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Abstract—We consider the problem of how to design and
implement communication-efficient versions of parallel support
vector machines, a widely used classifier in statistical machine
learning, for distributed memory clusters and supercomputers.
The main computational bottleneck is the training phase, in
which a statistical model is built from an input data set. Prior
to our study, the parallel isoefficiency of a state-of-the-art
implementation scaled as W = Ω(P 3), where W is the problem
size and P the number of processors; this scaling is worse
than even a one-dimensional block row dense matrix vector
multiplication, which has W = Ω(P 2).

This study considers a series of algorithmic refinements,
leading ultimately to a Communication-Avoiding SVM (CA-
SVM) method that improves the isoefficiency to nearly W =
Ω(P ). We evaluate these methods on 96 to 1536 processors,
and show average speedups of 3 − 16× (7× on average)
over Dis-SMO, and a 95% weak-scaling efficiency on six real-
world datasets, with only modest losses in overall classification
accuracy. The source code can be downloaded at [1].

Keywords-distributed memory algorithms; communication-
avoidance; statistical machine learning

I. INTRODUCTION

This paper concerns the development of communication-
efficient algorithms and implementations of kernel support
vector machines (SVMs). The kernel SVM is a state-of-the-
art algorithm for statistical nonlinear classification problem-
s [2], with numerous practical applications [3]–[5]. However,
the method’s training phase greatly limits its scalability on
large-scale systems. For instance, the most popular kernel
SVM training algorithm, Sequential Minimal Optimization
(SMO), has very little locality and low arithmetic intensity;
we have observed that it might spend as much as 70% of
its execution time on network communication on modern
high-performance computing (HPC) systems [6].

Intuitively, there are two reasons for SMO’s poor scaling
behavior [7]. The first reason is that the innermost loop
is like a large dense matrix-vector multiply, whose parallel
isoefficiency function scales like W = Ω(P 2). The second
reason is that SMO is an iterative algorithm, where the
number of iterations scales with the problem size. When
combined, these two reasons result in an isoefficiency of
W = Ω(P 3), meaning the method can only effectively use
3
√
W processors (refer to Section 5.4.2 of [8] for W and P ).
In this paper, we first evaluate distributed memory imple-

mentations of three state-of-the-art SVM training algorithms:

SMO [9], Cascade SVM [10], and Divide-and-Conquer
SVM (DC-SVM) [11]. (Our implementations of the latter
two are the first-of-their-kind for distributed memory sys-
tems, as far as we know.) We then optimize these methods
through a series of techniques including: (1) developing a
Divide-and-Conquer Filter (DC-Filter) method, which com-
bines Cascade SVM with DC-SVM to balance accuracy
and performance; (2) designing a Clustering-Partition SVM
(CP-SVM) to improve the parallelism, reduce the commu-
nication, and improve accuracy relative to DC-Filter; and
(3) designing a novel Communication-Avoiding SVM (CA-
SVM) that achieves load-balance and removes nearly all
inter-node communication. The relationship among these
methods, including how they combine different techniques,
is summarized in Fig. 1. Overall, we claim the following
specific contributions:

(1) We convert a communication-intensive algorithm to an
embarrassingly-parallel algorithm through removing nearly
all the inter-node communications. The new algorithm, CA-
SVM, is highly parallel and scalable.

(2) CA-SVM achieves significant speedups over the origi-
nal algorithm with only small losses in accuracy on our test
sets. In this way, we manage to balance the speedup and
accuracy.

(3) We optimize the state-of-the-art training algorithms
step-by-step, which both points out the problems of the
existing approaches and suggests possible solutions.

In short, CA-SVM achieves 3-16× (7× on average)
speedups over distributed SMO algorithm with comparable
accuracies. The accuracy losses range from none to 3.6%
(1.3% on average). According to previous work by others,
such accuracy losses may be regarded as small and are
likely to be tolerable in practical applications. CA-SVM also
achieves 95.3% weak scaling efficiency when we increase
the number of processors from 96 to 1536 on NERSC’s
Edison system [6]. We believe the approaches in this paper
could be applied to other statistical learning methods, such
as neural networks and regression analysis.

II. BACKGROUND AND RELATED WORK

SVMs have two major phases: training and prediction.
The training phase builds the model from a labeled input
data set, which the prediction phase uses to classify new



Figure 1. General Flow of the algorithmic improvements in this paper.
DC: divide-and-conquer; SV: only pass support vectors layer-by-layer; KM:
use K-means to partition the dataset; RL: remove the lower layers; CT:
build data center on each node and cluster the test dataset; RC: remove
communication; LB: load balance.

data. The training phase is the main limiter to scaling,
both with respect to increasing the training set size and
increasing the number of processors. By contrast, prediction
is embarrassingly parallel and fairly “cheap” per data point.
Therefore, this paper focuses on training, just like prior
papers on SVM-acceleration [9], [10], [12].

In terms of potential training algorithms, there are many
options. In this paper, we focus on a class of algorithms
we will call partitioned SMO algorithms. These algorithms
work essentially by partitioning the data set, building kernel
SVM models for each partition using SMO as a building
block, and then combining the models to derive a single
final model. In addition, they estimate model parameters
using iterative methods. We focus on two exemplars of this
class, Cascade SVM (§ II-C) and Divide-and-Conquer SVM
(§ II-D). We briefly survey alternative methods in § II-E.
Our primary reason for excluding them in this study is that
they use very different approaches that are both complex to
reproduce and that do not permit the same kind of head-to-
head comparisons as we wish to consider here.

A. SVM Training and Prediction

We focus on two-class (binary-class) kernel SVMs, where
each data point has a binary label that we wish to predict.
Multi-class (3 or more classes) SVMs may be implemented
as several independent binary-class SVMs; a multi-class
SVM can be easily processed in parallel once its constituent
binary-class SVMs are available. The training data in an
SVM consists of m samples, where each sample is a pair
(Xi, yi) and i ∈ {1, 2, ...,m}. Each Xi is the i-th training
sample, represented as a vector of features. Each yi is the i-
th sample’s label; in the binary case, each yi has one of two
possible values, {−1, 1}. Mathematically, the kernel SVM
training is typically carried out in its dual formulation where
a set of coefficients αi (called Lagrange multipliers), with
each αi associated with a sample (Xi, yi), are found by
solving the following linearly-constrained convex Quadratic
Programming (QP) problem, eqns. (1–2):

Maximize: F (α) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjKi,j (1)

Table I
STANDARD KERNEL FUNCTIONS

Linear K(Xi, Xj) = Xi
>Xj

Polynomial K(Xi, Xj) = (aXi
>Xj + r)d

Gaussian K(Xi, Xj) = exp(−γ||Xi −Xj ||2)

Sigmoid K(Xi, Xj) = tanh(aXi
>Xj + r)

Subject to:
m∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C, ∀i ∈ {1, 2, ...,m}.

(2)
Here, C is a regularization constant that attempts to balance
generality and accuracy; each computed αi is a Lagrange
multiplier; and Ki,j denotes the value of a kernel function
evaluated at a pair of samples, Xi and Xj . (Typical kernels
appear in Table I.) The value C is chosen by the user.

The training produces the vector of Lagrange multipliers,
[α1, α2, ..., αm]. The predicted label for a new sample, X̂ ,
is computed by evaluating eqn. (3),

ŷ =

m∑
i=1

αiyiK(X̂,Xi) (3)

In effect, eqn. (3) is the model learned during training. One
goal of SVM training is to produce a compact model, that is,
one whose α coefficients are sparse or mostly zero. The set
of samples with non-zero αi are called the support vectors.
Observe that only the samples with non-zero Lagrange
multipliers (αi 6= 0) can have an effect on the prediction
result.

B. Sequential Minimal Optimization (SMO)

The most widely used kernel SVM training algorithm
is Platt’s Sequential Minimal Optimization (SMO) algorith-
m [9]. It is the basis for popular SVM libraries and tools,
including LIBSVM [13] and GPUSVM [14]. The overall
structure of the SMO algorithm appears in Alg. 1. In essence,
it iteratively evaluates the following formulae:

fi =

m∑
j=1

αjyjK(Xi, Xj)− yi (4)

f̂i = fi + ∆αhighyhighKhigh,i + ∆αlowylowKlow,i (5)

∆αlow =
ylow(bhigh − blow)

Khigh,high +Klow,low − 2Khigh,low
(6)

∆αhigh = −ylowyhigh∆αlow (7)

For a detailed performance bottleneck analysis of SMO, see
You et al. [15]. The most salient observations we can make
are that (a) the dominant update rule is eqn. (4), which is a
matrix-vector multiply (with kernel); and (b) the number of
iterations necessary for convergence will tend to scale with
the number of input points, m.

All of the algorithmic improvements in this paper start
essentially from SMO. In particular, we adopt the approach



of Cao et al. [12], who designed a parallel SMO implemen-
tation for distributed memory systems. As far as we know, it
is the best distributed SMO implementation so far. The basic
idea is to partition the data among nodes and launch a big
distributed SVM across those nodes. Their implementation
fits within a map-reduce framework. The two-level (“local”
and “global”) map-reduce strategy of Catanzaro et al. can
significantly reduce the amount of communication [14].
However, the basic algorithm and ideas of Catanzaro et al
target single-node (single-GPU) systems, whereas our focus
in this paper is on distributed memory scaling.

Algorithm 1: Sequential Minimal Optimization (SMO)
1 Input the samples Xi and labels yi, ∀i ∈ {1, 2, ...,m}.
2 αi = 0, fi = −yi, ∀i ∈ {1, 2, ...,m}.
3 bhigh = −1, ihigh = min{i : yi = 1}
4 blow = 1, ilow = min{i : yi = −1}.
5 Update αhigh and αlow according to Equations (6) and (7).
6 Update fi according to Equation (5), ∀i ∈ {1, 2, ...,m}
7 Ihigh = {i : 0 < αi < C ∨ yi > 0, αi = 0∨ yi < 0, αi = C}
8 Ilow = {i : 0 < αi < C ∨ yi > 0, αi = C ∨ yi < 0, αi = 0}
9 ihigh = arg min{fi : i ∈ Ihigh}

10 ilow = arg max{fi : i ∈ Ilow}
11 bhigh = min{fi : i ∈ Ihigh}, blow = max{fi : i ∈ Ilow}
12 Update αhigh and αlow according to Equations (6) and (7).
13 If blow > bhigh, then go to Step 6.

C. Cascade SVM
Cascade SVM is a multi-layer approach designed with

distributed systems in mind [10]. As Fig. 2 illustrates, its
basic idea is to divide the SVM problem into P smaller
SVM sub-problems, and then use a kind of “reduction tree”
to re-combine these smaller SVM models into a single result.
The subproblems and combining steps could in principle
use any SVM training method, though in this paper we
consider those that use SMO. A Cascade SVM system with
P computing nodes has log(P )+1 layers. In the same way,
the whole training dataset (TD) is divided into P smaller
parts (TD1, TD2, ..., TDP ), each of which is processed by
one sub-SVM. The training process selects certain samples
(with non-zero Lagrange multiplier, i.e. αi) out of all the
samples. The set of support vectors, SV , is a subset of the
training dataset (SVi ⊆ TDi, i ∈ {1, 2, ..., P}). Each sub-
SVM can generate its own SV . For Cascade, only the SV
will be passed from the current layer to next layer. The αi

of each support vector will also be passed to the next layer
to provide a good initialization for the next layer, which can
significantly reduce the iterations for convergence. On the
next layer, any two consecutive SV sets (SVi and SVi+1)
will be combined into a new sub-training dataset. In this way,
there is only one sub-SVM on the (log(P ) + 1)-st layer.

D. Divide-and-Conquer SVM (DC-SVM)
DC-SVM is similar to Cascade SVM [11]. However, it

differs in two ways: (1) Cascade SVM partitions the training

Figure 2. This figure is an illustration of Cascade SVM [10]. Different
layers have to be processed sequentially, i.e. layer i+ 1 can be processed
after layer i has been finished. The tasks in the same level can be processed
concurrently. If the result at the bottom layer is not good enough, the
user can distribute all the support vectors (SV15 in the figure) to all the
nodes and re-do the whole pass from the top layer and to the bottom layer.
However, for most applications, the result will not become better after
another Cascade pass. Thus, one pass is enough in most of the cases.

dataset evenly on the first layer, while DC-SVM uses K-
means clustering to partition the dataset; and (2) Cascade
SVM only passes the set of support vectors from one layer
to the next, whereas DC-SVM passes all of the training
dataset from layer to layer. At the last layer of DC-SVM, a
single SVM operates on the whole training dataset.

K-means clustering: Since K-means clustering is a
critical substep for DC-SVM, we review it here.

The objective of K-means clustering is to partition a
dataset TD into k ∈ Z+ sub-datasets (TD1, TD2, ..., TDk),
using a notion of proximity based on Euclidean dis-
tance [16]. The value of k is chosen by the user. Each sub-
dataset has a center (CT1, CT2, ..., CTk). The center has
the same structure as a sample (i.e. n-dimensional vector).
Sample X will belong to TDi if CTi is the closest data
center to X . A naı̈ve version of K-means clustering appears
in Alg. 2.

Algorithm 2: Naı̈ve K-means Clustering
1 Input the training samples Xi, i ∈ {1, 2, ...,m}.
2 Initialize data center CT1, CT2, ..., CTk randomly.
3 set δ = 0
4 For every i, set ci = argminj ||Xi − CTj ||.
5 If ci has been changed, δ = δ + 1

6 For every j, set CTj =
∑m

i=1 1{ci=j}Xi∑m
i=1 1{ci=j} , j ∈ {1, 2, ..., k}.

7 If δ/m > threshold, then go to Step 3.

E. Other methods

There are other potential algorithms for SVMs. One
method uses matrix factorization of the kernel matrix
K [17]. Another class of methods relies on solving the QP
problem using an iteration structure that considers more than
two points at a time [18], [19]. Additionally, there are other
optimizations for serial approach [9], [20], [21] or parallel
approach on shared memory systems [14], [22]. All of these
approaches are hard to compare “head-to-head” against the



Table II
TERMS FOR PERFORMANCE MODELLING

m; n; P # samples; # features per sample; # nodes or processes

T1; Tp serial run time; parallel run time

ts; tw startup time for communication; per-word transfer time

Vk # SVs in kth Cascade layer, V1 = m

Lk maximal # iters of all nodes in kth Cascade layer

Pk # processes in kth Cascade layer

W ; To problem size; parallel overhead (To = PTp −W )

s; I; k # SVs; # SVM iters; # K-means iters

partitioned SMO schemes this paper considers, so we leave
such comparisons for future work.

III. RE-DESIGN DIVIDE-AND-CONQUER METHOD

A. Performance Modeling for Existing Methods

In this section, we will do performance modeling for
the three related methods mentioned in Section II. The
related terms are in Table II and the proofs can be found
in [7]. To evaluate the scalability, we refer to Iso-efficiency
function (Section 5.4.2 of [8]), shown in Equation (8)
where E (E = T1/(pTp)) is the desired scaling efficiency
(Specifically, T1 = tcW where tc is the time per flop.
In this paper, to make it simple, we normalize so that
tc = 1. In the same way, ts and tw in Table II actually are
ratios of communication time to flop time). The minimum
problem size W can usually be obtained as a function of
P by algebraic manipulations. This function dictates the
growth rate of W required to keep the efficiency fixed as
P increases. For example, the Iso-efficiency function of 1D
Mat-Vec-Mul is W = Ω(P 2), and it is W = Ω(P ) for 2D
Mat-Vec-Mul (Section 8.1 of [8], W = n2 where n is the
matrix dimension for Mat-Vec-Mul). The Mat-Vec-Mul is
more scalable with 2-D partitioning because it can deliver
the same efficiency on more processors with 2-D partitioning
(P = O(W )) than with 1-D partitioning (P = O(

√
W )).

W = KTo with K =
E

1− E
(8)

1) Distributed SMO (Dis-SMO): The serial runtime (T1)
of a SMO iteration is Θ(2mn) and its parallel runtime (Tp)
per iteration is in Equation (9). Its problem size (W ) is also
Θ(mn). Based on the terms in Table II, the parallel overhead
(To) can be obtained in Equation (10). The scaling modeling
results are in Table IV. This modeling result is based on
single-iteration SMO. However, the modeling result of the
completely converged SMO algorithm will be worse (i.e. the
lower bound will be larger) because the number of iterations
is proportional to the number of samples (Table III). This
will furthermore jeopardize the scalability for large-scale
computation.

Table III
THE NUMBER OF ITERATIONS WITH DIFFERENT NUMBER OF SAMPLES,

EPSILON AND FOREST ARE THE TEST DATASETS

Samples 10k 20k 40k 80k 160k 320k

Iters (epsilon) 4682 8488 15065 26598 49048 90320

Iters (forest) 3057 6172 11495 22001 47892 103404

Table IV
SCALING COMPARISON FOR ISO-EFFICIENCY FUNCTION

Method Communication Computation

1D Mat-Vec-Mul W = Ω(P 2) W = Θ(1)

2D Mat-Vec-Mul W = Ω(P ) W = Θ(1)

Distributed-SMO W = Ω(P 3) W = Ω(P 2)

Cascade W = Ω(P 3) W = O(
∑logP

k=1 nLkVk−12k)

DC-SVM W = Ω(P 3) W = O(
∑logP

k=1 nLkm2k)

Tp = 14logP ts+[2nlogP +4P 2]tw +
2mn+ 4m

P
+2P +n

(9)

To = 14PlogP ts + [2nP logP + 4P 3]tw + 4m+ 2P 2 +nP
(10)

2) Cascade and DC-SVM: The communication and com-
putation Iso-efficiency functions of Cascade are in Equation
(11) and Equation (12) respectively. Since V1+logP is the
number of support vectors of the whole system, we can get
that V1+logP = Θ(m). On the other hand, the number of
training samples can not be less than the number of nodes
(i.e. m = Ω(P )), because we can not keep all P nodes
busy. That is V1+logP = Ω(P ). Therefore, after substi-
tuting V1+logP by Ω(P ) in Equation (11), we obtain that
the lower bound of communication Iso-efficiency function
W = Ω(P 3). Because we can not predict the number of
support vectors and the number of iterations on each level
(i.e. Vk−1 and Lk in Equation (12)) beforehand, we can
only get the upper bound for the computation Iso-efficiency
function (Table IV). For DC-SVM, since the K-means time
is significantly less than the SVM time (Tables XIII to
XVIII), we ignore the effect of K-means on the whole
system performance. Therefore, we get the Iso-efficiency
function of DC-SVM by replacing Vk of Cascade with m
(Table IV).

Wcascade,comm = Θ((

logP∑
k=2

n2kVk) + P 2V1+logP ) (11)

Wcascade,comp = Θ(n(

1+logP∑
k=2

LkVk−12k − 2Im)) (12)

We compare with Mat-Vec-Mul, which is a typical
communication-intensive kernel. Actually, the scalability of



these three methods are even worse than 1D Mat-Vec-Mul,
which means we need to design a new algorithm to scale
up SVM on future exascale computing systems. Our scaling
results in Section V are in line with our analysis.

B. DC-Filter: Combination of Cascade and SVM

From our experimental results, we observe that Cascade
is faster than Dis-SMO. However, the classification accu-
racy of Cascade is worse. DC-SVM can obtain a higher
classification accuracy. Nevertheless, the algorithm becomes
extremely slow (Tables XIII to XVIII). The reason is that
DC-SVM has to pass all the samples layer-by-layer, and
this significantly increases the communication overhead. In
addition, more data on each node means the processors
have to do more on-chip communication and computation.
Therefore, our first design is to combine Cascade with DC-
SVM. We refer to this approach as Divide-and-Conquer
Filter (DC-Filter).

Like DC-SVM, we apply K-means in DC-Filter to get a
better data partition, which can help to get a good classifica-
tion accuracy [11]. It is worth noting that K-means does not
significantly increase the computation and communication
overhead (Tables XIII to XVIII), which is the major reason
why we can use it. For example, K-means converges in 7
loops and only costs less than 0.1% of the total runtime for
processing the ijcnn dataset. On the other hand, we apply
the filter function of Cascade in the combined approach.
On each layer, only the support vectors rather than all the
training samples will be sent to next layer, which is like a
filter since SV is a subset of the original training dataset.
The Lagrange multiplier of each support vector will be sent
with it to give a good initialization for next layer, which
can reduce the number of iterations for convergence [10]. In
our experiments, the speed and accuracy of DC- Filter fall
in between Cascade and DC-SVM, or perform better than
both of them. DC-Filter is a compromise between these two
existing approaches, which is our first attempt to balance the
accuracy and the speedup.

IV. COMMUNICATION-AVOIDING DESIGN

A. CP-SVM: Clustering-Partition SVM

The node management for Cascade, DC-SVM, and DC-
Filter are actually similar to each other (i.e. Fig. 2). Table
V provides the detailed profiling result of a toy Cascade
example to show how they work. We can observe that
only 27% (5.49/20.1) of the total time is spent on the
top layer, which makes full use of all the nodes. In fact,
almost half (9.69/20.1) of the total time is spent on the
bottom layer, which only uses one node. In this situation,
the Cascade-like approach does not perform well because
the parallelism in most of the algorithm is extremely low.
The weighted average number of nodes used is only 3.3
(obtained by Equation (13)) for the example in Table V.
However, the system actually occupies 8 nodes for the

whole runtime. Specifically, the parallelism is decreasing by
a factor of 2 layer-by-layer. For some datasets (e.g. Table
XIV), the lower level can be fast and converge within Θ(1)
iterations. For other datasets (e.g. Table V), the lower level
is extremely slow and becomes the bottleneck of the runtime
performance. Therefore, we need to redesign the algorithm
again to make it highly parallel and make full of all the
computing nodes.

∑1+logP
l=1 ((time of layer l)× (#nodes of layer l))∑1+logP

l=1 (time of layer l)
(13)

Table V
PROFILE OF 8-NODE & 4-LAYER CASCADE FOR A TOY DATASET

level 1st

node rank 1 2 3 4 5 6 7 8
samples 6000 6000 6000 6000 6000 6000 6000 6000
time: 5.49s 4.87 4.92 4.90 4.68 5.12 5.10 5.49 4.71
iter: 6168 5648 5712 5666 5415 5936 5904 6168 5453
SVs: 5532 746 715 717 718 686 707 721 699

level 2nd

node rank 1 3 5 7
samples 1461 1435 1393 1420
time: 1.58s 1.58 1.50 1.35 1.45
iter: 7485 7485 7211 6713 7035
SVs: 5050 1292 1263 1256 1239

level 3rd

node rank 1 5
samples 2555 2495
time: 3.34s 3.34 3.30
iter: 9081 8975 9081
SVs: 4699 2388 2311

level 4th

node rank 1
samples 4699
time: 9.69s 9.69
iter: 14052 14052
SVs: 4475 4475

The analysis in this section is based on the Gaussian
kernel with γ > 0 because it is the most widely used case
[14]. Other cases can work in the same way with different
implementations. For any two training samples, their kernel
function value is close to zero (exp{−γ||Xi−Xj ||2} → 0)
when they are far away from each other in Euclidean
distance (||Xi − Xj ||2 → ∞). Therefore, for a given
sample X̂ , only the support vectors close to X̂ can have
an effect on the prediction result (Equation (3)) in the
classification process. Based on this idea, we can divide
the training dataset into P parts (TD1, TD2, ..., TDP ).
We use K-means to divide the initial dataset since K-
means clustering is based on Euclidean distance. After K-
means clustering, each sub-dataset will get its data center
(CT1, CT2, ..., CTP ). Then we launch P independent sup-
port vector machines (SVM1, SV M2, ..., SVMP ) to pro-



Figure 3. General Flow for CP-SVM. In the training part, different SVMs
process its own dataset independently. In the classification part, different
models can make the prediction independently.

cess these P sub-datasets, which is like the top layer of the
DC-Filter algorithm.

After the training process, each sub-SVM will generate
its own model file (MF1,MF2, ...,MFP ). We can use
these model files independently for classification. For a
given sample X̂ , if its closest data center is CTi, we
will only use MFi to make a prediction for X̂ because
the support vectors in other model files have little impact
on the classification result. Fig. 3 is the general flow of
CP-SVM. CP-SVM is highly parallel because all the sub-
problems are independent of each other. CP-SVM has little
communication overhead from the operations in K-means
clustering. CP-SVM generally is faster than the previous
algorithms and its accuracy is closer to the SMO algorithm
(Tables XIII to XVIII). However, in terms of scalability and
speed, it is still not good enough.

B. CA-SVM: Communication-Avoiding SVM

Based on the profiling result in Fig. 7, we can observe
that CP-SVM is not well load-balanced. The reason is that
the partitioning by K-means is irregular and imbalanced. For
example, processor 2 in Fig. 7 has to handle 35,137 samples
while processor 7 only needs to process 9,685 samples.
On the other hand, the partitioning by K-means is data-
dependent, which means we can not predict the partitioning
pattern beforehand. This makes it unreliable to be used in
practice. Therefore, we need to replace K-means with a
better partitioning algorithm. We design three versions of
balanced partitioning algorithms and use them to build the
communication-avoiding algorithms. The objective of these
three algorithms is to improve K-means.

1) First Come First Served CASVM (FCFS-CA): In our
design, a machine node corresponds to a clustering center. If
we have P machine nodes, then we will partition the dataset
into P parts. As mentioned above, the objective of FCFS-CA

partitioning algorithm is to make the number of samples on
each node close to m/P . If a data center has m/P samples,
then it is balanced. The basic idea of this algorithm is to
find the closest center for each sample. If a given center
has been balanced, then no additional sample will be added
to this center. The detailed FCFS-CA partitioning method
is in Algorithm 3. Line 1-4 of Algorithm 3 is the initiation
phase: we randomly pick P samples from the dataset as the
initial data centers. Line 5-14 is finding the center for each
sample. Line 8-12 is finding the best under-loaded center
for the i-th sample. Line 15-21 is recomputing the data
center by averaging the all the samples in a certain center.
Recomputing the centers by averaging is optional because
it will not necessarily make the results better. Fig. 4 is an
example of Algorithm 3.

Algorithm 3: First Come First Served Partitioning
Input:

CT [i] is the center of i-th cluster
CS[i] is the size of i-th cluster
SA[i] is the i-th sample
m is the number of samples
P is the number of clusters (processes)

Output:
MB[i] is the closest center to i-th sample
CT [i] is the center of i-th cluster

1 Randomly pick P samples from m samples (RS[0:P])
2 for i ∈ 1 : P do
3 CT [i] = RS[i]

4 balanced = m/P
5 for i ∈ 1 : m do
6 mindis = inf
7 minind = 0
8 for j ∈ 1 : P do
9 dist = euclidDistance(SA[i], CT [j])

10 if dist < mindis and CS[j] < balanced then
11 mindis = dist
12 minind = j

13 CS[minind]++
14 MB[i] = minind

15 for i ∈ 1 : P do
16 CT [i] = 0

17 for i ∈ 1 : m do
18 j = MB[i]
19 CT [j] += SA[i]

20 for i ∈ 1 : P do
21 CT [i] = CT [i] / CS[i]

From Fig. 5 we can observe that FCFS-CA can partition
the dataset in a balanced way. After FCFS partitioning, all
the nodes have the same number of samples. However, Table



4.1 We have 8 samples (S0-S7) and want to
distribute them to 4 centers (C0-C3). In the load
balanced situation, each center has 2 samples.

4.2 The closest center to S0 is C2 (1<3<4<5).
Since C2 is under-loaded, we move S0 to C2.
After this, C2 is still under-loaded.

4.3 The closest center to S1 is C3 (0<1<2<7).
Since C3 is under-loaded, we move S1 to C3.
After this, C3 is still under-loaded.

4.4 The closest center to S2 is C0 (3<4<6<8).
Since C0 is under-loaded, we move S2 to C0.
After this, C0 is still under-loaded.

4.5 The closest center to S3 is C3 (1<3<4<8).
Since C3 is under-loaded, we move S3 to C3.
After this, C3 is balanced.

4.6 The closest center to S4 is C0 (2<4<6<7).
Since C0 is under-loaded, we move S4 to C0.
After this, C0 is balanced.

4.7 The closest center to S5 is C0 (0<1<3<7).
Since C0 and C3 are balanced, we move S5 to C1.
After this, C1 is balanced.

4.8 The closest center to S6 is C3 (4<6<8<9).
Since C3 is balanced, we move S6 to C2. After
this, C2 is balanced.

4.9 Since only C1 is under-loaded, we move S7
to C1, which is the third choice. After this, all the
centers are balanced.

Figure 4. This is an example of First Come First Served partitioning algorithm. Each figure is a distance matrix, which is referred as dist. For example,
dist[i][j] is the distance between i-th center and j-th sample. The color of the matrix in the first figure is the original color. If dist[i][j] has a different
color with the original one, then it means that j-th sample belongs to i-th center.

VI shows that the system is still loaded imbalanced. From
Table VI we can see that Rank 6 has to do 1,552 iterations
while Rank 5 only need to do 77 iterations. This means
balanced data load does not guarantee balanced task load.
This reasons are that: (1) From Table VII we can observe
that the ratios of positive samples and negative samples on
different nodes are different from each other. For example,
the ratio on node 1 (0.0841) is 22 times of the ratio on
node 5 (0.0038). (2) From Table VII we can also observe
that the ratios of positive SVs and negative SVs on different
nodes are close to each other (≈1). For this dataset, SVM
wants the ratio of positive SVs and negative SVs to be 1.
Therefore, more positive samples means there will be more
SVs (because the number of negative samples is much larger
than the number of positive samples). More SVs means it
will need more computations. Node 1 has the largest number
of positive samples (Table VII), thus it is the slowest one
(Table VI). Node 5 has the smallest number of positive

samples (Table VII), thus it is the fastest one (Table VI).

Therefore, in order to achieve load balance, we not only
need to distribute the same volume of data to each node. We
also need to make sure all the nodes have the same ratio of
positive samples and negative samples. The idea is similar
to Algorithm 3. To achieve this, we need to use positive
CS[i] and negative CS[i] to replace CS[i] in Algorithm
3. We need to use positive SA[i] and negative SA[i] to
replace SA[i] in Algorithm 3. We also need to use the
number of positive samples and the number of negative
sample to replace m in Algorithm 3. After we can have
made all the nodes have the same volume of data and the
same pos-neg ratio (Table VIII), we can observe that we
achieve load balancing (Table IX). For Table VI and Table
IX, although in both situation Rank 5 is faster than Rank
1, we have significantly reduced the speedup of the fastest
over the slowest from 20× (13.8/0.69) to 1× (6.50/6.21).
To do FCFS partitioning algorithm in parallel, we use the



Algorithm 4: Parallel FCFS Partitioning
Input:

CT [i] is the center of i-th cluster
CS[i] is the size of i-th cluster
SA[i] is the i-th sample
m is the number of samples
P is the number of clusters (processes)

Output:
MB[i] is the closest center to i-th sample
CT [i] is the center of i-th cluster

1 Randomly pick P samples from m samples (RS[0:P])
2 for i ∈ 1 : P do
3 CT [i] = RS[i]

4 Broadcast CT [1 : P ] to all the nodes
5 Distribute SA[1 : m] to all the nodes
6 pm = m/P
7 balanced = pm/P
8 for i ∈ 1 : pm do
9 mindis = inf

10 minind = 0
11 for j ∈ 1 : P do
12 dist = euclidDistance(SA[i], CT [j])
13 if dist < mindis and CS[j] < balanced then
14 mindis = dist
15 minind = j

16 CS[minind]++
17 MB[i] = minind

18 for i ∈ 1 : P do
19 CT [i] = 0

20 for i ∈ 1 : pm do
21 j = MB[i]
22 CT [j] += SA[i]

23 Recompute CS by All-Reduce-Sum
24 Recompute CT by All-Reduce-Sum
25 for i ∈ 1 : P do
26 CT [i] = CT [i] / CS[i]

27 Gather MB to node 0

divide-and-conquer approach. The basic idea is to convert
one m→ P ×m/P problem to several m/P → P ×m/P 2

problems. The parallel FCFS partitioning approach is de-
tailed in Algorithm 4. Specifically, line 4-7 of Algorithm 4
is the dividing phase. We distribute all the samples evenly to
all the nodes. All the nodes will have a copy of data centers.
Line 8-22 of Algorithm 4 is the parallel phase, during which
all the nodes do the same thing independently. Each node
will finish its own FCFS algorithm. Line 23-27 of Algorithm
4 is the conquer phase. In line 18-22, we need to use all the
samples on all the nodes to recompute the data centers.

Figure 5. The figure shows that the partitioning by K-means is imbalanced
while the partitioning by FCFS is balanced. Specifically, each node has
exactly 20,000 samples after FCFS partitioning. The test dataset is face
with 160,000 samples (361 features per sample). 8 nodes are used in this
test.

Table VI
BALANCED DATA 6= BALANCED LOAD

Rank 5 7 0 2 3 4 6 1

Samples 20k 20k 20k 20k 20k 20k 20k 20k

Size (MB) 83 83 83 83 83 83 83 83

Iter 77 307 630 644 685 927 934 1552

Time (s) 0.69 2.74 5.66 5.78 6.14 8.26 8.33 13.8

2) Balanced K-means CASVM (BKM-CA): As mentioned
above, the objective of BKM-CA partitioning algorithm is
to make the number of samples on each node close to m/P
(a machine node corresponds to a data center) based on
Euclid distance. If a data center has m/P samples, then
it is balanced. The basic idea of this algorithm is to slightly
rearrange the results of the original K-means algorithms. We
will keep moving samples from the over-loaded center to
under-loaded center till they are balanced. The balanced K-
means partitioning method is detailed in Algorithm 5. Line
1-3 of Algorithm 5 is the K-means clustering. In line 6-8, we
calculate the Euclid distance distance between every sample
and every center. For example, dist[i][j] is the Euclid
distance between i-th sample and j-th center. The variable
balanced is the number of samples every center should have
in the load-balance situation. After the K-means clustering,
some centers will have more than balanced samples. In line
9-27 of Algorithm 5, the algorithm will move some samples
from the over-loaded centers to the under-loaded centers. For
a given over-loaded center, we will find the farthest sample
(line 14-17 of Algorithm 5). The id of the farthest sample is
maxind. In line 20-24 of Algorithm 5, we find the closest
under-loaded center to sample maxind. In line 25-27, we
move sample maxind from its over-loaded center to the
best under-loaded center. In line 15-21, we recompute the
data center by averaging the all the samples in a certain
center. Recomputing the centers by averaging is optional.



Table VII
THE NUMBER OF SAMPLES, POSITIVE SAMPLES, NEGATIVE SAMPLES;

THE RATIO OF POSITIVE SAMPLES AND NEGATIVE SAMPLES; THE
NUMBER OF SVS, POSITIVE SVS, NEGATIVE SVS; THE RATIO OF

POSITIVE SVS AND NEGATIVE SVS;

Rank Samples SVs
# | # (+) | # (-) | (+)/(-) # | # (+) | # (-) | (+)/(-)

0 20k | 629 | 19371 | 0.0325 1259 | 629 | 630 | 0.9984

1 20k | 1551 | 18449 | 0.0841 3103 | 1551 | 1552 | 0.9994

2 20k | 642 | 19358 | 0.0332 1285 | 642 | 643 | 0.9984

3 20k | 684 | 19316 | 0.0354 1369 | 684 | 685 | 0.9985

4 20k | 926 | 19074 | 0.0485 1853 | 926 | 927 | 0.9989

5 20k | 76 | 19924 | 0.0038 153 | 76 | 77 | 0.9870

6 20k | 932 | 19068 | 0.0489 1865 | 932 | 933 | 0.9989

7 20k | 306 | 19694 | 0.0155 613 | 306 | 307 | 0.9967

Table VIII
THE NUMBER OF SAMPLES, POSITIVE SAMPLES, NEGATIVE SAMPLES;

THE RATIO OF POSITIVE SAMPLES AND NEGATIVE SAMPLES; THE
NUMBER OF SVS, POSITIVE SVS, NEGATIVE SVS; THE RATIO OF

POSITIVE SVS AND NEGATIVE SVS;

Rank Samples SVs
# | # (+) | # (-) | (+)/(-) # | # (+) | # (-) | (+)/(-)

0 19967 | 722 | 19245 | 0.0375 1445 | 722 | 723 | 0.9986

1 20009 | 722 | 19287 | 0.0374 1445 | 722 | 723 | 0.9986

2 20009 | 722 | 19287 | 0.0374 1445 | 722 | 723 | 0.9986

3 20009 | 722 | 19287 | 0.0374 1445 | 722 | 723 | 0.9986

4 20009 | 722 | 19287 | 0.0374 1445 | 722 | 723 | 0.9986

5 19979 | 692 | 19287 | 0.0359 1385 | 692 | 693 | 0.9986

6 20009 | 722 | 19287 | 0.0374 1445 | 722 | 723 | 0.9986

7 20009 | 722 | 19287 | 0.0374 1445 | 722 | 723 | 0.9986

Fig. 6 is an example of Algorithm 5. Like FCFS partitioning
algorithm, we need to add ratio-balancing technique to the
above data-balancing method to achieve load-balancing. We
also need to use the divide-and-conquer technique used in
parallel FCFS (Algorithm 4) to parallelize the balanced K-
means partitioning algorithm.

3) Randomly-Averaging CASVM (RA-CA): The basic
idea is to randomly divide the original training dataset
into P parts (TD1, TD2, ..., TDP ) evenly. After partition-
ing, each sub-dataset will generate its own data center
(CT1, CT2, ..., CTP ). For TDi (i ∈ {1, 2, ..., P}), its data
center (i.e. CTi) is the average of all the samples on
node i (Equation 14). Then we launch P independen-
t support vector machines (SVM1, SVM2, ..., SVMP ) to
process these P sub-datasets in parallel. After the training
process, each sub-SVM will generate its own model file
(MF1,MF2, ...,MFP ). Like CP-SVM, we can use these
model files independently for classification. For any un-
known sample (X̂), if its closest data center is CTi, we will
only use MFi to make prediction for X̂ . The communication
overhead of CP-SVM, FCFS-CA and BKM-CA are from the
data transfer and distribution in K-means like partitioning

Algorithm 5: Balanced Kmeans Partitioning
Input:

CT [i] is the center of i-th cluster
CS[i] is the size of i-th cluster
SA[i] is the i-th sample
m is the number of samples
P is the number of clusters (processes)

Output:
MB[i] is the closest center to i-th sample
CT [i] is the center of i-th cluster

1 Randomly pick P samples from m samples (RS[0:P])
2 for i ∈ 1 : P do
3 CT [i] = RS[i]

4 do kmeans clustering
5 balanced = m/P
6 for i ∈ 1 : m do
7 for j ∈ 1 : P do
8 dist[i][j] = euclidDistance(SA[i], CT [j])

9 for j ∈ 1 : P do
10 while CS[j] > balanced do
11 CS[j] < balanced
12 maxdist = 0
13 maxind = 0
14 for i ∈ 1 : m do
15 if dist[i][j]>maxdist and MB[i]==j then
16 maxdist = dist[i][j]
17 maxind = i

18 mindist = inf
19 minind = j
20 for k ∈ 1 : P do
21 if dist[maxind][k]<mindist then
22 if CS[k]<balanced then
23 mindist = dist[maxind][k]
24 minind = k

25 MB[maxind] = minind
26 CS[j]=CS[j]-1
27 CS[minind]=CS[minind]+1

28 for i ∈ 1 : P do
29 CT [i] = 0

30 for i ∈ 1 : m do
31 j = MB[i]
32 CT [j] += SA[i]

33 for i ∈ 1 : P do
34 CT [i] = CT [i] / CS[i]



6.1 We have 8 samples (S0-S7) and want to
distribute them to 4 centers (C0-C3). In the load
balanced situation, each center has 2 samples.

6.2 After regular kmeans, C0 has 4 samples and
C3 has 3 samples. We need to move some samples
from them to the under-loaded centers.

6.3 We move S2 from C0 since it is the worst
sample of C0. The first choice is C3, but C3 is
overloaded. So we move S2 to C1

6.4 We move S4 from C0 since C0 is still over-
loaded. The first choice is C2. C2 is under-loaded,
so we move S4 to C2.

6.5 We move S6 from C3 since it is the worst
sample of C3. Both C0 and C2 are already bal-
anced. So we move S6 to C1.

6.6 Finally, each centers has exactly 2 samples.
Now the system is load balanced.

Figure 6. This is an example of First Come First Served partitioning algorithm. Each figure is a distance matrix, which is referred as dist. For example,
dist[i][j] is the distance between i-th center and j-th sample. The color in the first figure is the original color. If dist[i][j] has a different color with the
original one, then it means that j-th sample belongs to i-th center.

Table IX
BALANCED DATA + BALANCED RATIO = BALANCED LOAD

Rank 5 7 3 0 6 4 1 2

Samples 20k 20k 20k 20k 20k 20k 20k 20k

Size (MB) 83 83 83 83 83 83 83 83

Iter 693 723 723 723 723 723 723 724

Time (s) 6.21 6.48 6.48 6.49 6.49 6.49 6.49 6.50

algorithm. In this new method, we replace the K-means
variants with a no- communication partition. Thus, we can
also directly refer RA-CA as CA-SVM (Communication-
Avoiding SVM). However, this assumes that originally the
dataset is distributed to all the nodes. To give a fair com-
parison, we implement two versions of CA-SVM. casvm1
means that we put the initial dataset on just one node,
which needs communication to distribute the dataset to
different nodes. casvm2 means that we put the initial dataset
on different nodes, which needs no communication (Fig.
9). All the results of CA-SVM in Section V are based
on casvm2. CA-SVM may lose accuracy because evenly-
randomly dividing does not get the best partitioning in terms
of Euclidean distance. However, the results in Tables XIII
to XVIII show that it achieves significant speedup with
comparable results.

The framework of CA-SVM is shown in Algorithm 6. The
prediction process may need a little communication. How-
ever, both the data centers and test samples are pretty small
compared with the training samples. This communication

Figure 7. The figure shows that CP-SVM is load imbalanced while CA-
SVM is load-balanced. The test dataset is epsilon with 128,000 samples
(2,000 nnz per sample). 8 nodes are used in this test.

will not bring about significant overheads. On the other hand,
the majority of SVM time is spent on the training process.
Like previous work (e.g. SMO, Cascade, DC-SVM), the
focus of this paper is on optimizing the training process.

CTi =

∑#samples
j=1 {Xj |Xj ∈ TDi}∑#samples
j=1 {1|Xj ∈ TDi}

(14)

C. Communication Pattern

1) Communication Modeling: We only give the results
because the space is limited, the detailed proofs are in
[7]. The formulas of communication volume are in Table



8.1 Dis-SMO: 34MB 8.2 Cascade: 8MB 8.3 DC-SVM: 29MB

8.4 DC-Filter: 18MB 8.5 CP-SVM: 17MB 8.6 CA-SVM: 0MB

Figure 8. Communication Patterns of different approaches. The data is from running the 6 approaches on 8 nodes with the same 5MB Toy Dataset.
x-axis is the rank of sending processors, y-axis is the rank of receiving processors, and z-axis is the volume of communication in bytes. The vertical ranges
(z-axis) of these 6 sub-figures are the same.

Algorithm 6: CA-SVM (casvm2 in Fig. 9)
1 Training Process (no communication):
2 0: i ∈ {1, 2, ...,m/P}, j ∈ {1, 2, ..., P}
3 1: For node Nj , input the samples Xi and labels yi.
4 2: For node Nj , get its data center CTj .
5 3: For node Nj , launch a SVM training process SVMj .
6 4: For node Nj , save the model file of converged SVMj as
MFj .

7 Prediction Process (little communication):
8 1: Send all the data centers CTj , j ∈ {1, 2, ..., P} to root

node
9 2: If CTj is closer to X̂ than other centers, then send X̂ to
Nj

10 3 Use MFj to make prediction for X̂

X. The experimental results in the table are based on the
ijcnn dataset on 8 Hopper nodes [6]. The terms used in the
formulas are in Table II. We can use the formulas to predict
the communication volume for a given method. For example,
for the test dataset used in this experiment, m is 48,000, n is
13, and s is 4474. We can predict the communication volume
of Cascade is about 3×(48000×13+48000+4474×13)×4B
= 8.4MB. Our experimental result is 8.41MB, which means
the prediction for Cascade is very close to the actual volume.

Table X
MODELING OF COMMUNICATION VOLUME

Method Formula Prediction Test

Dis-SMO Θ(26Ip+ 2pm+ 4mn) 36MB 34MB

Cascade O(3mn+ 3m+ 3sn) 8.4MB 8.4MB

DC-SVM Θ(9mn+ 12m+ 2kpn) 24MB 29MB

DC-Filter O(6mn+ 7m+ 3sn+ 2kpn) 16.2MB 18MB

CP-SVM Θ(6mn+ 7m+ 2kpn) 15.6MB 17MB

CA-SVM 0 0MB 0MB

2) Point-to-Point profiling: Fig. 8 shows the communi-
cation patterns of these six approaches. To improve the
efficiency of communication, we use as many collective
communications as possible because a single collective oper-
ation is more efficient than multiple send/receive operations.
Due to the communications of K-means, DC-Filter and CP-
SVM have to transfer more data than Cascade. However,
from Table XI we can observe that CP-SVM is more
efficient than Cascade since the volume of communication
per operation is higher.

3) Ratio of Communication to Computation: Fig. 9 shows
the ratio of communication time to computation time for
different methods. From Fig. 9 we can observe that our



Figure 9. The ratio of computation to communication. The experiment
is based on a toy dataset. To give a fair comparison, we implemented two
versions of CA-SVM. casvm1 means that we put the initial dataset on
the same node, which needs communication to distribute the dataset to
different nodes. casvm2 means that we put the initial dataset on different
nodes, which needs no communication.

algorithms significantly reduce the volume of communica-
tion and the ratio of communication to computation. This
is highly important since the existing supercomputers [23]
are generally suitable for computation-intensive applications
rather than communication-intensive applications. Besides,
less communication can greatly reduce the power consump-
tion [24]. Table X shows that the communication volumes
of DC-Filter and CP-SVM are similar. However, Fig. 9
shows that there is a big difference between DC-Filter
communication time and CP-SVM time. The reason is that
the communication of CP-SVM can be done only by col-
lective operations (e.g. Scatter) but DC-Filter has to conduct
some point-to-point communications (e.g. Send/Recv) on the
lower levels ( Fig. 2).

Table XI
EFFICIENCY OF COMMUNICATION

Method Amount Comm Operations Amount/Operation

Dis-SMO 34MB 335,186 101B

Cascade 8MB 56 150,200B

DC-SVM 29MB 80 360,734B

DC-Filter 18MB 80 220,449B

CP-SVM 17MB 24 709,644B

CA-SVM 0MB 0 N/A

V. EXPERIMENTAL RESULTS AND ANALYSIS

The test datasets in our experiments are shown in Table
XII, and they are from real-world applications. We use
MPI for distributed processing, OpenMP for multi-threading,
and Intel Intrinsics for SIMD parallelism. To give a fair
comparison, all the methods in this paper are based on the
same shared-memory SMO implementation (Our previous
work in [15] showed that it is faster than the state-of-the-
art implementation on a shared memory system). The K-
means partitioning in DC-SVM, DC-Filter, CP-SVM, and
BKM-CA are distributed versions, which achieved the same
partitioning result and comparable performance with Liao’s

Table XII
THE TEST DATASETS

Dataset Application Field #samples #features

adult [9] Economy 32,561 123

epsilon [26] Character Recognition 400,000 2,000

face [27] Face Detection 489,410 361

gisette [28] Computer Vision 6,000 5,000

ijcnn [29] Text Decoding 49,990 22

usps [30] Transportation 266,079 675

webspam [31] Management 350,000 16,609,143

implementation [25]. Our experiments are conducted on
NERSC Hopper and Edison systems [6].

Table XIII
ADULT DATASET ON HOPPER (K-MEANS CONVERGED IN 8 LOOPS)

Method Accuracy Iterations Time (Init, Training)

Dis-SMO 84.3% 8,054 5.64s (0.006, 5.64)

Cascade 83.6% 1,323 1.05s (0.007, 1.04)

DC-SVM 83.7% 8,699 17.1s (0.042, 17.1)

DC-Filter 84.4% 3,317 2.23s (0.042, 2.18)

CP-SVM 83.0% 2,497 1.66s (0.041, 1.59)

BKM-CA 83.3% 1,482 1.61s (0.057, 1.54)

FCFS-CA 83.6% 1,621 1.21s (0.005, 1.19)

RA-CA 83.1% 1,160 0.96s (4e-4, 0.95)

Table XIV
FACE DATASET ON HOPPER (K-MEANS CONVERGED IN 29 LOOPS)

Method Accuracy Iterations Time (Init, Training)

Dis-SMO 98.0% 17,501 358s (2e-4, 358)

Cascade 98.0% 2,274 67.0s (0.10, 66.9)

DC-SVM 98.0% 20,331 445s (13.6, 431)

DC-Filter 98.0% 13,999 314s (13.6, 297)

CP-SVM 98.0% 13,993 311s (13.6, 295)

BKM-CA 98.0% 2,209 88.9s (17.8, 71.0)

FCFS-CA 98.0% 2,194 65.3s (0.43, 64.9)

RA-CA 98.0% 2,268 66.4s (0.08, 66.4)

A. Speedup and Accuracy
From Table XIII to Table XVIII, we can observe that CA-

SVM (i.e. RA-CA) can achieve 3× - 16× (7× on average)
speedups over distributed SMO algorithm with comparable
accuracies. The Init time in these tables include the partition
time like K-means, and the Training time denotes the SVM
training process. The accuracy loss ranges from none to
3.6% (1.3% on average). According to previous work [17],
the accuracy loss in this paper is small and tolerable for
practical applications. Additionally, we can observe that CA-
SVM can reduce the number of iterations, which means it is
intrinsically more efficient than other algorithms. For DC-
SVM, DC-Filter, CP-SVM, and BKM-CA the majority of



Table XV
GISETTE DATASET ON HOPPER (K-MEANS CONVERGED IN 31 LOOPS)

Method Accuracy Iterations Time (Init, Training)

Dis-SMO 97.6% 1,959 8.1s (0.26, 7.86)

Cascade 88.3% 1,520 15.9s (0.20, 15.7)

DC-SVM 90.9% 4,689 130.7s (2.35, 127.9)

DC-Filter 85.7% 1,814 20.1s (2.39, 17.2)

CP-SVM 95.8% 521 8.30s (2.30, 5.4)

BKM-CA 95.8% 452 4.75s (2.29, 2.46)

FCFS-CA 96.5% 441 2.48s (0.07, 2.41)

RA-CA 94.0% 487 2.9s (0.014, 2.87)

Table XVI
IJCNN DATASET ON HOPPER (K-MEANS CONVERGED IN 7 LOOPS)

Method Accuracy Iterations Time (Init, Training)

Dis-SMO 98.7% 30,297 23.8s (0.008, 23.8)

Cascade 95.5% 37,789 13.5s (0.007, 13.5)

DC-SVM 98.3% 31,238 59.8s (0.04, 59.7)

DC-Filter 95.8% 17,339 8.4s (0.04, 8.3)

CP-SVM 98.7% 7,915 6.5s (0.04, 6.4)

BKM-CA 98.3% 5,004 3.0s (0.08, 2.87)

FCFS-CA 98.5% 7,450 3.6s (0.005, 3.55)

RA-CA 98.0% 6,110 3.4s (3e-4, 3.4)

the initial time is spent on K-means clustering. However,
we can observe that K-means actually is extremely fast in
most of the situations.

B. Strong Scaling and Weak Scaling

Since BKM-CA, FCFS-CA, and RA-CA have the same
kind of scaling pattern, we use RA-CA to represent CA-
SVM. Tables XIX and XX show the results of strong scaling
time and efficiency. We can observe that the strong scaling
efficiency of CA-SVM is increasing with the number of
processors. The reason is that the number of iterations is
decreasing since the number of samples (m/P ) on each node
is decreasing. The single iteration time is also reduced with
fewer samples on each node. More information about the
efficiency of CA-SVM can be found in [7]. For the weak
scaling results in Tables XXI and XXII, we can observe that
all the efficiencies of these six algorithms are decreasing
with the increasing number of processors. In theory, the
work load of CA-SVM on each node is the same with
the increasing number processors. However, in practice, the
system overhead is higher with more processors. The weak
scaling efficiency of CA-SVM only decreases 4.7% with
a 16× increase in the number of processors. Therefore,
compared with these five other algorithms, CA-SVM is
intrinsically efficient.

VI. CONCLUSION

Existing distributed SVM approaches like Dis-SMO, Cas-
cade, and DC-SVM suffer from intensive communication,

Table XVII
USPS DATASET ON EDISON (K-MEANS CONVERGED IN 28 LOOPS)

Method Accuracy Iterations Time (Init, Training)

Dis-SMO 99.2% 47,214 65.9s (2e-4, 65.9)

Cascade 98.7% 132,503 969s (0.008, 969)

DC-SVM 98.7% 83,023 1889s (1.5, 1887)

DC-Filter 99.6% 67,880 242s (1.5, 240)

CP-SVM 98.9% 7,247 35.7s (1.5, 33.9)

BKM-CA 98.9% 6,122 30.4s (2.02, 28.4)

FCFS-CA 99.0% 6,513 30.1s (0.04, 29.7)

RA-CA 98.9% 6,435 24.5s (0.0018, 24.5)

Table XVIII
WEBSPAM DATASET ON HOPPER (K-MEANS CONVERGED IN 38 LOOPS)

Method Accuracy Iterations Time (Init, Training)

Dis-SMO 98.9% 164,465 269.1s (0.05, 269.0)

Cascade 96.3% 655,808 2944s (0.003, 2944)

DC-SVM 97.6% 229,905 3093s (0.95, 3092)

DC-Filter 97.2% 108,980 345s (1.0, 345)

CP-SVM 98.7% 14,744 41.8s (1.0, 40.7)

BKM-CA 98.5% 14,208 24.3s (1.12, 23.0)

FCFS-CA 98.3% 12,369 21.2s (0.03, 21.0)

RA-CA 96.9% 10,430 17.3s (0.003, 17.3)

computation inefficiency and bad scaling. In this paper, we
design and implement five efficient approaches (i.e. DC-
Filter, CP-SVM, BKM-CA, FCFS-CA, and RA-CA) through
step-by-step optimizations. BKM-CA, FCFS-CA, and RA-
CA belong to CA-SVM. We manage to totally avoid inter-
node communication, obtain a perfect load-balancing, and
achieve 7× average speedup with only 1.3% average loss
in accuracy for six real-world application datasets. Because
of faster iteration and reduced number of iterations, CA-
SVM can achieve 1068.7% strong scaling when we increase
the number of processors from 96 to 1536. Thanks to the
removal of communication overhead, CA-SVM attains a
95.3% weak scaling from 96 to 1536 processors. The results
justify that the approaches proposed in this paper can be used
in large-scale applications.
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