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Abstract

The Dempster-Shafer (D-S) theory of evidence suggests a coherent approach to
aggregate evidence bearing on hierarchically related hypotheses. However, the
representation of uncertain implications between evidence and hypotheses has been a
serious difficulty in applications of the theory. We propose a model of evidential
reasoning based on a modified D-S theory where the implication strengths are measured
by conditional probabilities. Combining belief updates instead of belief functions using
Dempster’s rule is justified with clear assumptions, and it is consistent with Bayes
theorem under the conditional independence assumption. Like the D-S theory, our model
expresses degree of ignorance when there is not enough evidence to determine a precise
belief function. The model is most appropriate for the problem areas where prior
probabilities of the hierarchically related hypotheses are available.






1. Introduction

The representation and management of uncertainty is an core issue in the design of
expert systems because much of the information stored in the knowledge base of a typical
expert system is inexact, incomplete and uncertain. For example, the medical data in a
medical consultation system is often subjective and not very reliable. Moreover, medical
knowledge consists of judgemental expertise accumulated through past experience. This
judgemental knowledge links evidence (patient history, symptoms, signs, and laboratory
test results) to hypotheses (pathological states, diagnoses, and therapies) with various
degrees of certainty. In a rule based system, the links can be represented as rules of the
form:

IF evidence 18 present THEN hypothesis WITH degree of certasnty.

Evidential reasoning is the updating of belief in hypotheses as evidence is gathered and
aggregated.

In the expert systems which solve classification problems [Clan 84], sets of mutually
exclusive hypotheses are often structured according to a taxonomy. For example,
INTERNIST/CADUCEUS [Mill 82, Mill 84] uses hierarchical disease categories to organize
the diseases of internal medicine. As a result, a piece of evidence may bear on a class of
diagnostic hypotheses or a more specific diagnosis. However, previous approaches to
evidential reasoning do not aggregate evidential supports on sets of mutually exclusive
hypotheses in a theoretically sound way.

The Dempster-Shafer theory of evidence provides an important alternative because
evidential supports may be associated with groups of hypotheses. However, applications
of the theory present some difficulties. One of them is the representation of the uncertain
associations between evidence and hypotheses. In this paper, we present a model of
evidential reasoning by extending the Dempster-Shafer theory to manipulate the
uncertainty of rules. The main features of our approach are:

(1) Evidence bearing on groups of hypotheses, as well as single hypotheses,, is aggregated
systematically.

(2) The model is consistent with Bayes' theorem under the conditional independence
assumptions.

(3) Degree of ignorance is expressed and managed coherently.

(4) Our approach is justified with two independence assumptions; one is a conditional
independence assumption weaker than that employed in Prospector and MYCIN’s
certainty factor model, the other replaces the independence assumption of
Dempster’s rule.

2. Past Work

In the past, three of the most recurrent quantitative approaches to the management
of uncertainty in expert systems have been (1) Bayesian updating [Duda 76], (2) MYCIN's
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certainty factor model [Shor 75}, and (3) heuristic scoring functions. These early
approaches to inexact reasoning have difficulties in combining evidence concerning
hierarchically-related hypotheses in a coherent way. This is a significant drawback in
their applications to the problem areas where hypotheses are connected by class
relationships in a hierarchy.

In the last twenty years, Bayesian analysis has been applied to many medical
decision-making systems [Warn 64, Ward 78]. A major problem with this approach has
been the large number of conditional probabilities of symptoms and combinations of
symptoms needed for the rigorous application of Bayes' theorem. The infeasible original
Bayesian model is simplified by assuming conditional independence of symptoms. An
example is the Bayesian updating scheme employed in PROSPECTOR. However,
PROSPECTOR's approach assumes that the evidence is conditional independent both
under the hypotheses and their negations. To distinguish this assumption from the
conditional independence assumption of evidence under the hypotheses only, the former
will be referred to as the strong conditional independence assumption in this paper. The
certainty degree of a given rule in PROSPECTOR is measured by a pair of likelihood
ratios. Hence, the probabilities of consequent events (hypotheses) are updated after those
of antecedent events (evidence) are changed. A major problem with PROSPECTOR’s
inference scheme is that the strong conditional independence assumption does not
maintain consistent probabilities of mutually exclusive and exhaustive hypotheses.
Recently, Pearl described a Bayesian approach to evidential reasoning in a hierarchical
hypothesis space [Pear 85).

MYCIN's Certainty Factor (CF) model [Shor 75] was initially based on confirmation
theory. Each rule in MYCIN is associated with a certainty factor to measure the change of
belief about its concluding hypothesis given the evidence in the premise. However, it was
shown that a portion of the certainty factor model is equivalent to a probability model
with the strong conditional independence assumptions and an independence assumption of
evidence. Recently, David Heckerman presented a new probabilistic interpretation of
MYCIN’s certainty factors [Heck 85]. Heckerman's CF model is consistent with Bayesian
theory with the strong conditional independence assumption employed in PROSPECTOR.
Consequently, the new model also faces the problem of inconsistency when there are more
than two mutually exclusive hypotheses.

Heuristic scoring functions were used to calculate the likelihoods of diagnoses in
several knowledge-based medical consultation systems: CASNET [Weis 78],
INTERNIST/CADUCEUS [Mill 82, Mill 84] and PIP [Pauk 76]. Although the diagnoses
of INTERNIST are categorized into a hierarchical structure, the evidence bearing on
different levels in the hierarchy is not combined. Furthermore, the applicability of these
ad hoc scoring mechanisms to other applications is questionable.
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3. The Dempster-Shafer Theory of Evidence

The Dempster-Shafer theory has gained much attention in the artificial intelligence
community in recent years because evidential supports bearing on groups of hypotheses
can be combined in a systematic way. However, applications of the theory still present
some difficulties. In this section, we will describe the basics of the D-S theory, discuss the
advantages and disadvantages of theory, and give an example of medical reasoning based
on the theory.

3.1. Basics of the Dempster-Shafer Theory

The concept of lower and upper probabilities induced by a multivalued mapping was
first introduced by Dempster [Demp 67]. Shafer extended the theory in the book A
Mathematical Theory of Evidence [Shaf 78]. Consider two spaces E and © together with
a multivalued mapping I':E —2°. The space E consists of possible values, denoted by e; of
a source of evidence and the space © contains mutually exclusive and exhaustive
hypotheses. Thus E is called the evidence space and © the hypothesis space respectively.
Given a probability distribution in E and a multivalued mapping T, a basic probability
assignment (bpa), denoted by m: 2°—10, 1], is induced. The basic probability value of a
subset B of space 8 ist

m(B)= X ple) (31)

The subset B is also called a focal element. The space T is the frame of discernment.
The normalization process assures that the probability of the empty set is always zero. A
legal bpa thus has the following properties.

B%’em(B) =1 (3.2)
m(@) =0

Usually the probability distribution of the space © is not uniquely determined from a bpa.
However, the probabilities are bounded within intervals. The lower probability of a set
B, also called the Belief of B, measures the degree of belief that are necessarily committed
to B. The upper probability of B, also called the Plausibility of B, measures the
maximum degree of belief that can possibly be committed to the set. So the belief function
and plausibility function, denoted Bel and Pls respectively, are computed from the bpa:

Bel(B) = ), m(X) (3.3)
XCB

Pla(B) = Z m(X) (3.4)
X(\B#2

Hence, the belief interval [Bel(B), Pls(B)] is the range of B's probability. Since the focal
elements disjoint with the subset B are always included in its compliment, the degree of

t For simplicity, we assume that I" does not map any element of the space E to the empty set.
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belief that can not possibly be committed to B is the degree of belief that has to be
committed to B's compliment, i.e., 1 — Pls(B) = Bel(B°). This leads to an important
property of the belief functions: Bel(B) + Bel(B°) < 1. Therefore, commitment of belief to
a subset does not force the remaining belief to be committed to its compliment. The
amount of belief not committed to either B or B's compliment is the degree of sgnorance.

If m, and m, are two bpa’s induced by two independent sources of evidence, their
combined effect on the belief in the hypotheses is obtained using Dempster’s rule of
combination:

2] mi(A)my(By)
ANB,=C

I- 2 ml(At')mZ(Bj)
ANB=p

m;, @ my(C) = (3.5)

3.2. Advantages and Disadvantages of the Dempster-Shafer theory

The main advantages of the D-S theory over other approaches are:

(1) Commitment of belief in a hypothesis does not imply commitment of the remaining
belief to its negation. In Bayesian theory, the probability of a hypothesis always
determines the probability of its negation.

(2) Evidence bearing on groups of hypotheses is combined in a coherent way.

However, there are difficulties in applying the theory to evidential reasoning in expert
systems:

(1) It is difficult to represent the uncertain implication between evidence and hypotheses.
(2) It does not support chains of reasoning in a simple way.

(3) It is computationally inefficient because the number of possible focal elements are
2'®! an exponential function of the size of the frame of discernment.

Gordon and Shortliffe proposed an efficient approximation technique of the D-S theory for
evidential reasoning in a hierarchical hypothesis space {Gord 85]. A basic problem with
their approach is viewing certainty factors as basic probability assignments without
justification. Moreover, Shafer and Logan has shown that Dempster’s rule can be
implemented efficiently in the case of hierarchical hypothesis space, hence the Gordon and
Shortliffe’s approximation technique is not necessary [Shaf 85].

3.3. A Simple Example of Medical Reasoning

We will use the problem of cholestatic jaundice diagnosis described in [Gord 85] to
illustrate a straight application of the D-S theory. Suppose a physician is considering a
case of cholestatic jaundice. This problem is caused by an inability of the liver to excrete
bile normally, often due to a disease within the liver itself (intrahepatic cholestasis) or
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blockage of the bile ducts outside the liver (extra.hepatic cholestasis). For illustrative
purposes, We consider three types of intrahepatic cholestasis: hepatitis (Hep), cirrhosis
(Cirr), and impaired liver function due to effects of oral contraceptives (Orcon); and two
types of extrahepatic cholestasis: gallstones (Gall) and pancreatic cancer (Pan). The five
diagnostic hypotheses together forms 2 frame of discernment © because they are assumed
to be mutually exclusive and exhaustive. Supposeé that the beliefl in the diagnostic
hypotheses are affected by two observations. We denote the presence and absence of the
ith observation by e and € respectively. Since "presence’ and "absence” are all the
possible states of an observation, each set of € and ¢; 1s an evidence space.

Example 1: Suppose that the presence of an observation, denoted by ey confirms
intrahepatic cholestasis, that is Hep or Cirr or Orcon ({Hep, Cirr, Orcon}); while the
absence of e, carrys no information, i.e.,

Te, = {Hep, Cirr, Orcon}, T =9

If, for a given patient, there is a 0.8 probability that the observation is present, i.e., Pled)
= 0.8 and Pley) = 0.2, then its effect on the belief in the diagnoses considered is
represented by basic probability assignment my:

m,({Hep, Cirr, Orcon}) = 0.8

m, is 0 for all other subsets of 8.

Suppose that the presence of another observation, denoted by ez rules out the
diagnosis hepatitis, and its absence does not affect the belief in any diagnosis, 1.€.,

Toep = {Hep}* = {Cirr, Orcon, Gall, Pan}, [e; = © .

For the given patient, if the observation ez is likely to be present with probability 0.6, i.e.,
P(ey) = 0.6 and P(e;) = 04, then its effect on the belief in the diagnoses considered is
expressed by the bpa mg:

m{{Cirr, Orcon, Gall, Pan}) =06

m, 1s 0 for all other subsets of 8.

The combined effect on belief 18 given by m; @ m, as computed by Dempster’s rule:
m, @ m{Cirr, Orcon}) = 0.48
m, @ mo({Hep, Cirr, Orcon}) = 032
m, @ mo{{Cirr, Orcon, Gall, Pan}) = 0.12
m, @ m8) = 0.08
m, ®mzis 0 for all other subsets of ©.

This computation is illustrated in Fig. 1, in which the combined basic probabilities are
represented by the areas of rectangles in a unit square.
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Given m, above, the belief interval of {Cirr, Orcon} is [0, 1. After combination
with my, it becomes [0.48, 1]. Similarly, the belief interval of {Hep} given m, alone is [0,
1]. After combination with m,, it becomes [0, 0.4]. Therefore, the second evidential
source increases the belief in {Cirr, Orcon} and decreases the plausibility of {Hep}.
Although neither e, nor e, supports {Cirr, Orcon} directly, observing both of them
constitutes a piece of evidence in favor of {Cirr, Orcon}.

4. A New Approach to Evidential Reasoning

4.1. Goals

A big problem in applying the D-S theory to evidential reasoning is the
representation of rules’ uncertainties (evidential strengths). In the Bayesian approach,
these uncertainties are represented by likelihood ratios or, equivalently, conditional
probabilities. However, it is not clear how to express strengths of rules in the framework
of the D-S theory. This difficulty originates in a fundamental difference between the D-S
theory and the Bayesian approach. The Bayesian approach always demands for a full
probability model while the D-S theory does not [Shaf 84]. However, the D-S theory
cannot make use of all the available probability judgements as the Bayesian approach
does. As shown in the following example, the probability judgements available in expert
systems sometimes are more than what can be utilized by the D-S theory and less than
those required by the Bayesian approach.

Example 2.1: In the case of cholestatic jaundice diagnosis discussed in previous section,
suppose that 90% of the patients exhibiting e, have intrahepatic cholestasis and 10% have
extrahepatic cholestasis, i.e.,
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P({Hep, Cirr, Orcon} | ¢;) = 0.9 and P({Gall, Pan} | ¢;) = 0.1.

Then, what is the combined effect on belief in the five diagnoses?

In the Bayesian approachs, the probability of each single hypothesis given e, is
estimated based on the principle of indifference. Therefor the results of the Bayesian
approachs are sometimes much too precise than what is really known. In view of these,
our reasoning model intend to achieve the following goals:

(1) It uses available probability judgements to quantify the strengths of the rules in
expert systems.

(2) It does not require a full probability model as Bayesian theory does.

(3) It is consistent with Bayesian theory when the complete probability models for the
relationships between the evidence spaces and the hypothesis spaces are given.

(4) It represents and manages ignorance in a coherent way.

4.2. An Extension to the Dempster-Shafer Theory

The multivalued mapping in the D-S theory is a special kind of conditional
probabilities. For instance, "I'e; = A,” means that if ¢, is known with certainty, then the
probability of A, is one. Therefore, it can be viewed as two conditional probabilities in the
space EX® : P(A;le)=1 and P(A$le;)=0. The set A; consists of all probable
hypotheses given the evidence e,. However, the rules of an expert system usually describe
the likelihood (or odds) of a hypothesis set given evidence ¢,. To represent this uncertain
knowledge, we extend the multivalued mapping to a probabilistic multi-set mapping
defined below.

A probabilistic multi-set mapping from a space E to a space 6, denoted by I'*,
associates each element in the space E with a collection of disjoint subsets of the space 8.
These associations are augmented with conditional probabilities to measure their certainty
degrees. More precisely, a multi-set mapping I'* is a function of the elements in E:

T'*(e;) = {(An, P(Anl &) -+ - (Aim, P(Aim 1 €;))} forall e, €E
where

Ay#P

AyAw =B, J#k

P(A;jle) >0

?P(A,-j le)=1

Subset A; is called a granule. The granule set of ¢;, denoted by G(e;), is the set of ¢/s
granules. i.e.

Gle;) = {A; | (A;] P(A;]¢€)) € T*(e:)}

An inverse granule set of A; is the set of ¢; whose granule set contains A;. It is denoted



by I(A;) and mathematically defined as
I(A;) = {e: | (4;1 P(4;1¢)) € T"(e)} -

Example 2.2: The relationship between the observation e; and the cholestatic jaundice
diagnoses described in Example 2.1 can be described as a multi-set mapping between the
evidence space E; = {e,, ¢;} and the hypothesis space ©:

I'*e; = {({Hep, Cirr, Orcon}, 0.9), ({Gall, Pan}, 0.1)}
1"‘é-l--'= {(e, 1)}.

The granule set of e, is { {Hep, Cirr, Orcon}, {Gall, Pan} }. The inverse granule sets of
{Hep, Cirr, Orcon} and {Gall, Pan} are both {e,}. The inverse granule set of © is {e1}

Since the deterministic mapping in the D-S theory has been extended to a
probabilistic one, the probability mass of an element in the evidence space is no longer
propagated to its image as shown in (3.1); instead the mass is distributed among its
granules in proportion to the conditional probabilities. Therefore, the part of ¢'s
probability mass assigned to its granule, denoted by A, is the product of P(e; | E') and
P(A l¢;). The total mass assigned to A is the sum of the masses contributed to A by all
the elements in the evidence space whose granule sets contain A.

Definition 1: Given a multi-set mapping I'* from an evidence space E to a hypothesis
space © and a probability distribution of the space E based on some backgreund sources
of evidence, denoted by E’, the beliefs in the hypotheses in © are updated according to a
mass distribution m:

m(A1E')= Y P(A|¢)P(e; | E') (4.5)

¢, €EI(A)

The underlying assumption is that E' and A are conditionally independent given ¢, i.e.,
P(Ale, E')=P(Aleg).

From (4.1) and (4.3) it follows that the mass function defined satisfies the properties
of bpa described in (3.2). In fact, the mass function defined in the D-S theory (3.1) is a
special case of our definition where all conditional probabilities are either zero’s or one's.
Two special cases are worth mentioning here. If all the granule sets are identical, the
belief of a granule is its posterior probability. In particular, If all the granules are
singletons, then the bpa determines a Bayesian Belief Function [Shaf 76].

Lemma 1: If G(e;) = Gle,) for all ¢;, ¢; € E, then for any granule A, we have I(4) =E
and m(A | E') = Bel(A | E') = Pls(A | E') = P(A 1 E).



4.3. Combination of Evidence

The conditional probability P(A | e€;) is also the posterior probability of A given the
certain evidence ¢;. Therefore it contains the belief in A prior to the observation of e;,
i.e., prior probability of A. The bpa’s defined in the D-S theory do not contain " prior
knowledge”, hence they can be combined based on joint multiplications. However, using
Dempster’s rule to combine our mass distributions will overweigh the prior knowledge.

Example 3: Consider a simple example where el and e2 are two independent evidence
known with certainty. Assuming that they have a common granule, A, the basic
probability value of A due to el and e2 respectively are:

m(Alel)=P(Al el), and m(Ale2)= P(Ale2).
The combined belief in A using Dempster’s rule is

P(A | el)XP(A | e2)

N
where N is a normalization constant. This result is not equal to P(4 | e, €2) even under
independence assumptions, because the prior probability P(A) is counted twice in the
former but only once in the latter.

Bel(A | el, e2) =

In order to combine our mass distribution, we define a new quantity called basic
certainty asstgnment (bca), denoted by C, to discount the " prior knowledge” embedded
in the mass distribution. The basic certainty value of a subset is the normalized ratio of
the subset’s basic probability value to its prior probability, ie.,

m(A | E)
P(A)
C(AIE)= ——————=7 4.6
ice FPl4)

It is interesting to note that the bca also satisfies the properties of the bpa described in
(3.2). As justified in Theorem 1, the basic certainty assignments of two independent
evidential sources are combined using Dempster's rule. The aggregated bca can be further
combined with other independent bea's or transformed to a basic probability assignment
through the following equation to calculate the updated belief function.

C(AIE")P(A) (4.7)

YN C(ALE)P(A)
AC®

m(A | E) =

Intuitively, the bca measures the belief updates based on a source of evidence. The
idea of combining belief updates is not new. Both MYCIN's CF and the likelihood ratio in
Prospector, in effect, measure the probability updates. Moreover, there is a close
relationship between Heckerman's CF and our basic certainty values. A detailed
discussion of the relationship is in 4.6.

The following theorem justifies our approach that aggregation of evidential supports
is achieved by forming the orthogonal sum of their basic certainty assignments.
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Theorem 1: We consider two evidential sources, denoted by E, and E,, bearing on a
hypothesis space ©. Possible values in E; and E, are denoted by el; and e2;. A, and B,
denote granules of e1; and e2; respectively. Assuming that

P(el; 1 A¢)P(e2;1 B) = Plel;, e2;1 A\NB)) ANBi # A (A.1)
P(E,' | e1;) P(ES | €2;) = P(E/, E4'| e1;, €2;) (A.2)
then
Y] C(A | EY) C(B, | EY)
Akﬂg’ DC(AkIEl’)C'(B,IEQ’) = C(D 1B, BY) (48)
AN\BiAP

where E,' and E, denote the evidential sources of the space E, and the space E,

respectively.
(The proof of Theorem 1 has been relegated to Appendix.)

In summary, combination of evidence is performed by transforming bpa’s from
independent sources of evidence into bca’s which are then combined using Dempster’s
rule. The final combined bea is transformed back into a bpa to obtain the updated belief
function.

4.4. Independence Assumptions of the Combining Rule

The two conditions assumed in Theorem 1 correspond to conditional independence of
evidence and the independence assumption of Dempster’s rule. In fact, the first
assumption (A.1) is weaker than the strong conditional independence assumption
employed in MYCIN and PROSPECTOR. The second assumption (A.2) is implicitly made

in these systems.

Assumption 1

The sufficient conditions of the assumption (A.1) are
P(el,vIA,‘)=P(el,'|AknB,) (All)
and

P(el,- | AkﬂBz)P(GQJ | AknBl) = P(el;, 62_1' I AknBl) (A12)

The condition (A.11) is understood by the conditional independence assumption:
Ple| A, A,)=P(e| A) A,CA

stating that if A is known with certainty, knowing its subset does not change the
likelihood of e. A similar assumption is made in the Bayesian approach to evidential
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reasoning in a hierarchy of hypotheses [Pear 85]. The Bayesian approach applies the
assumption to every elements of the subset A to obtain a precise probability distribution
in the hypothesis space. In our approach, however, the assumption is applied as two
bodies of evidence are aggregated to give support to a more specific hypothesis group. It
is a consequence of the aggregation of evidence, not a deliberate effort to get a point
distribution from incomplete knowledge like the Bayesian approach.

Equation (A.12) states that pieces of evidence are conditionally independent on their
granules’ non-empty intersections. Since the granules of a piece of evidence are mutually
disjoint, the intersections of two granule sets are also disjoint. Hence two pieces of
evidence are assumed to be conditionally independent on a set of mutually disjoint
hypothesis groups. In particular, pieces of evidence are not assumed to be conditionally
independent on single hypotheses and their negations (compliments) because generally
they are not mutually disjoint. Therefore (A.12) is weaker than PROSPECTOR and
MYCIN's assumption that pieces of evidence bearing on the same hypothesis are
conditionally independent on the hypothesis and its negation. As a result, we solve their
inconsistency problems dealing with more than two mutually exclusive and exhaustive
hypotheses [Heck 85][Kono 79].

Assumption 2

We would like to make several points regarding the assumption (A.2).

(1) The sufficient conditions of the assumption (A.2) are:

(i) The probability distribution of the space E; conditioned on the evidence in E, is
not affected by knowing the evidential source of E,.

P(e2;1el;) = P(e2;] ely, EY)
(ii) Similarly, the distribution of the space E, conditioned on the evidence in E; is
not affected by knowing E.'".
P(Elf I 821) = P(el,- I 62]', EQI).
(iii) The evidential sources E, and E, are conditionally independent on the joint
probability distribution of E, X E,.
P(Elll 61", e2j, E2I) = P(Elll el;, 621)

(2) The assumption (A.2) corresponds the independence assumption of Dempster’s rule:
P(Cl,‘ | EII)P(€2j I Eg') = P(el,-, 62j l Ell, Eg’). (49)
because (A.2) can be reformulated as

P(el; | E\)P(e2; | E/)P(E\)P(EY) _ Plel;, e2;1 EY, E))P(EY, EY)
P(el;)P(e2;) - P(el;, €2;) '

(A.2)

The Dempster’s independence assumption differs from (A.2) in that it does mnot
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contain prior probabilities. This difference is understood because in the D-S theory
there is no notion of posterior versus prior probability in the evidence space.
Therefore (A.2) intuitively replaces the independence of evidential sources assumed in
Dempster’s rule of combination.

The condition (A.2) is always satisfied when evidence is known with certainty. For
example, assuming el; and e2, are known with certainty, equation (A.2) then
becomes

P(el, | el;) P(e231€2;) = P(ely, €24 €l;, €2y)

Both the left hand side and the right hand side of the equation above are zeros for
all values of i and j except when i=1 and j=3 in which case both sides are one.
Therefore, the equality holds. It is also straightforward to prove Theorem 1 without
(A.2) assuming that evidence is known with certainty.

PROSPECTOR and Heckerman's CF model implicitly made similar assumptions in
the combining formula:

P(E/, E) | h) _ P(E/ | k) P(E)| k)

P(E(, E/Ik)  P(E/IR) P(E/IF)

Without the assumption, the formula becomes ad hoc. Hence, we are not adding any
assumption to that of PROSPECTOR or MYCIN. We merely made their implicit
assumptions explicit.

4.5. Relationship to Bayes’ Theorem

Bayes' theorem with conditional independence assumption is a special case of our

model. Consider n evidential sources E,, E, ---E, bearing on a hypothesis space
8 = {hy, hy, - hp}. The values of each evidential sources are known to be e, ;- - - ¢,
respectively. Suppose all the granules of the multi-set mappings from E; to © are
singletons, then the basic probability assignment due to the evidential source E; is

m({h:} | ej) = P(h; | ej) .

The basic certainty assignment is

P(h; | €5)

_P(il—ir— P(€j| h-')
Clh}le) = —pm &) JPle; | hy)

—~ " P(h) *

Combining the bea's from n evidential sources, we get

Pley | h¢)P(es | hg) - - - Plen L hy)
Cl{h} enen - - - €n) = EP(CI | hi)Pleg | B;) - - - Plen L hy)

Through the equation (4.8), we obtain the combined bpa:
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P(ey | he)P(ez | hi) - - - Pleg | h;)P(h;)

m(Ehi} Leves ) = SpC THP(e Th) ~ Plen T AP (4.10)
Also, from Lemma 1 we have
m({h;} | ey,eq, - - - €,) = Bel(h; | €y,6, - - - €,) = P(h; | ey,€p, - = - €,) (4.11)

From the equations (4.10) and (4.11), we get Bayes' theorem under the assumption that
e, €2 - - €, are conditionally independent on each hypothesis in ©. Therefore, Bayes’
theorem with conditional independence assumption is equivalent to a special case of our
approach.

4.8. Mapping Basic Certainty Assignment to CF

A mapping between Heckerman’s CF and a D-S beliel function is first found by
Grosof [Gros 85). An interesting discovery of his work is that combining his belief
functions using Dempster’s rule is equivalent to Bayes' theorem with conditional
independence assumption. However, no interpretation was given to this result.

In our approach, the transformation can be explained as follows. Grosof’s belief
function, denoted by Bel(h,e), is in fact a special case of basic certainty assignment. When
the frame of discernment contains only two hypotheses, i.e. © = {k, i}, and a piece of
evidence is known with certainty, we have

C({h}le)= e Bel(h e)
and
C({F}1e) = ﬁi’ — Bel(F.e)
where X is the likelihood ratio of e defined to be
_ Plelk
P(e 1 k)

Thus, Grosof's mapping between CF’s and Bel(h,e) becomes a transformation between
CF’s and the basic certainty values:

CF(h,e) = C({h} 1 e)=C({h} | e).
Moreover, it can be interpreted as followed:

(1) If basic certainty values of a hypothesis h and its negation are the same, i.e., 0.5,
upon the observation of evidence e, no belief update occurs. Hence, the certainty
factor CF(h,e) is zero.

(2) On the other hand, if basic certainty value of the bypothesis is greater than that of

its negation, degree of belief in h is increased upon the observation of the evidence.
Hence the certainty factor C(h,e) is positive.

We have established and interpreted the relationship between CF and basic certainty
assignment. In comparison with our approach, the CF model has the advantages that it
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does not require prior probability judgements, yet it has difficulty in dealing with more
than two mutually exclusive and exhaustive hypotheses. Our approach is thus more
general than MYCIN’s CF model.

5. Conclusion

Evidential reasoning in a problem area involving multiple mutually exclusive and
exhaustive hypotheses is an important issue in expert systems. Previous approaches to the
problem can not aggregate evidence bearing on sets of hypotheses and fail to convey the
impreciseness of their judgements. The Dempster-Shafer theory suggests an attractive
alternative. However, applying the theory to evidential reasoning presents several
difficulties. One of the difficulties is the representation of uncertain inference rules.

In view of this, we propose a model of evidential reasoning based on a modified D-S
theory to capture the rules’ uncertainties. The model is justified with clear assumptions.
In the case where all evidential supports in the system bear on single hypotheses, our
approach is equivalent to Bayes' theorem under conditional independence assumption.
Furthermore, the amount of belief directly committed to a set of hypotheses is mnot
distributed among its individual elements until further evidence is gathered to narrow the
hypothesis set. Therefore, ignorance is manipulated in a coherent way.

Directions for future research are (i) mechanism to perform chains of reasoning, (ii)
efficient implementation of the model, and (iii) decision-making using belief intervals.

The proposed model is appropriate for the problem areas where (i) prior probability
judgements are available, (ii) sets of mutually exclusive and exhaustive hypotheses are
categorized into a hierarchy, and (iii) the independence assumptions are justified. The
proposed model of reasoning is adopted in a prototype expert system under development
for further evaluations.
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Appendix

Theorem 1: Consider two evidential sources, denoted by E, and E, bearing on a
hypothesis space ©. Possible values in E, and E, are denoted by e1; and e2;. A, and B,
denotes granules of el; and e2; respectively. Assuming that

P(el; | Ak)P(EQJ | B() = P(el,-, 621' | AknBl) AknBl # ¢ (A.l)
P(EI’ l 81;) P(Eg'l 82j) = P(El’, Eg’l el,', C2J') (A?)
then
Y CA | EY) C(BII EY)
Af\Bi=D
=C(D | E/, E} 4.8
X C(ATE)C(B 1 EY) (D VB E) (45)
A\Bi#HED
where E,' and E,' denote the evidential sources of the space E, and the space E,
respectively.
Proof:
Let
m(A. | E/
Ni= J] ___(_"___1_2.
ace PlA)
m(B, | E,
N2 = 2 ( 14 2)
sce FP(BI)
Let m' denotes unnormalized bpa. From definition 1, we have
m!(A,\Bi | EY, E{) = Y P(A,N\B: | €1;, €2;) Plel;, €25 E/\, E}). (P.1)
el E1(Ay)
e2,€I(B)

From (3.4) and (3.5), basic certainty assignment is expressed as
Y P(A 1 e1,)P(el; | EY))

BN = el €/(Ap)
ClA | EY) N1 P(Ay)
3 P(Aclel)P(el; | EY) )] P(Bi] e2;)P(e2; | EJ)
nc N — el,€EI(Ay) e2,€1(By)
1 Plel; | Ay) P(e2;1 B))
= —— ————Pel,-lE’-—————PeQ-lE’
N1N2 CI;EI(AA-) P(el,) ( l) P(62j) ( J 2)
e2,€!(B)
From (A.1) we have
1 P(el", 821' ‘ AknBl)

= 1; ! , '
N1N2 el‘éYlJZA*) P(Bl')P(GQJ) P(e [ I E] )P(C2J I E‘Z)

e2,€1(B;)
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It follows from (A.2) that
1 P(ell'v 62_1 ! Elly EZI) P(Ellr E2I)
= Ninz,, 2, et e ANB) ——pry o FE) PIE)

e1,E€I(Ay)
e2,€/(B;)

1 P(E\'E,)) P(AyMBilel;, €2))

~ N1N2 P(EV)P(EY) .1 &l(a P(A.NB)
e2,€1(B)

P(el;, 62_1 l El” EQ’)

It follows from (P.1) that
_ 1 P(E/E,) m'(AxN\Bi | EY, E)
~ NIN2 P(E,)P(E) P(A,N\B:)

Thus
m'(AkﬂBz | EY, E)

Y’ C(A | EY)C(B/ | E) 3

A\B =D _ A\B =D P(AknBl)
Y CAE)CBIE) m'(A,N\B, | EY, E)
ANB #P A1Br P(A:N\B))

From the D-S theory
m/(D | E/, E;)

)
m'(D | E/, E.)
= PD)

Since the ratio is not affected by normalization
m(D | E, EY)
PD)
m(D | E/, E5))
pce P(D)

= C(D | EY, E) .
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