a still visualization of the robotic
arm, and the environment in which it needs to perform the task.

○ Once you have identified where the arm needs to move next to perform the task,
press the “SPACE” button on your keyboard to start the episode, which will cause
the arm to begin moving under the influence of your gaze.

○ Throughout different episodes during the online phase, you are encouraged to try
out whatever different gaze strategies you think will work best to successfully
guide the arm to complete the task.

○ It may help to consider what the robot is doing/has been doing and adjusting your
gaze strategy accordingly.

○ Each episode will end with either the successful completion of the task, failure to
complete the task by accomplishing a different task, or failure to complete the
task due to a timeout after about 20 seconds.

○ Successes will be indicated by a green indicator at the goal location, and failures
will be indicated by a red indicator at the goal location.

○ After the end of an episode due to the completion of a task (may not have been
the correct one), the environment will freeze. Then, press “ENTER” to indicate
the correct task was performed, or “SHIFT” to indicate the wrong task was
performed. Afterwards, the next episode will begin.

○ After the end of an episode due to a timeout, the environment will continue to the
next episode after a brief pause, without the need for keyboard input.

○ After a successful episode, or 5 consecutive failed episodes, the conditions of the
environment will be randomized and the next task to be performed will be
randomly selected.
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○ Otherwise, the next episode will have the same environment conditions with the
same task (except the initial position of the robotic arm will be different), and you
will be asked to attempt to perform the same task again.

Environment 1: Light Switch
● In the light switch environment, there are 5 light switches on a wall, all in the “on”

configuration.
● The switches are always spaced apart the same distance, but each episode, they will

appear centered in different locations, and the distance to the wall will vary.
● The task to be performed is flipping one of the middle 3 switches to the “off” position. To

succeed, only the target switch should be flipped. Flipping any of the other switches will
result in a failure.

● The target switch will be indicated by a dark blue sphere located directly over it.
● The robotic arm may sometimes block some of the switches, including the target switch.

If this happens and you cannot see the indicator, try your best to deduce which is the
target switch by noting the visible switches that do not have the indicator.

● Example of the beginning of a calibration episode. The switch with the blue sphere
above is the target switch.

3

● Example of the beginning of an online episode. The switch with the blue sphere above is
the target switch.

● Example of a successful online episode. The target switch, indicated by the green
sphere, was correctly flipped.

4

● Example of a failed online episode. The target switch, indicated by the red sphere, was
not flipped, and the switch to its left was incorrectly flipped.

Phase 0 (practice):
● python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name

OneSwitch --mode no_online --epochs 10

Phase 1:
● python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name

OneSwitch --mode default

● Fill out “After Phase 1” in survey spreadsheet
Phase 2:

● python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name
OneSwitch --mode no_online

● Fill out “After Phase 2” in survey spreadsheet
Phase 3:

○ python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name
OneSwitch --mode no_right

○ Fill out “After Phase 3” in survey spreadsheet

Environment 2: Bottle
● In the bottle environment, there is a shelf with two compartments, each with a bottle

inside. There is also a movable sliding door in front of compartments, which may block
the bottles.

● Each episode, the shelf will appear in different locations.
● The task to be performed is reaching one of the bottles with the robotic arm, moving the

sliding door out of the way if necessary to reach the target bottle. Reaching the other
bottle will result in a failure.

● The target bottle will be indicated by a dark blue sphere.
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● Example of the beginning of a calibration episode. The right bottle with the blue sphere
is the target bottle. The sliding door is covering the target bottle, and it will need to be
moved to the left first.

● Example of the beginning of an online episode. The bottle with the blue sphere is the
target bottle. The sliding door is not covering the target bottle, so the arm may go directly
to it.
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● Example of a successful online episode. The target bottle, indicated by the green
sphere, was correctly reached.

● Example of a failed online episode. The target bottle, indicated by the red sphere, was
not reached, and the other bottle was incorrectly reached.

7

Phase 0 (practice):
● python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name Bottle

--mode no_online --epochs 10

Phase 1:
● python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name Bottle

--mode default

● Fill out “After Phase 1” in survey spreadsheet
Phase 2:

● python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name Bottle
--mode no_online

● Fill out “After Phase 2” in survey spreadsheet
Phase 3:

○ python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name Bottle
--mode no_door

○ Fill out “After Phase 3” in survey spreadsheet

After the experiments:
1. Make a zip file of the entire cloned repo
2. Upload the zip file, the signed consent form, and the signed gift card receipt to this Drive

folder

8

Figure 4.4: Instructional document for participants in the user study
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Figure 4.5: Error bars show standard error across the 12 participants. The maximum number of attempts
per task is 5 (see Appendix 4.2). Both performance metrics – success rate on the first attempt for each task,
and number of failed attempts per task – generally illustrate similar gaps between ASHA and the baseline
methods. However, in the bottle domain, while ASHA achieves a higher success rate than the random-latent
baseline, it does not achieve a lower number of failed attempts. This can be attributed to selection e↵ects
for di�cult tasks in subsequent attempts – see Figure 4.7 for details.
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Figure 4.6: Error bars show standard error across the 12 participants. The maximum number of attempts
per task is 5 (see Appendix 4.2). Both performance metrics – success rate on the first attempt for each
task, and number of failed attempts per task – generally illustrate similar gaps between ASHA and the
random-latent baseline method. However, in the bottle domain, while ASHA achieves a higher success rate
than the baseline, it does not achieve a lower number of failed attempts. This can be attributed to selection
e↵ects for di�cult tasks in subsequent attempts – see Figure 4.7 for details.
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Figure 4.7: Error bars show standard error across the 12 participants. Performance of ASHA and the
non-adaptive baseline tends to decrease on later attempts due to selection e↵ects: tasks in which the user’s
inputs are easy to interpret for ASHA and the non-adaptive baseline are completed within a small number
of attempts, while tasks for which user inputs are di�cult to interpret for these two methods tend to require
more attempts. Performance of the random-latent baseline is relatively constant across attempts, since it
does not take user input, and hence di�cult episodes are not selected for in later attempts. On the first
attempt, where selection e↵ects do not exist for any of the three methods, ASHA outperforms both the
non-adaptive and random-latent baselines.
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Figure 4.8: Results from the ablation experiments in Section 2.4. Error bars show standard error across
10 random seeds. The maximum number of attempts per task is 5 (see Appendix 4.2). As in Table 2.1
in Section 2.4, the results show that all the ablated variants of ASHA perform worse than the full ASHA
method, suggesting that sampling from a stochastic input encoder f inpt

✓ improves exploration (Q1), pre-
training with a VIB and reusing the pre-trained latent-conditioned policy g� speed up downstream learning
(Q2, Q3), relabeling failures makes human-in-the-loop learning more e�cient (Q4), and regressing onto an
optimal policy is more e↵ective than regressing onto sampled latents (Q5).
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Table 4.4: Ablation Experiments

Switch Bottle

Success Rate Failed Attempts Success Rate Failed Attempts

Random Latent (Baseline) 0.19± 0.02 2.8± 0.1 0.44± 0.02 1.3± 0.1
Non-Adaptive (Baseline) 0.50± 0.05 1.3± 0.2 0.53± 0.02 1.3± 0.1
ASHA (Ours) 0.83± 0.02 0.3± 0.0 0.79± 0.03 0.6± 0.2
ASHA w/ Det. Input Enc. (Q1) 0.70± 0.03 0.7± 0.1 0.73± 0.02 0.6± 0.1
ASHA w/ Det. Pre-train Enc. (Q2) 0.66± 0.06 1.0± 0.3 0.46± 0.03 2.1± 0.2
SAC from Scratch (Q3) 0.00± 0.00 5.0± 0.0 0.00± 0.00 5.0± 0.0
ASHA w/o Failure Relabeling (Q4) 0.54± 0.03 1.0± 0.1 0.55± 0.02 1.3± 0.1
ASHA w/ Latent Regression (Q5) 0.41± 0.04 1.7± 0.2 0.57± 0.02 1.1± 0.1

Means and standard errors measured across 100 episodes and 10 random seeds. See Figure 4.8 in the appendix
for more detailed plots. As in Table 2.1 in Section 2.4, the results show that all the ablated variants of ASHA
perform worse than the full ASHA method, suggesting that sampling from a stochastic input encoder f inpt

✓
improves exploration (Q1), pre-training with a VIB and reusing the pre-trained latent-conditioned policy g�
speed up downstream learning (Q2, Q3), relabeling failures makes human-in-the-loop learning more e�cient
(Q4), and regressing onto an optimal policy is more e↵ective than regressing onto sampled latents (Q5).


