
Composition Languages

James Adam Cataldo
Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-24

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-24.html

March 17, 2006



Copyright © 2006, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF award #CCR-0225610), the State of
California Micro Program, and the following companies: Agilent, DGIST,
General Motors, Hewlett Packard, Infineon, Microsoft, and Toyota.



Composition Languages

Adam Cataldo and Edward Lee

March 15, 2006

Actor-oriented design [1] is a rapidly evolving paradigm in
the design of complex systems, where concurrent components
(called actors) communicate with one another through ports.
This paradigm is being developed in the form of programming
languages, such as architecture description languages [2] and
coordination languages1 [3], as well in the form of software
tools such as Simulink [4] and Ptolemy II [5]. To support
large systems, actor-oriented design encourages hierarchy ; a
network of components may be bundled together to form a
new component. The resulting systems are typically easier to
reason about than those programmed with threads [6], since
concurrent communication is much more explicit. We thus be-
lieve that actor-oriented design will become increasingly rele-
vant as large system design becomes increasingly common.

For large actor-oriented systems, it may be appropriate to
use different models of computation for component interac-
tion at different levels of a model’s hierarchy. Such systems
are called heterogeneous or multi-paradigm [7]. For these,
metamodeling [8] tools, such as GME [9], are making it eas-
ier to create domain specific modeling environments, while
model-based design tools, such as Ptolemy II, are making it
easier to construct models with heterogeneous behavior.

These approaches make it simpler to design systems with
complex semantics. As actor-oriented systems become larger
and larger, however, new techniques for simple syntactic de-
scriptions of systems, whether visual or textual, will become
equally important. As an example, imagine designing a dis-
tributed system with 10, 000 components. After the system is
built, a new customer wants the same system, but this time
with 20, 000 components. It seems unreasonable to have to
respecify all the connections in the new system. If the hi-
erarchy in the original model is relatively flat, this could be
particularly challenging, as it could require copying and past-
ing thousands of components and connections.

We thus propose composition languages as a way to spec-
ify actor-oriented models. The key to composition languages
is the ability to succinctly specify higher-order models. As
an example, a higher-order model may be a distributed sort
model. The model may be parameterized by a divide com-
ponent (or model), a conquer component, and the respective
numbers of divide and conquer components. A programmer
will specify this higher-order model once and can then use
it for an arbitrary number of components with arbitrary di-
vide and conquer components. This particular example is
similar to the MapReduce programming environment used by
Google for distributed computation [10]. We seek to take this
a step further by providing a generic language for describing
higher-order models. We believe composition languages will
become increasingly important in actor-oriented design, since
they will enable rapid development of large systems.

1Coordination languages may be either agent based (data driven) or
rendezvous based (control driven).

References

[1] E. A. Lee, “Model-driven development - from object-oriented
design to actor-oriented design,” in Workshop on Software
Engineering for Embedded Systems: From Requirements to
Implementation (a.k.a. The Monterey Workshop), (Chicago),
2003.

[2] N. Medvidovic and R. N. Taylor, “A classification and com-
parison framework for software architecture description lan-
guages,” IEEE Transactions on Software Engineering, vol. 26,
pp. 70–93, January 2000.

[3] G. A. Papadopoulos and F. Arbab, Advances in Computers,
vol. 46, ch. Configuration Models and Languages, pp. 329–
400. Academic Press, 1998.

[4] J. B. Dabney and T. L. Harman, Mastering SIMULINK.
Prentice Hall Professional Technical Reference, 2003.

[5] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and
H. Zheng, “Heterogeneous concurrent modeling and design in
Java,” Tech. Rep. UCB/ERL M05/21, EECS, University of
California, Berkeley, 2005.

[6] E. A. Lee, “The problem with threads,” Tech. Rep.
UCB/EECS-2006-1, EECS Department, University of Cali-
fornia, Berkeley, January 10 2006.

[7] H. L. Vangheluwe, J. de Lara, and P. J. Mosterman., “An in-
troduction to multi-paradigm modelling and simulation,” in
Proceedings of the AIS 2002 Conference (AI, Simulation and
Planning in High Autonomy Systems) (F. Barros and N. Gi-
ambiasi, eds.), (Lisboa, Portugal), pp. 9–20, 2002.

[8] G. G. Nordstrom, Metamodeling - Rapid Design and Evolution
of Domain-Specific Modeling Environments. Electrical engi-
neering and computer science, Vanderbilt University, 1999.

[9] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett,
C. Y. T. IV, G. G. Nordstrom, and P. Volgyesi, “The generic
modeling environment,” in Workshop on Intelligent Signal
Processing, (Budapest, Hungary), May 2001.

[10] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” in Sixth Symposium on Oper-
ating System Design and Implementation (OSDI), (San Fran-
cisco, CA), 2004.


