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ADDENDUM

After this memo was completed, the authors discovered that the

sufficient condition for passivity given by Theorem (3.18), page 22,

could be easily generalized so as to include the scattering

representation. Replace condition (d) with the following weaker

condition:

T T
(d) a c + c a <_ 0,

that is, Re(wHaTcw) <_ 0 for all w€ <Dn. The proof of Theorem (3.18)

requires only two modifications. In (A), we can only conclude that the

real part of the left-hand side is nonpositive for t > t., and the first

equality in (6) becomes an inequality. Since this more general version

of Theorem (3.18) applies to the scattering representation, Theorem

(5.4) on pages 27-28 should be replaced by the following:

(5.A) Theorem (Necessary and Sufficient Passivity Conditions for

the Scattering Representation).

(i) If network (JU is passive, the scattering matrix G(») is

a bounded real matrix.

(ii) If network <JM is controllable and its scattering matrix

G(*) is bounded real, then network ^fi is passive.
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I. INTRODUCTION

Frequency domain passivity conditions for linear time-invariant

networks are so basic that many derivations have been presented in the

literature. These derivations usually assume an input-output represen

tation for the network, as opposed to the state space representation.

Some of these derivations are non-rigorous, while the rigorous

derivations often involve sophisticated mathematics beyond the reach of

the average engineer. By adopting the state space representation in this

report and considering only lumped networks, we are able to present a

rigorous derivation for frequency domain passivity conditions which does

not involve overly sophisticated mathematics.

The state space representation has another advantage. Consider the

problem of finding sufficient conditions which guarantee that a given

network cJV) is passive. The input-output description is unable to handle

this problem because it deals only with the zero-state response of the

network. The one-port o\) shown in the figure illustrates this problem.

For zero initial conditions (i.e., zero initial voltage across the

capacitor),cJV) looks like an ideal one-port short circuit — a passive

network. However, if oM is constructed at time 0 with an initial voltage

v across the capacitor, then (Jv) looks like an independent voltage

source with waveform v(t) = v e for t ^ 0. Arbitrarily large amounts

of energy can be extracted from cAI by connecting a sufficiently small

positive resistor across its terminals. Thus Uv should certainly be

classified as an active (i.e., non-passive) network. The definition of

passivity given in this report, based on the state space representation,

classifies this network correctly. Moreover, this definition allows us

-2-



+ o—*- n
+

— o- -6-

Figure. An example of aone-port electrical network oM which is active

and uncontrollable.
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to obtain sufficient conditions which guarantee that a network is

passive.

Outlining the report, Section II presents definitions, lemmas,

and theorems which will be needed in later sections. In Section II

we have tried to present standard electrical engineering concepts in

a rigorous manner. The main purpose of Section II is to introduce

our notation. Section III describes the mathematical representation

of the network and derives passivity conditions in a coordinate-

independent form. It is assumed that the reader has some familiarity

with the state space representation for linear systems. In Section IV

the results of Section III are applied to the hybrid representation.

The results in Section IV can be summarized as follows: If a network

with a hybrid representation is passive, then its hybrid matrix is

positive real. Conversely, if the hybrid matrix for a controllable

network is positive real, then the network is passive. In Section V

the results of Section III are applied to the scattering representation.

Only a necessary condition is derived, namely, if a network with a

scattering representation is passive, then its scattering matrix is

bounded real.

All integrals in this report are Lebesgue integrals. This allows

a very general class of input functions. The reader who is unfamiliar

with the Lebesgue integral may assume that the class of allowable

inputs is the set of all piecewise continuous functions, then the

corresponding integrals reduce to the ordinary Riemann integral.

II. PRELIMINARY RESULTS

This section contains definitions, lemmas, and theorems which will

-3-



be needed in later sections.

(2.1) Definitions. If w £ <C (i.e., w is an nxm matrix with

complex elements) and if w = u + jy, where u,y £ 3R , then, by

definition, Re w = u and Im w = y. The transpose of w is denoted by

T — A H A —T
w , the complex conjugate of w is denoted by w - u - jy, and w = w .

H
An nxn Hermitian matrix w is one for which w = w. The term real matrix

will denote a matrix with real elements, and the term complex matrix will

denote a matrix with complex elements.

(2.2) Lemma. If M€C™"1 and wG<En, then Re^^Mw) =|w^MW^w
and jlm(w rlw) = -r- w (M-M )w.

Proof. Note that M=yQl-WJ11) +^(M-M11). Thus wW =j w(M-rtT)w +
j wH(M-MH)w. Now

[| w^M-M^w]11 =-jw^M-mV.

Thus ^ wH(M4MH)w is a real number, and tw (M-JT)w is an imaginary number.

Q.E.D.

(2.3) Observation. If M is an nxn Hermitian matrix, it follows

from Lemma (2.2) that w ^to is a real number for all w £ <C .

(2.A) Definitions. If M is an nxn Hermitian matrix, the notation

M >_ 0 means that *?Mw _> 0 for all w £ (C .

The symbol I will denote the nxn identity matrix.

The right-half plane (abbreviated RHP) is the set {s € <E: Re(s) >. 0}

The open RHP is the set {s e <E: Re(s) > 0}.

A function f: Y -*• <E is defined to be holomorphic in an open set
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¥ C C if its derivative exists (in the complex sense) at each point of

of V. A complex-valued function f(») is defined to be meromorphic in

an open set ¥ C (i; if there exists a set P of isolated points in ¥ such

that f(») is holomorphic in y\p and each point of P is a pole of f(*)«

Now consider the matrix-valued map M: ¥ C <e -*- £ , i.e., M(0 is an

nxn matrix of complex-valued functions of a complex variable. By

definition, M(») is holomorphic in an open set If C c if each element

of M(') is holomorphic in ¥.

(2.5) Definition. M: ¥ C <c + <cnxn is a positive real matrix if

¥ contains the open RHP and

(i) M(') is holomorphic in the open RHP.

(ii) M(a) is a real matrix for real, positive a.

(iii) M(s) + *T(s) _> 0 for all s in the open RHP.

(2.6) Definition. M: Y C <c -• <Cnxn is a bounded real matrix if ¥

contains the open RHP and

(i) M(») is holomorphic in the open RHP.

(ii) M(a) is a real matrix for real, positive a.

(iii) I-M^(s)M(s) >^ 0 for all s in the open RHP.

(2»7) Definitions. A point sQ € (C is a k-th order pole of the

matrix-valued map M: ¥ C c -• (Dnxn if there exists an element of M(-) with

Some authors use the terms analytic or regular in the same sense that
holomorphic is used here.

2 _
Condition (ii) can be replaced by the condition that M(s) = M(s) for s

in the open RHP. The reflection principle [1] shows that the resulting
definition is equivalent. The same comment applies to Definition (2.6).
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a k-th order pole at s. and every other element of M(*) is either

holomorphic at s« or has a pole at sQ of order not greater than k. A

first-order pole of M(') is called a simple pole. If each element of

M(») is a rational function, then M(«) is called a rational matrix.

Note that a matrix which is positive real or bounded real can have no

poles in the open RHP. Moreover, a standard result says that a bounded

real rational matrix has no poles on the imaginary axis, and a positive

real rational matrix can have at most simple poles on the imaginary

axis [2]. These results will not be needed in this report; however,

the following lemmas will be useful.

(2.8) Lemma. Let M(-) be an nxn rational matrix. Let A be a set

of isolated points which contains all poles of M(*)« Suppose that

M(s) + Mas) _> 0 for all s € (open RHP)\A. Then M(0 is holomorphic in

the open RHP, and M(s) + M^(s) ^ 0 for all s in the open RHP.

Proof. For each w €= <D , define a rational function f (•) by
~ w y

n n

f (s) = w^l(s)w = z2 53 w.w.m. .(s
~ i=l j=l 1 J 1J

where w. denotes the i-th component of w and m. .(•) denotes the ij-th

element of M(*)» Suppose s_ is a pole of M(*)» and choose w *= <E such

that f (•) has a pole at s^. This can always be done, for if m (•) has
w 0 J pp

a pole at s_, choose w = 1 and w. = 0 for i ^ p. On the other hand,
0 p i

if no diagonal element has a pole at s_, then m (*) has a pole at sn

for some p,q (p^q). Choose w = 1, w = c, and w. = 0 for i ^ p or q.

By appropriate choice of the constant c ^ 0, the function f (•) will
w

have a pole at s . Thus f (•) has a Laurent expansion in some

neighborhood of sn as follows:
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f (s) = 2 a (s-sn)m
w im=-k

where k > 1 is the order of the pole of f (•) at s_. For Is-srtI
— r w 0 0'

sufficiently small, the first term in the Laurent expansion dominates,

-kand Re[a (s-sft) ] changes sign in every neighborhood of s_. Thus

Re f (s) changes sign in every neighborhood of s^. Now Re f (s) =

4 wH(M(s)+MH(s))w (Lemma (2.2)). These facts, combined with the

hypotheses of the lemma show that M(«) has no poles in the open RHP.

Finally, we deliberately stated the lemma so that A may contain

points which are not poles of M(-). If s € (open RHP) H A, then s1

is not a pole of M(0« It follows from continuity that M(s-) + M^s,) _> 0

Q.E.D.

(2.9) Lemma. Let M(«) be an nxn rational matrix. Let A be a

set of isolated points which contains all poles of M(•). Suppose that

I-M^s^s) >_ 0 for all sG (open RHP)\A. Then M(-) has no poles in

the RHP, and I- M^s^s) _> 0 for all s in the RHP.

Proof. If I - M^s)M(s) >_ 0, then each diagonal element of the

matrix I - M^(s)M(s) must be nonnegative. Thus

n _

1- 2|m..(s)| >_ 0, j=l,2,...,n, s ^ (open RHP)\A,
i=l 1J

where m. .(•) is the ij-th element of M(-)« This shows that |m (s) | <_ 1

for all s G (open RHP)\A and for all i,j. But if s is a pole of n^.O),

then |m. .(s) | •>• -h as s -^ s.. Therefore M(0 has no poles in the RHP.

It follows from continuity that I -M^s^s) >_ 0 for all s in the RHP.

Q.E.D.

(2.10) Lp spaces. Let $ C ]R be a Lebesgue measurable set,
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let f: $: -»• <C be a measurable function, and for p > 1 define Ilfil =
- P

( I |f|P)1/p. Then, by definition, fe Lp($) if Ilfil <-f«.

If f,g e LP($) and if a,3 € <C, it turns out that af + $g G LP($).

Thus LP($) is a vector space. If f: $ -*• (E , we say that f € L ($)

if each component function of f is an element of L (4>) . Similarly,

if M: $ -J- <Cnxn, we say that ME Lp(nxn)(3>) if each element of M(-)

belongs to LP($) . The space LP(]R) will be denoted simply by L .

Specifically, fGLP if J |f(t)|Pdt <-H*>.

(2.11) Fourier Transforms. A few standard results from the

theory of Fourier transforms are listed here [3]. If f ^ L , then

the Fourier transform of f, denoted or[£], is defined for all

a) G i by

93T[f](o)) =j f(t)e"ja)tdt. (1)

Since f £ L , the existence of the integral on the right-hand side

of (1) is assured.

2 2
If f € L , then there exists a function in L , which will also be

called the Fourier transform of f and denoted by <J[f], which satisfies

the following condition:

(+* /-+A 2

l&tfKw) - 1 f(t)e"ja)tdt| da) = 0. (2)
«.. .- -00 * - A

If there are two functions S^[f] and cr[f] which satisfy (2), then

cr[f](o)) = <jt[£]M almost everywhere. Following the usual convention,

two functions which are equal almost everywhere are considered equivalent

3
A property is said to hold almost everywhere if it holds everywhere
except on a set of Lebesgue measure zero.
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as members of any L space. Thus if f € L , we can speak of the Fourier

CT 2 12
transform tj-ff] £L . If f £ L OL, then the Fourier transforms

defined in (1) and (2) are equal almost everywhere.

2
(2.12) Theorem (Parseval). If f and g are elements of L , then

{+°° . /•+»
f(t) g(t)dt =^ I <3f[f]M 9Tlg] («)d».

—00 * —OO

(2.13) Convolutions. If f G L and g G L , p _> 1, then the

convolution of f and g, denoted f*g, is defined by

f*g(t) = f f(t-T)g(T)dT. (1)
* —oo

It turns out that f*g(t) exists almost everywhere and that

Hf*gD < IlfilJlgll . (2)
° p — 1 ° p

If fG L1 H L2 and gG L1 n L2, then it follows from (2) that f*g €
12 1
L H L . This fact will be useful in the sequel. Also, if f € L and

g €= L , then (from (2)) f*g G L , and it turns out that

<9T[f*g] = ^[fj^Ttg]. o)

The following observation will also be useful.

(2.1A) Observation.4 If f(t)e"at G L1 H L2 and g(t)e"at G L1 H L2,

then

%-at (' N:/4.^\."a(t~T)i»/_\-."aT.
»T<0

f*g(t)e ^ = 1 [f(t-x)e vvu l/]g(x)e VLdx,

and thus f*g(t)e~at G L1 H L2.

Notations such as f(t)e G l Hl are technically incorrect since
f(t)e"at is a number, not a function. However, such notations are
convenient and their meaning is clear.
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(2.15) Locally L Spaces. Let $ C ]R be a Lebesgue measurable set

A function f: $ •»• C is said to be locally LP (p>l) if f G LP(E) for

every bounded measurable set E C $. a function f: $ •> <C is said to

be locally L if each of the components of f is locally L .

The set of nonnegative real numbers will be denoted by IR , =

{t G ]R: t >_ 0}.

(2.16) Laplace Transforms. If f: E ->• C is locally L , then the

Laplace transform of f, denoted sL[f], is defined by

0

where s is a complex variable. The domain of definition of 5i[f] is

f(t)e"Stdt (1)

all s G C such that the integrand in (1) is an element of L (H ).

Let f: 1R -*• C be such that f(t) =0 for t < 0. Suppose that

f(t)e"at G L1 for some aG m. . Then 9! [f](a+jw) = ^[f(t)e"at] (oj)

for all a) G 1R . This observation shows how one can apply results from

the theory of Fourier transforms when dealing with Laplace transforms.

For example, if f,g: 1R -* (C vanish for negative t and if f(t)e ,

g(t)e G L for some o G ]R , then Observation (2.1A) gives

S£[f*g](a+ja0 = (Ty[f*g(t)e"at](a)) = ^[f(t)e~at] M 9r[g(t)e"°t] (a>) =

S£[f](a+jw) S£[g](a+jw), all ue ]R.

The Fourier or Laplace transform of a vector-valued or matrix-valued

function is obtained by taking the transform of each component. For

example, if f=[f ,...,fn]T: 1R+ +Cn is locally Lln, then S£[f] =
[el. [f, ],..., gj[f ]] • The preceeding results for Fourier and Laplace

transforms have obvious extensions when dealing with vector-valued and

matrix-valued functions, and these will be used freely in the sequel.
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For example, Parseval*s Theorem (2.12) gives the following observation:

(2.17) Observation. If f(t)e"at G Lln O L2n and g(t)e"at G Lln O

L for some a £ ]R , and if f(t) = g(t) = 0 for t < 0, then

(*" fH(t)g(t)e"2atdt =p[f(t)e-atjH[g(t)e-at]dt =
<f _oo ** J —CO

_ ^ I00

i| {(rT[f(t)e"at](a))}H{(3F[g(t)e"'at:](a))}da) =
•^ —00 ~

(+00

{^ [f](o+j«) }H{ S£ [g] (a+ja») }da).
—00

(2.18) Passivity. Consider a dynamical system (possibly nonlinear)

with input u(») and output y(»)» which is described by ordinary

differential equations of the form

x(t) = f(x(t),u(t)) (la)

y(t) = g(x(t),u(t)) (lb)

where x(t) G l C 3Rk, y(t) GUC ]Rn, and y(t) G ]Rm. E is called the

state space. It is assumed that the power flowing into the system at

time t is a function of u(t) and y(t), denoted by p(u(t),y(t)). The

following definition of passivity is essentially that given by

Rohrer [A]. It is easily shown to be equivalent to Willems* [5]

definition (see Appendix A).

(2.19) Definition (Passivity). The system described in Section (2.18)

is passive if there exists a finite-valued function E: Z -*- 1R , such that

«t

i P(u(T),g(x(T),u(T)))dT + E(X ) > 0 (1)
0

for all t >_ 0, all x € E, and all admissible inputs u(*)- The function

x(*) appearing in (1) is the state trajectory corresponding to the input
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\:u(-)» and the notation I indicates that x(0) = x_. A system which is
"0

0

X0"
not passive is active.

The integral appearing in (1) is simply the net energy flowing

into the system over the time interval [0,t]. A negative value for this

integral indicates a net extraction of energy from the system. These

definitions allow us to classify the one-port described in the Introduction

as active, since for any nonzero initial state, arbitrarily large amounts

of energy can be extracted, and therefore the inequality (1) cannot be

satisfied.

III. PASSIVITY CONDITIONS FOR THE GENERAL NETWORK

(3.1) Mathematical Representation of the Network* Consider an

n-port electrical network <J\J, with y denoting the vector of port

voltages and i denoting the vector of port currents. It is assumed that

there exists a mathematical representation of the n-port lAI involving

variables u and y which are related to v and i by a nonsingular coordinate

>- 2nx2n
transformation matrix ft G ]R as follows:

y V
--- * = ft ,-.—•

l U
L J L J

a ' b
~ i ~

"c" ""dm (i)

where ft has been partitioned into four nxn submatrices a,b,c, and d as

shown on the right-hand side of (1). Likewise, ft is partitioned into

four submatrices a,8,Y»<5€:]R as shown below:

-1
= ft

a ' 3
_ '

Y ] "im- (2)

The variables u and y are called the input and output, respectively.
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The input u is considered to be the independent variable, and the output y

is considered to be the dependent variable. It is assumed that u and

y are related by the following linear, time-invariant, finite-dimensional

state equations:

x(t) = Ax(t) + Bu(t) (3a)

x(t ) = x (3b)
~K 0' ~0

y(t) = Cx(t) + Du(t) (3c)

where AG TEL***-, BG m1"01, Ce R113^, and De IR11*11. Here the state

space Zis C . The quantity xQ € G appearing in (3b) is called the

initial state at tQ. In the special case when tQ = 0, xQ is simply

called the initial state.

In general, the state equations for a linear time-invariant

lumped network include terms involving derivatives of the input u(«) on

the right-hand side of (3c) [6]. Such networks will not be considered

in this report. Also, the assumption that ft is a real matrix excludes

the scattering representation with complex normalization [7]. However,

the results in this report whose proofs do not use the assumption that

A,B,C,D, and ft are real matrices will be noted. Such results remain

valid for complex matrices. Finally, the above assumptions exclude

the scattering representation with frequency-dependent normalization [7],

for then the relation between (y,u) and (y,i) would be a convolution in

the time domain.

Each input u(.) must belong to a set Qt, called the set of

admissible inputs. We shall take Qi to be the set of all locally L

-13-



_ c

functions mapping I to C . Under these conditions, (3) has a unique

solution for every initial state x_ e <C at t which is given by

y(t) =Ce-^^O^Q +j Ce~(t"T)Bu(x)dT +Du(t). (A)
'o

The integral on the right-hand side of (A) exists, since u(*)» being

locally L , is therefore locally L . Moreover, it is clear from (A)

that y(») is locally L .

Henceforth, the network described in this section will be referred

to simply as network lAI.

Complex-valued port variables (v(«)»i(0) are allowed as a

mathematical convenience. However, Re y(«) and Re i(*) are considered

to be the physical port variables. With this in mind, the definition

of passivity (2.19) must be modified as follows:

(3.2) Definition (Passivity). Network cAJ is passive if there

lr

exists a finite-valued function E: C -»• M such that

f Re[vT(x)]Re[i(T)]dx +E(xn) >0

X0"

for all t >^ 0, all x £ <E , and all port voltage, port current pairs

(y(«)»i(0) consistent with the initial state x . [The notation I
~° J0

xo"indicates that the network is in state xfl at t = 0.] A network

which is not passive is active.

The locally L n functions were defined in Section II. The reader who is
unfamiliar with these concepts may simply assume that Qj( is all
piecewise continuous functions, as done by Desoer [8]. Note that a
piecewise continuous function is always locally L^n.
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The following equivalent condition for passivity is more useful.

(3.3) Lemma. Network o\f is passive if and only if there exists

k
a finite-valued function E: <E -»• 1R such that

Re ( vH(T)i(x)dx +E(x )>. 0 (1)
x +
-0

k
for all t >_ 0, all x G <C , and all port voltage, port current pairs

(v(*)»i(*)) consistent with the initial state xQ.

Proof (Necessity). Definition (3.2) gives

•t
TJ Re[vi(T)]Re[i(x)]dx + E(x ) >_ 0. (2)

0

By linearity,

ft

1 Re[jvT(T)]Re[ji(x)]dx + E(jxn) >0. (3)

X0"

Now Re[jv(x)J = -Im[v(x)], etc., thus (3) becomes

1 Im[vT(x)]Im[i(x)]dx + E(jx ) > 0.
J0

~0

(4)

Note that Re yHi = Re yT Re i+ Im y Im i. Hence if E(-) is defined by

E(xQ) = E(xQ) + E(jxQ), then (2) and (A) give (1).

(Sufficiency). Suppose that (1) is satisfied. Let (v(-),i(*)) be a port

voltage, port current pair corresponding to an initial state Xq and an

input u(0. Let (v_(.) ,i_(•)) be the port voltage, port current pair
** ~R **R

corresponding to the initial state Re x and the input Re u(-)- Since

A,B,C,D, and ft a real matrices, it follows that (YR(*^'iR(*^ =

(Re v(-),Re i(O). Hence Re v^i,, = Re vT Re i, and (1) gives

•15-



T(x)Re i(x)dx + E(Re xn) _> 0. (5)I Re v

V

If E(0 is defined by E(xQ) = E(Re x ), then Definition (3.2) is satisfied

Q.E.D.

(3.A) Remark. The assumption that A,B,C,D, and ft are real matrices

was used in the sufficiency part of the above proof and was not used in

the necessity part.

(3.5) Notation. Let X(A) denote the set of eigenvalues of A,

i.e., X(A) = {s G <E: det(sI-A) = 0}.

(3.6) Definition. The network function G: <E\x(A) -*• C for

network (J\J is defined by

G(s) = C(sI-A)"1B + D.

q 6
Let {X.} denote the set of poles of G(*). Let a = max{Re X :

i . , - c l
i=l

1 <_ i <_ q}. The following basic facts from linear system theory will be

needed. Each element of the matrix Ce ^B has the form 2J P-(t)e 1 ,

where p.(«) is a polynomial (possibly constant). Hence (Ce ^B)e e

L1(nxn)(lJ n L2(nxn)(mJ for all o>o . Therefore 92[Ce1^] exists
+ + c ~

in the half plane {s G C: Re(s) > a }, and in fact ^L[Ce ^B](s) =

C(sl-A) B in this half plane.

6 a
Note that {X.} C X(A), but it is not necessarily true that

q X i=l q
{X.} = X(A) . However, {X.} = X(A) in the special case when the

1 i-i x i-i
state equations (3) in Section (3.1) are minimal, i.e., both controllable
and observable [2]. This fact will not be needed in this report.
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(3.7) Lemma. Let s e <r\X(A) and let w e <Cn. If the input to

A( Vnetwork (JVJ is u(t) = we for t >_ 0, then there exists an initial

k ~ s0tcondition x £ <E such that the output is y(t) = G(sn)we for t _> 0

where G(-) is the network function (Def. (3.6)).

-1
Proof. The desired initial condition is x_ = (snI-A) Bw. In

fact, the corresponding state trajectory x(*) is

-1 s0tx(t) = (sQI-A) Bwe , t> 0. (1)

To see this, note that

-1 s0tx(t) =s0(s0I-A) ""Bwe u

-1 s0t -1 V= A(snI-A) Bwe u + (sftI-A) (snI-A) Bwe u

= Ax(t) + Bu(t), t >_ 0.

Using the solution for x(') from (1) gives

y(t) = Cx(t) + Du(t)

-1 V sot= C(snI-A) Bwe u + Dwe u

sot= G(s )we u , t _> 0. Q.E.D,

Obviously, Lemma (3.7) remains valid for complex matrices.

(3.8) Definition. The initial condition described in Lemma (3.7)

will be called an appropriate initial condition.

(3.9) Definition. Network lAI is said to be controllable if,

given any two states x-,x.. G (C , there exists an input u(-)

and finite times t0,t- G IR with t1 _> t such that the corresponding

state trajectory x(0 satisfies x(t») = xn and x(t^) = x.. [Since the
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network is time invariant, we may always choose t. = 0 or any other

convenient value.]

(3.10) Lemma.

(i) If network u\| is passive, then

Re I vH(x)i(x) > 0 (1)
Jo

for all t >_ 0 and all port voltage, port current pairs (v(-),i(0)

consistent with the zero initial condition.

(ii) If network c_A) is controllable and condition (1) is

satisfied, then network lAI is passive.

Proof of (i). Suppose that

Cl HRe I v (x)i(x)dx = -K < 0 (2)
J0 "
Q-"

for some t- > 0 and for some pair (y(•)>*•(•)) consistent with the zero

initial condition. Let r G 1R . By the linearity of the zero state

response, (v(•)»!(•) = (rv(.),ri(0) is a port voltage, port current

pair consistent with the zero initial condition. Hence, from (2)

h ti
Re J vH(x)i(x)dx =r2Re f vH(x)i(x)dx =-r2K (3)

"0 '0

0+ 0 +

Since r ^ 1R can be chosen arbitrarily large, it is impossible to

define a finite-valued function E(0 as in Lemma (3.3). Thus network

lA) is active.

Proof of (ii) . Suppose that network <Jvf is controllable and

condition (1) is satisfied. Let xQ G C . By controllability, there

exists an input un(*) e ^U and a finite time -t £ 0 such that the
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corresponding state trajectory satisfies x(-tfi) = 0 and x(0) = x^.

Suppose that an arbitrary input u(*) £ HA is applied over [0,-H»).

Let (vn(»)>in(0) and (v(«)»i(*)) denote the corresponding port voltage,

port current pairs over [-t0,0) and [0,+»), respectively. Since the

network is time invariant, condition (1) can be rewritten

Re ( vj?(x)i (x)dx +Re f vH(x)i(x)dx >0 (A)J.t()-o ~0 j0~
0+xn V

for t _> 0. Note that the first integral in (A) is finite, since uQ(«)

and yn(*)» and hence vQ(-) and iQ(0> are locally L . Thus we can

define a finite-valued function £(•) as in Lemma (3.3). This shows that

network (JV) is passive. 0 E.D.

(3.11) Remark. The example in the Introduction is an active,

uncontrollable network which looks like an ideal one-port short circuit

when the initial state is zero. Thus it satisfies condition (1) of

Lemma (3.10). This shows that the controllability hypothesis in

part (ii) of Lemma (3.10) is not superfluous.

(3.12) Remark. The proof of part (i) of Lemma (3.10) did not

use, either directly or indirectly, the assumption that A,B,C,D, and

ft are real matrices. Thus part (i) of Lemma (3.10) remains valid when

A,B,C,D, and ft are complex matrices.

(3.13) Definition. The dissipation matrix <D: <C\X(A) -> <C

for network oM is defined by

q>s) = [aG(s)+b]H[cG(s)4d]

where G(-) is the network function (Def. (3.6)) and a,b,c, and d are
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the matrices appearing in (1) of Section (3.1).

(3.1A) Theorem (Necessary Condition for Passivity). If network

cJV) is passive, then the dissipation matrix satisfies

^D(s) +<DH(s) >. 0 for all sG (open RHP)\X(A).

Proof. Let s. G (open RHP)\X(A), let w G <cn be arbitrary, and
° s t

suppose that the input to network lAI is u(t) = we for t _> 0.

Moreover, suppose that the network starts at the appropriate initial

condition xn corresponding to the input u(*) (Def. (3.8)). Thus the

S0toutput is y(t) = G(sQ)we for t >_ 0 (Lemma (3.7)). From (1) of

Section (3.1) we obtain

Vy(t) = [aG(sQ)+b]we , t >_ 0 (1)

soti(t) = [cG(S())+d]we u, t>0. (2)

Since the network is passive, it follows from (1), (2), and Lemma (3.3)

that

fRe{wH[aG(s0)+b]H[cG(s0)-W]w}e °dx +E(X()) >0 (3)

where an = Re sn > 0. Recalling the definition of (~0 (•) and performing

the integration in (3) gives

2aQt_
Re[wHq)(s0)w](e 2g "1) +E(xQ) >0.

Condition (A) can be satisfied for all t >^ 0 only if

H

(A)

Re[w <3)(s0)w] >. 0. (5)

HIt follows from Lemma (2.2) that <J) (sQ) + C£) (sQ) >_ 0

Q.E.D.
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(3.15) Remark. The proof of Theorem (3.1A) does not use, directly

or indirectly, the assumption that A,B,C,D, and ft are real matrices.

Thus Theorem (3.1A) remains valid when A,B,C,D, and ft are complex

matrices.

(3.16) Remark. If network o\| is passive, then Theorem (3.1A)

shows that tf) (s) +<^)H(s) _> 0 for all sG (open RHP)\x(A). Moreover,

if A,B,C,D, and ft are real matrices, then ^J)(a) is a real matrix for

all real a £ X(A). However, ^D(') is not necessarily a positive real

matrix, because it is not necessarily holomorphic in the open RHP.

This is illustrated in Example (3.17) below.

(3.17) Example. Suppose that network (Jvl is a one-port described

by state equations of the form

x =j x + u (la)

y = x (lb)

where (v,i) is related to (y,u) by

ii :][: (2)

1 —1The network function for this network is G(s) = (s- y) (note that

G(') has a pole in the open RHP). The dissipation matrix for this

network is seen from Definition (3.13) to be

q)(s) =[1 •G(s) +0] [1 •G(s) +1] =r^T(-±y +1)
s-2\s~2 /

s+ -j-\ s+ 2

~S-J\S-V \s-\\2
(3)
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Note that ^O(') is not a rational function. ^D(-) is not holomorphic

in the open RHP, in fact, it is not even meromorphic there. Moreover,

|<D (s) |-»• +» as s -*- -j . Thus it has a "pole-like" singularity at

s = y . From (1) and (2) we obtain

x=yx+u=yx+ (i-y) =yx+ (i-x) =-y x+ i (A)

v - y = x. w)

It will follow from the results in Section IV that this network is

passive, because (A) and (5) show that it has a controllable hybrid

1 -1
representation with a positive real hybrid matrix G(s) = (s+ y)

Finally, note that Re ^D (s) _> 0 for all s in the open RHP where 4)(-)

is defined, in agreement with Theorem (3.1A).

(3.18) Theorem (Sufficient Condition for Passivity). Suppose

that

(a) network <Jvl is controllable,

(b) the dissipation matrix (Def. (3.13)) satisfies ^D(s) +<Q (s) >. 0

for all s e (open RHP)\ X(A),

(c) the network function G(-) (Def. (3.6)) has no poles in the open

RHP, and

(d) aTc = 0 (see (1), Section (3.1)),
v ' ~ ~ -nxn

then network o\l is passive.

Proof. From Lemma (3.10) and (1) of Section (3.1), it is sufficient

to show that

.t

Re I vH(t)i(t)dt =Re I [ay(t)+bu(t)]H[cy(t)-Wu(t)]dt >. 0 (1)
0 0

0+ o+

for all t- >_ 0 and for all inputs u(-) e HA, where y(.) is the
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corresponding output for zero initial state. In the following argument

it is assumed that t1 j> 0 is arbitrary, but fixed. Let u(«) £ Hi be

an arbitrary input over [0,^] and let y(.) denote the corresponding

output over [0,t.,] for zero initial state. Define an input u(-) e Ha

as follows:

u(t) = u(t), t.€ [0,^] (2a)

= 0, t < 0, t > tr (2b)

Let £(•) denote the output corresponding to the input u(») for zero

initial state. From (A) of Section (3.1) it follows that

y(t) = y(t), t€ [0,^] (3a)

=0, t < 0. (3b)

Note that y(t) does not necessarily vanish for t > t.. However, since

T
a c = 0 (assumption (d)), if follows from (2) and (3) that
~ - -nxn r

[ay(t)+bu(t)]H[cy(t)+du(t)]

= [ay(t)+bu(t)]H[cy(t)4du(t)], tG [0,^] (Aa)

= 0, t < 0, t > t^ (4b)

Note that u(t)e"at G Lln O L2n for all oG TR., and so U(s) = Sf [u] (s)

exists for all s G (E. The assumption that G(0 has no poles in the open

RHP guarantees that (Cet^B)e"crt GL1(nxn)(lR+) nL2(nxn) (m +) for all
a > 0. Since the initial condition is zero, (A) of Section (3.1) and

Observation (2.1A) show that y(t)e~at G Lln HLn for all a > 0, moreover,

3P[y](s) = G(s)U(s) for Re(s) > 0. (5)
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It follows from (1),(A),(5), and Observation (2.17) that

Re J vH(t)i(t)e 2atdt
0

[ay(t)+bu(t)]H[cy(t)-Wu(t)]e"2atdt
—CO

1 f Iu>

=Re yjj: I ^(a+ja))^ (a+ja3)U(a+jcj)da)
» —CO

_> 0, for a > 0. (6)

The last inequality follows from assumption (b). Now |y (t)i(t)e | <_
H ftl H|v (t)i(t) |, t >_ 0, and 1 |v (t)i(t) |dt < +» since v(.) and i(-) are

2n °locally L . Let (o > be a sequence with a > 0 and a -»• 0. It follows
n n n n

from (6) and the Lebesgue Dominated Convergence Theorem [3] that

vH(t)i(t)dt = lim Re I vH(t)i(t)e"2°nt > 0. (7)
0 n-*» J0

Q.E.D.

(3.19) Remarks. The example given in the Introduction shows that

assumption (a) is not superfluous. However, the passive network in

Example (3.17) satisfies assumptions (a) and (b) but not (c) and (d).

Therefore assumptions (c) and (d) are stronger than necessary, but they

are adequate for our purposes. Finally, since G(-) is assumed to be

•TV U

holomorphic in the open RHP, assumption (b) becomes H) (s) + ££) (s) 2. 0

for all s in the open RHP.

Appendix B gives a condition under which a network representation

as described in Section (3.1) involving a pair of variables (y.,u1)

can be transformed into a representation of the same form involving

another pair of variables (y«,u^).
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IV. THE HYBRID REPRESENTATION

(A.l) Definition. The representation described in Section (3.1) is

said to be a hybrid representation for network cAI if, for each k,

1 _< k <^ n, one of the following two conditions is satisfied:

(i) Vk = yk and *k = V °r
(ii) vk = uk and ik = yk,

where v, is the k-th component of y, etc.

(A.2) Observation. Thus, for a hybrid representation, the

matrix ft (see (1) of Section (3.1)) has the following form:

i I b

ft =

where a and b are nxn diagonal matrices:

a =

u-. 0
o •••„

b =

11 0
0 '•'• nn

J

(1)

(2)

Moreover, for each k, 1 <_ k <_ n, the constants a,, and b,, satisfy one

of the following two conditions:

(i) *kk = 1 and bkk = °' °r

(ii) *kk = ° and bkk = 1*

From these properties, it is easy to verify that H) (s) = G (s)a + bG(s).

Since a + b = I, it follows that <^D (s) + <£) (s) = G(s) + G (s).

(A.3) Terminology. The network function G(.) for a hybrid

representation will be called a hybrid matrix.
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(A.A) Theorem (Necessary and Sufficient Passivity Conditions for

the Hybrid Representation). Suppose that network (Jy) has a hybrid

representation.

(i) If network (.A) is passive, then the hybrid matrix G(*) is a

positive real matrix.

(ii) If network cjvi is controllable and its hybrid matrix G(«)

is positive real, then network lAJ is passive.

Proof of (i). From Observation (A.2) and Theorem (3.1A),

^ (s) +(:DH(s) = G(s) + GH(s) >. 0 for all sG (open RHP)\X(A) . Thus,

from Lemma (2.8), G(*) is holomorphic in the open RHP and G(s) + G (s) 21 0

for all s in the open RHP. Finally, since A,B,C, and D are real matrices,

it follows that G(a) is a real matrix for real, positive a. Thus G(-)

is a positive real matrix (Def. (2.5)).

T T
Proof of (ii). Note that ac = ab = ab = 0 . From Observation*—l. „ „ ~ „ „~ -nxn

(A.2), ^D(s) + ££)H(s) = G(s) + GH(s). Thus it follows that all the

conditions of Theorem (3.18) are satisfied, and therefore network (J\l

is passive.
Q.E.D.

(A.5) Remark. The example given in the Introduction shows that

the assumption of controllability in part (ii) of Theorem (A.A) is

not superfluous.

V. THE SCATTERING REPRESENTATION

Although the sufficient condition for passivity given in

Theorem (3.18) has a rather limited range of applicability, the necessary

condition given in Theorem (3.1A) can be applied to any network which

has a representation of the form described in Section (3.1). As noted

•26-



in Remark (3.15), Theorem (3.1A) is valid even for complex matrices. In

this section we will utilize Theorem (3.1A) to obtain a necessary passivity

condition for the scattering representation.

(5.1) Definition. The representation described in Section (3.1)

is said to be a scattering representation for network <Jvl if a,b,c, and d

(see (1) of Section (3.1)) are nxn diagonal matrices with the following

form:

a = b =

n

d =-c =
2 .

n

where the real positive constants r. are called the port normalizing

numbers.

(5.2) Observation. Thus, for a scattering representation, '

<X)(s) =I-GH(s)G(s) + GH(s) -G(s) and ^)(s) +<^)H(s) =

2[I-GH(s)G(s)].

(5.3) Terminology. The network function G('«) for a scattering

representation will be called a scattering matrix.

(5.A) Theorem (Necessary Passivity Condition for the Scattering

Representation). Suppose that network oM has a scattering representation.

If network (Jvl is passive, then the scattering matrix G(«) is a bounded
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real matrix.

Proof. From Observation (5.2) and Theorem (3.1A), y[ £[)(s)+C[)H(s)] =
ti

I - G (s)G(s) >_ 0 for all s G (open RHP)\X(A). Thus, from Lemma (2.9),

G(.) is holomorphic in the open RHP and I - G (s)G(s) _> 0 for all s in

the open RHP. Finally, since A,B,C, and D are real matrices, it follows

that G(o) is real for real, positive a. Thus G(.) is a bounded real

matrix (Def. (2.6).
Q.E.D

VI. CONCLUDING REMARKS

This report has presented rigorous derivations for frequency domain

passivity conditions. A very general necessary condition for passivity

was presented in Theorem (3.1A), and a restricted sufficient condition

was presented in Theorem (3.18). It is possible that assumptions (a)

and (b) alone of Theorem (3.18) are sufficient to guarantee passivity,

although the authors were unable to find a rigorous proof for this

conjecture.
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APPENDIX

A. EQUIVALENT PASSIVITY DEFINITIONS

It was stated in Section II that the definition of passivity (2.19)

is equivalent to Willems1 [5] definition. In the context of Section II,

Willems1 definition reduces to the following: The system described in

Section (2.18) is passive if there exists a finite-valued function

S: I ->• ]R such that

( P(u(t), g(x(T),u(T)))dT + S(X ) > S(?(t)) (1)
'0

xo"

for all t >_ 0, all xfl £ Z, and all admissible inputs u(«). Willems then

defines the available storage S (•) as follows

t

S(Xn) =SUP {- ( p(u(T),g(x(T),u(T)))dT}
a U t>0 >0

V

where the supremum is taken over all inputs u(«) and all t ^ 0. In

Theorem 1 of Part I of his paper [5], Willems shows that a system is

passive according to his definition if and only if S (xn) < -F» for all

xoG E'
Since S(x(t)) >_ 0, it is clear that that condition (1) implies

Definition (2.19) (choose E(x0)=S(x0)). Conversely, if Definition (2.19)

is satisfied, then

"j p(u(x),g(x(T),u(T)))dT <E(xQ) <-H».

xo-

Willems uses the term dissipative rather than passive, because he allows
functions p(*>0 which may not have the physical significance of power.
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It follows that Sa(xQ) <+» for all xQ e Z. Thus Willems' definition

is equivalent to Definition (2.19).

B. THE TRANSFORMATION OF NETWORK REPRESENTATIONS

Suppose that there exists a network representation of the form

described in Section (3.1) involving a pair of variables (y1,u1) as

follows:

x = Ax + Bu

y = Cx + pu.

where

*i

Si

si! h

Yi"!"fi

Let (v.ju.) be another pair of variables which is related to (y,i) as

follows:

V

i

=

*2 j ^2
.S2 ! -2.

ll

."2.

(la)

(lb)

(2)

(3)

(B.l) Lemma. Let (y-,u..) and (y_,u2) be as described above. Then

a network representation of the form described in Section (3.1) involving

the pair (y«,u_) exists if

det[a a2+$ c^-DCy^+S^)] ^ 0.

Proof. Note that

V
.Si.

Sl^l^ ! ?1^2+^1^2

.IlS2+5l£2 !Il*2^1*2 .

V

--2.

A
M i N
" i ~

P ' Q

li

-~2.
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Using (A) in (lb) gives

(M-DP)y« = Cx + (DQ-N)u9. (5)

By assumption, det(M-DP) ^ 0. Thus (5) becomes

yn = (M-DP)""1Cx + (M-DP)~1(DQ-N)u0. (6)

Using (A) and (6), (la) becomes

x =[A4BJP(M-DP)~1C]x +[BP(M-DP)"1(DQ-N)+Bg]u2. (7)
Q.E.D,

Although we assumed in the main body of this report that the matrices

involved were real, the results of this appendix are valid for complex

matrices also.
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