’Q.“
-
coge”

Y
2
3

Analysis of Multiprocessor Memory
Reference Behavior

Jeffrey D. Gee
Alan Jay Smith

Report No. UCB/CSD 93/754
June 4, 1993
Computer Science Division (EECS)

University of California
Berkeley, California 94720

Analysis of Multiprocessor Memory Reference Behavior*

Jeffirey D. Gee
Alan Jay Smith
Department of Electrical Engineering and Computer Science
Computer Science Division
University of California
Berkeley, CA 94720

ABSTRACT

Shared-memory multiprocessors can provide impressive perfor-
mance at reasonable costs, although private caches are usually needed to
alleviate the potential bottleneck at shared memory. These private caches
in turn require the use of cache-consistency (coherency) protocols, whose
performance is a strong function of the reference behavior within mul-
tiprocessor applications. In this paper we characterize the memory refer-
ence behavior in a wide variety of scalar and vector multiprocessor
address traces from production workloads. This analysis is for the pur-
pose of estimating and improving the performance of cache-consistency
protocols. Our analysis extends previous results in the literature by per-
forming a wider variety of analyses, and analyzing a larger and more
diverse set of multiprocessor traces, including a production vector work-
load.

We find wide differences between the sharing behavior observed in
vector and scalar applications. Compared to scalar programs, vector pro-
grams reference shared data more frequently and contain larger amounts
of processor locality, the tendency for shared data to be used by only one
processor over periods of time. Write sharing by different processors over
short intervals are infrequent in one workload but frequent in another.
This implies that sequentially-consistent programming models will remain
necessary unless applications are recoded to avoid such reference patterns.

June 2, 1993

* *The authors’ research is supported in part the National Science Foundation under grants MIP-8713274, MIP-
9116578 and CCR-9117028, by NASA under Grant NCC 2-550, by the State of California under the MICRO program, and
by Mitsubishi Electric Research Laboratories, Sun Microsystems, Philips Laboratories/Signetics, Intel Corporation, Inter-
national Business Machines Corporation, and Digital Equipment Corporation.

1. Introduction

As more and more computer systems use multiprocessing for increased performance, con-
tinued research is needed to improve on existing cache consistency (coherency) protocols. These
protocols perform the crucial function of allowing any processor in a multiprocessor system to
privately cache shared data for faster access, while specifying a sequence of actions to guarantee
that all cached copies of data are identical. There are two main implementations for consistency
protocols: Bus-based protocols broadcast writes to shared data to other processors on a shared
bus. Other processors caching the same data update or invalidate their versions to maintain con-
sistency; this type of system is sometimes referred to as a *‘snooping cache system.”” Directory-
based protocols do not require a system-wide shared bus; most of the state information for
cached copies is kept in a directory based at the main (shared) memory, and the information to
maintain consistency is sent to some or all processors as necessary.

Although a number of cache-consistency protocols have been proposed in the literature
([Arch86b, Swea86, Agar88b] summarize many of these protocols while [Smit91] presents a
comprehensive bibliography of research in this area), the effectiveness of any protocol is largely
dependent on the memory reference behavior within the multiprocessor system. This paper
analyzes the memory reference behavior in multiprocessor applications to (a) determine how
data is shared in these applications, (b) estimate which existing protocols would perform best on
different workloads, and (¢) propose improved protocols.

We examine characteristics such as (a) processor locality, the tendency for all accesses to
shared data over short periods of time to be made by the same processor, (b) temporal locality,
the property by which data is likely to be reused once it has been referenced, and (¢) contention,
where several processors require access to an item of data during overlapping intervals. Our
analysis 1s carried out in a protocol independent manner, so that our results pertain to bus-based,
directory-based, or even network-based protocols.

The contributions of this paper, beyond what already exists in the literature, come from two
aspects of this work. First, we analyze a much larger number and variety of multiprocessor
address traces than have been previously studied. These traces come from three different
sources: 4-processor Ardent Titan traces, 16-processor VAX T-bit traces, and 64-processor IBM
and Encore Multimax traces. The Ardent traces are not only new to the research community, but
also contain vector data from large, real-world production applications typically run on super-
computers, making them potentially more useful and representative than traces gathered in
academic or research environments. The second important contribution is that our analysis is

more thorough and extensive than the previously published work; in particular, we describe the

_2-

reference process with a Markov model, and we do detailed studies as a function of cache line
size.

In summary, we find that all three workloads contain some processor locality, although pro-
cessor locality in the Ardent vectorized workload increases with block size far beyond levels for
the other workloads. Temporal locality is present, as successive references to an item of shared
data are closely spaced in time, although this is more true when one processor is reusing data as
opposed to several processors sharing data in round-robin fashion. We also find that write-
shared data is generally used by only one processor at a time, and is often protected by locks.
These two characteristics suggest the use of higher-performing, weaker cache consistency proto-
cols. In some of our traces, however, processors frequently read unprotected data that was
recently modified by another processor. Applications sharing data in this manner will continue
to require strongly consistent programming models unless they are recoded to explicitly serialize
access to shared data.

The remainder of this paper is organized as follows: Section 2 discusses related research
and our extensions to the current set of results. Section 3 describes our methodology and work-
load. Section 4 discusses how reference behavior is characterized and why such characterization
efforts are useful. Section 5 presents our results. Section 6 summarizes these results and
discusses how they might be used to improve current cache consistency protocols. Some of
these improvements are analyzed and evaluated via trace-driven simulation in a companion
paper [Gee93].

2. Background

A great deal of research currently exists on the topic of cache consistency. Several studies
have previously looked at the memory reference characteristics of multiprocessor applications,
while other studies have looked at consistency protocol performance, memory consistency
models, and the performance benetits of relaxing consistency. This section briefly summarizes
results from a number of these studies and discusses the contributions of our work; a somewhat
more extensive summary appears in |Gee93b|.

Darema-Rogers, et. al. [Dare87], examined the memory reference behavior of three parallel
scientific applications using the IBM PSIMUL tool to simulate an eight-processor system. In all
three programs, less than 25% of all data references are to shared data. Although most refer-
ences are to private data, references to shared data are bursty in nature and require some form of
caching to reduce contention for the shared memory.

Agarwal and Gupta [Agar88a] analyzed multiprocessor traces of three parallel scalar pro-
grams running on a 4-processor VAX 8350. Two of the traces were collected from CAD applica-

tions; the other was collected from a parallel implementation of the OPS5 programming

-3

language. References to shared data are approximately 25% of all data references. Agarwal and
Gupta introduced the notion of remote and local references (using the terminology pinging and
clinging), where a remote reference occurs when a processor accessing shared data differs from
the last processor to access the data, and a local reference occurs when these processors are
identical. Agarwal and Gupta found there is little processor locality for shared data, except for
reference runs containing writes, for which locality was moderate.

Eggers and Katz [Egge88] analyzed the reference characteristics of four multiprocessor
CAD traces. Roughly 25 to 35% of all data references are to shared data. They found that shar-
ing behavior differed considerably among the traces. Eggers and Katz concluded that write-
invalidate protocols should provide superior performance, since (a) write runs can be long, and
(b) few processors reread data after being invalidated. Timing simulations to confirm this

hypothesis were inconclusive.

Baylor and Rathi [Baly89], like Darema-Rogers et. al., analyzed traces of parallel scientific
applications gathered using the IBM PSIMUL tool. For this study the PSIMUL system was
configured for 64 processors. As in other studies, references to shared data are roughly 25% of
all data references. Baylor and Rathi measured the average time ownership (in cycles) of cache
lines, where ownership begins when a processor writes a line and ends when a different proces-
sor references the line. Ownership times were found to decrease with increasing line size, (the
false sharing problem). Lines containing synchronization variables are shared by nearly all pro-
cessors and owned for very short times.

Weber and Gupta [Webe89,Gupt92], using traces of up to 32 processors, examined cache
invalidation patterns to evaluate the scalability of directory-based protocols. Five multiproces-
sor traces were examined, from areas such as operations research, computational chemistry,
logic simulation, and computer-aided design. The average number of invalidations per shared
write is often less than one, even in 16 and 32-processor traces.

Vashaw [Vash93] used a hardware monitor to collect large address trace samples from an
8-processor Encore Multimax. In addition to their length, these traces are unique in that they
include both supervisor and user state references. The study analyzed the traces, and found that
supervisor references generate much larger cache and tlb miss rates than user references. Impli-
cations for protocol performance are less clear, as supervisor references contain lesser amounts
of sharing and fewer hot spots relative to user references.

In addition to these studies, there are studies addressing the performance of snooping-cache
consistency protocols. Archibald and Baer [Arch86b] simulated a multiprocessor system driven
by synthetic reference streams, and reported that update-based protocols outperformed
invalidate-based protocols. Studies using real trace data were less conclusive [Agar88a,Egge88],

finding neither type of protocol to consistently outperform the other. Eggers and Katz

-4 -

[Egge89b] evaluated the impact of varying cache and block size on multiprocessor cache miss
rate and bus utilization, and found that increased invalidation misses due to sharing in larger
cache and/or block size often limit performance. Another study by the same authors [Egge89c]
examined two extensions to adapt invalidate and update-based protocols to varying reference
patterns, neither of which consistently improved performance. Finally, Eggers and Jeremiassen
[Egge90] attempted to improve the performance of snooping-cache systems via the elimination
of false-sharing.

Directory-based protocols have more recently become the focus of much research, as they
offer improved scalability over bus-based protocols and can function in general interconnection
networks. Early research by Agarwal, et al. [Agar88b] found that directory-based protocols
were competitive with bus-based protocols in terms of performance, and far superior in terms of
scalability. O’Krafka and Newton [Okra90] evaluated two space-efficient directory protocols
using a detailed Motorola 68020-based timing simulator. They found that caching recently-used
directory entries, rather than allocating entries for each block of memory, yields nearly the per-
formance of a full-map directory protocol with only a fraction of the directory overhead.
Several other studies have also looked at the problem of reducing directory storage overhead
[Broo90,Chai90,Chai91,Gupt90]. Currently we know of at least two research efforts that are

actively studying directory-based protocols through hardware implementation [Chai91,Leno90].

Finally, there is the important issue of sequential vs. weak consistency. Sequential con-
sistency, as defined by Lamport |Lamp79], requires the result of any parallel execution to be the
same as if the operations of all processors were executed in some interleaved order, with the
operations of individual processors appearing in program order. More generally, sequential con-
sistency requires that all processors observe the same ordering of memory references, with no
processor allowed to execute any of its own memory references out-of-order. These conditions
are fairly simple to uphold in small-scale, bus-based systems without write-buffering, as the
shared bus insures that all processors observe the effects of a memory reference at the same
time.

Weakly-consistent systems [Dubo86], on the other hand, require that memory be consistent
only at synchronization points. Within any processor, non-synchronization accesses can be reor-
dered, buffered, and pipelined to improve performance. Synchronization references must be
placed around critical regions of a program to serialize access to shared data and force all out-
standing references to complete before proceeding further. Recent studies
[Zuck92,Ghar91,Tore90] have evaluated the benefits of relaxing consistency and found that per-
formance can improve by 10 to 40 percent. The main disadvantages of relaxing consistency are
a more complicated programming model and the potential high cost of recoding existing
sequentially-consistent applications to execute correctly.

-5-

As mentioned in the Introduction, this paper builds upon earlier research by (a) analyzing
reference behavior across many more multiprocessor traces than previously examined, including
samples from production vector applications, (b) carrying out a highly detailed analysis with
some new metrics, and (¢) observing reference and sharing behavior over a range of block sizes.
We use our results to predict which protocols are best for different workloads, to propose
improvements to current protocols, and to determine whether protocols which detect and correct
consistency errors may be a viable alternative to protocols which prevent such errors from occur-
ring in the first place.

3. Methodology

Our work is based primarily on trace-driven simulation. The traces analyzed in this study
originate from three sources: 4-processor Ardent Titan |Died88] traces gathered at Ardent Com-
puter, 16-processor VAX T-bit traces collected at Stanford, and 64-processor IBM 370 and
Encore Multimax traces used at MIT. The traces from Stanford and MIT have been used in pre-
vious studies [Webe89,Chai90], while we collected the Ardent traces to use in this effort.

The Ardent traces were generated using an object code profiler (similar to the MIPS pixie
facility) to instrument compiled programs. The instrumented object code executes and deposits
memory reference addresses from all four Ardent processors into a single, shared trace file. The
file is protected with locks to allow only one process to access this file at any time. This tracing
method is quite accurate [Stun91], as inherent synchronization within an application ensures that
the interleaving of references by different processors can only be affected between synchroniza-
tion points. Since all possible interleavings are allowed, provided individual processor refer-
ences appear in program order, our traces represent at least one valid ordering of actual program
execution. A recent study [Kold91] confirms the validity of traces generated in a similar
manner.

The traces from Stanford [Webe89] were gathered using the trap-bit tracing method on
VAX-series computers. Setting the trap bit on a VAX interrupts a process after each instruction,
allowing a trap handler to examine the instruction and generate a trace record for its memory
references. To generate multiprocessor traces, a master process controls the execution of a
number of slave processes, which represent the execution of individual processors. After a slave
process executes an instruction, it traps back to the master which records its memory references,
saves the slave process state, and schedules a different slave process to run, usually in a round-
robin fashion.

The traces weather64, ffi64, and simple64 used at MIT were generated from uniprocessor

traces using a postmortem scheduling technique developed at IBM [Kuma89]; the machine

traced was the IBM 370. Parallel programs are first executed on a uniprocessor to generate

-6 -

traces containing tasks (indivisible units of work assigned to a processor) and synchronization
information. These traces were then postprocessed into parallel traces by scheduling these tasks
on some number of processors. This form of tracing is somewhat prone to distortion because (a)
the trace originates from a uniprocessor system, and (b) the scheduling of work on processors is
somewhat arbitrary. In this case however, the traces are of scientific programs that usually per-
form series of operations on large data structures. Partitioning these data structures into a
number of sub-units and creating tasks for each sub-unit corresponds roughly to how a real mul-
tiprocessor would execute such programs in parallel.

The speech64 trace was generated at MIT using compiler-aided techniques to insert tracing
code into the instruction stream. This technique is similar to the method used to generate the
Ardent traces, although the Ardent method inserts tracing code after link time, while this scheme
operates at compile time. The compiler-based scheme executes on an Encore Multimax under a
modified Mul-T (a variant of Multilisp) programming environment. This environment allows an

arbitrary number of processes to be traced, although instruction references currently are not

traceable.
Application Summary
Program Machine Language Description
arc3d Ardent Titan Fortran 3D fluid dynamics
bmk1 Ardent Titan Fortran monte carlo simulation
bmk11la Ardent Titan Fortran particle in a cell
flo82 Ardent Titan Fortran transonic flow past airfoil
lapack Ardent Titan Fortran linear equations (BLAS level 3)
simple Ardent Titan Fortran 2D hydrodynamic/thecrmal luid behavior
wake Ardent Titan Fortran frce wake of rotor (vortex box panel)
mp3d VAX T-bit C 3-d particle simulator for rarclicd {low
p-thor VAX T-bit C parallel logic simulator
locus route VAX T-bit C global router for VLSI standard cells
1164 IBM 370 Fortran radix-2 fast fourier transform
simplc64 IBM 370 Fortran 2-D hydrodynamic behavior of fluids
weather64 IBM 370 Fortran finite difference weather analysis
specch64 Encore Multimax Mul-T lexical decoding of spoken language

Table 1: Trace application summary

Table 1 lists and gives a short description of each trace program. The Ardent Titan traces
come entirely from a production scientific workload, as the Titan is a commercial vector
machine with multiple processors. Many of these same Ardent applications were used to evalu-
ate vector cache performance in two other studies [Gee92a,Gee92b], although the traces used for

-7 -

that purpose were uniprocessor versions. The T-bit programs p-thor and locus route are CAD
applications performing logic simulation and VLSI routing, respectively, while mp3d is a 3-
dimensional particle simulator. All three applications were developed as part of various research
projects at Stanford University, and continue to be used in research environments. The ff164,
weather64, and simple64 traces from MIT were taken from scientific applications, while
speech64 is a trace of a research program developed at MIT to perform the lexical decoding of a
spoken language.

Reference Characteristics
Priv Priv Total Shd Shd Total
Refs Inst Locks Data . . .
Trace o OCks Read Write Priv Read Write Shd
(M) Sraction of all refs ; fraction of data ref’s

arc3d 20.0 | 0.652 | 0.002 | 0346 | 0.147 0150 0297 | 0539 0.164 0.703
bmkl 20.0 | 0.740 | 0.000 | 0260 | 0457 0341 0798 | 0.198 0.004 0.202
bmklla 20.0 | 0.550 | 0.003 | 0.447 | 0065 0031 0096 | 0591 0313 0.904
flo82 20.0 | 0.626 | 0.004 | 0370 | 0.t13 0.095 0208 | 0585 0.207 0.792
lapack 20.0 | 0760 | 0.001 | 0239 | 0443 0.150 0593 | 0208 0.200 0408
simple 200 | 0.649 | 0.003 | 0348 | 0.138 0.063 0201 | 0.609 0.190 0.799
wake 20.0 | 0.600 | 0.001 | 0399 | 0.195 0195 0390 | 0465 0.145 0.610

mp3d 7.0 | 0.607 | 0.000 | 0393 | 0.656 0.074 0.730 | 0.186 0.084 0.270
p-thor 7.1 1 0497 | 0.000 | 0503 | 0.623 0204 0827 | 0.161 0.012 0.173
locus route 7.7 1 0514 | 0.000 | 0486 | 0.691 0243 0934 | 0.064 0.002 0.066

flie4 74 | 0420 | 0.002 | 0.578 | 0.560 0204 0764 | 0.118 0.118 0.236
simple64 263 | 0437 | 0054 | 0.509 | 0462 0238 0.700 | 0.269 0.031 0.300
weather64 || 314 | 0430 | 0.079 | 0.491 0.805 0156 0961 | G.039 0.000 0.039
speech64 TL& | 0.000 | 0.000 | 1.000 | 0342 0201 0543 | 0441 0.016 0.457

Arithmetic Averages
Ardent 200 1 0.654 | 0.002 | 0.344 | 0.195 0.134 0329 | 0485 0.186 0.671
VAX T-bit 7.3 1 0538 1 0.000 | 0462 | 0.657 0.183 0.840 | 0.132 0.028 0.160
MIT 192 1 0432 | 0.060 | 0.508 | 0.635 0.195 0830 | 0.142 0.028 0.170

g 2 -1 o N ST

Fable 2: Reference characteristics
This table shows the total number of references in each trace, along with the fraction of instruction, synchronization,
private-read, private-write, shared-read, and shared-write references. A reference is a shared reference if it accesses
data used by more than one processor during the trace. Locks are not present in the VAX T-bit traces. MIT averages
do not include speech64, since limitations in the Mul-T tracing environment preclude the tracing of instructions.

Table 2 separates the total number of memory references in each trace into the following
categories: instruction and lock references, reads and writes to private data, and reads and writes
to shared data. Here shared data is defined as global data referenced by more than one proces-

sor during the course of the trace. Globul data used by only one processor and data explicitly

-8 -

defined as local to each process is considered privare data. In the IBM traces simple64 and
weather64, the large fraction of lock references is due to a combination of (a) naive synchroniza-
tion techniques (all processors often spin on one lock), and (b) the large number of processors
sharing locks in these traces.

The Ardent traces assume a 64-bit memory interface; thus some of the Ardent data refer-
ences in Table 2 are to eight-byte, double-precision quantities. These references will be split
into two four-byte halves when block sizes smaller than eight bytes are analyzed, and left as a
single reference for larger block sizes. [Note: due to the 64-bit memory interface, 32-bit Ardent
instructions are normally fetched two at a time, while Ardent data references are fetched one at a
time. This implementation artifact does not affect our research results, as we only examine shar-

ing patterns in data references. Instructions are shared with no cache consistency overhead].

Table 3 separates the amount of referenced address space into instruction and data space,
and further separates data space into (a) private read, (b) private write, (¢) shared read, and (d)
shared write categories. Private space is read and written by only one processor during the
course of the trace. Shared read space is data unmodified during the trace and used by two or
more processors. Shared write space is data modified during the trace and used by two or more
processors (although only one of the processors may have performed all modifications to that
data). These address space statistics are based on a four-byte block size. Double-precision
Ardent data references were split into two four-byte halves when estimating address space size.

From Table 2 we see that the Ardent vectorized workload contains a much larger fraction
of shared references compared to the VAX T-bit or MIT scalar workloads. References to shared
data make up some 70% of all data references, and nearly 30% of all references. In contrast,
shared data references in the VAX T-bit and MIT traces are only 16% to 24% of all data refer-
ences and 7% to 14% of all references. The T-bit and MIT numbers are similar to observations
from other studies described earlier. Read sharing is also more prevalent in the T-bit and MIT
workloads, as the ratio of reads to writes of shared data is larger relative to the same ratio in the
Ardent workload. In addition, Table 3 shows that a larger fraction of shared data space in the
T-bit and MIT workloads is shared in a read-only manner.

We believe that the heavy presence of sharing in the Ardent workload is due to inherent
differences between vector and scalar workloads. Vectorized applications usually operate on
large data structures which are stored in and referenced from main memory. Since these data
structures are referenced repeatedly during the duration of a program, and the scheduling of
work on vector processors is usually independent of which processor last used the data (no cache
effects were considered in the scheduling algorithm), much of the data region eventually
becomes shared.

-9

Address Space Breakdown
Percent (%) of Data Bytes
Trace Total Inst Data . .
Kbytes | Kbytes | Kbytes || Private Privatc | Shared Shared
Read Write Read Write
arc3d 1712.3 64.4 1647.9 0.1 36.1 2.4 61.4
bmk]1 110.2 3.8 106.4 0.6 77.5 0.0 219
bmkl1la 364.4 11.4 353.0 0.0 11.9 0.0 88.1
flo82 240.4 82.7 157.7 24 30.0 33 64.3
lapack 4415.3 0.8 4414.5 0.0 259 0.0 74.1
simple 228.7 51.7 177.0 0.3 4.9 5.4 89.4
wake 183.3 18.3 165.0 0.1 3.3 5.1 91.5
mp3d 449.1 3.1 446.0 437 46.8 1.4 8.1
p-thor 435.5 37 431.8 48.9 27.5 12.0 11.6
locus route 174.8 7.1 167.7 20.8 53.7 17.3 8.2
1164 132.5 2.7 129.8 0.5 2.4 0.0 97.1
simple64 1194.8 6.6 1188.2 0.4 33 5.3 91.0
specch64 479.9 0.0 479.9 23 49.4 36.8 11.5
weather64 || 2518.1 2.2 25159 239 64.3 11.8 0.0
Geomelric Averages
Ardent 4373 15.0 385.2 0.0 17.0 0.0 64.5
VAX T-bit 324.6 4.3 318.5 354 41.0 6.6 9.2
MIT 661.4 0.0 656.9 1.7 12.6 0.0 0.0
Arithmetic Averages

Ardent 1036.1 33.3 1003.0 0.1 274 1.0 71.5
VAX T-bit 353.1 4.6 348.5 4222 39.9 8.3 9.6
MIT 1081.3 2.9 1078.5 14.3 44.0 12.4 29.3

Table 3: Address space breakdown in kilobytes
This table lists total, instruction, and data address space in kilobytes. Data space is also broken down (in per-
cent) into Private Read, Private Write, Shared Read, and Shared Write categories. Shared data is data refer-
enced by more than one processor during the course of the trace. Write data is data written during the trace.
Shared Write data is shared data written by at least one processor during the trace. The address space was
measured using a block size of 4 bytes.

Another possibility is that the longer length of the Ardent traces, relative to the number of
processors in the trace, was a factor in the increased sharing. Each Ardent trace contains 5 mil-
lion references per processor, compared to half a million references per processor for the T-bit
and MIT workloads. The longer Ardent trace length (on a per-processor basis) may increase the
probability that a block becomes shared. We investigated this theory by measuring the fraction
of data references to shared space as a function of the number of data references examined. As
Table 4 shows, the fraction of data that is shared increases with trace length, but even for the first

trace segment, sharing is at a much higher level than for the other traces.

Sharing in the Ardent Traces as a Function of Trace Length

Data Rels Fraction of Data References to Shared Data

(millions) || arc3d | bmkl | bmklla | lo82 | lapack | simple | wake || AVG
0.5 0.396 | 0.190 0.900 0.302 | 0.558 0.749 | 0.541 || 0.519
1.0 0.366 | 0.182 0.920 0.601 | 0.557 0.755 | 0.579 || 0.566
1.5 0.364 | 0.178 0.920 0.682 | 0.555 0.766 | 0.589 || 0.579
2.0 0.389 | 0.176 0.920 0716 | 0.555 0.774 | 0.599 || 0.590
2.5 0.459 | 0.174 0.920 0.734 | 0.556 0.775 | 0.606 || 0.603
3.0 0.507 | 0.173 0.920 0751 | 0.556 0.775 | 0.602 || 0.612
3.5 0.554 | 0.172 0.920 0.761 | 0.556 0.772 | 0.603 || 0.620
4.0 0.590 | 0.172 0.919 0.767 | 0.556 0.774 | 0.604 || 0.626
4.5 0.619 | 0.172 0.919 0.773 | 0.555 0.772 | 0.607 || 0.631
5.0 0.643 | 0.172 0.919 0.775 | 0.556 0.773 | 0.609 | 0.635

Table 4: Fraction ol data references (o shared data vs. trace length

4. Characterization Metrics and Applications

We characterize the reference behavior in multiprocessor applications to evaluate how
these applications may perform under a given cache-consistency protocol, and to collect infor-
mation that may lead to improvements on existing protocols. Through characterization, we can
also compare reference behavior across different workloads and determine the best choice of
protocol for a given workload. Analyzing traces in this manner may yield more insight into pro-
tocol performance than a straightforward and time-consuming simulation of the entire protocol
space.

We characterize memory reference behavior by examining data reference streams to shared
blocks, examples of which are shown in Figure 1. Euch row represents the sequence of proces-
sors referencing a specific shared data item, with write references specified in boldface. Note
that the number of processors actively sharing data varies from as little as two processors to as
many processors as are represented in the trace.

Our characterization process consists of the following steps:

[1] We examine processor locality by measuring the number of consecutive data references
that a processor makes to a block of shared data. The processor locality present in a
workload is a key factor in choosing between invalidate or update-based protocols for
that workload.

[2] We examine temporal locality by measuring the times between two successive refer-
ences to a shared data block. Temporal locality indicates whether a block is likely to be
reused before being replaced in a cache. In this study, we also use temporal measure-
ments to evaluate the likelihood of consistency errors, i.e. writes followed shortly by a

read from a different processor. This should shed some insight as to whether strict

- 11 -

arc3d 032 103210001230132210320312312

bmkila 3 0 1 22 1030231203130203120312103

lapack 1 0 3231032102301321030121323012

wthr64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
arcdd 0022331100221 13300003311002233

bmklla 2 3 1 010233 102310231023103210231

flo82 021 330210101321320021313020213309

pthor 1 1 11 1 1t 1111101010101 0100101000

mp3d 131314 8 81212 6 6 77 9 910101111 4 41010 0 01313 3 3 6 6 11
locust 55 88 88 8141414141414 5555555555555551535

spch64 3 4 2 3 1 2 0 1 06261 62 60 61 59 60 58 59 57 58 56 57 55 56 54 55 53 54 52 53
arecdd 1203 032100203103201010320003¢01

flo82 33 000000000033 00002222220022273

lapack 1 0 0 003 3330000332233 001122001T1]1

pthor 1 234567891011 12131415001 234567891011 1213
mp3dd 012345678910 1112131415001122334455%66

locusr 5555555555555 5555555555555555°35

spch64 00 00000000006200006100006000005900

Figure 1: Sample reference patterns to shared data
(numbers correspond to processor IDs; write references are in boldface)

prevention of such errors is necessary, or whether they are infrequent enough that detec-
tion and ‘fix-up” would make sense.

[3] We measure the number of processors contending for shared data by (a) counting the
number of data copies invalidated on each write to shared data, and (b) by measuring
the number of processors which subsequently reread this data. This estimates to some
degree the negative performance impact of invalidate-based protocols, and also esti-
mates the number of directory entries needed in a directory-based protocol.

[4] We also attempt to describe the reference process using Markov chains. Several Markov
models are developed, and transition probubilities between Markov states were meas-
ured directly from the traces.

Unlike most prior studies, we explicitly carried out our analysis over a range of block sizes.
Measurements were taken from each trace over block sizes ranging from 4 to 64 bytes. Ardent
double-precision data references are split into two 4-byte references when block size is 4 bytes,
and are left as one reference for larger block sizes.

Due to the large number of traces that have been analyzed, we organized our results into
different workloads to provide average results for a given program mix. Three different

-12 -
workloads were constructed from (a) the Ardent traces, (b) the VAX T-bit traces, and (c) the
IBM 370 and Encore Multimax traces from MIT. Results presented for a workload represent

averages over the data from each trace, with the data from each trace weighted equally.
S. Results

5.1. Processor Locality

We define processor locality as the tendency for shared data to be used by only one proces-
sor over periods of time. For applications with large amounts of processor locality, an
invalidate-based protocol should minimize consistency overhead by purging data from other
caches, which are unlikely to need their copies in the near future. Update-based protocols are
tuned for weak processor locality, as valid copies of modified data are maintained in multiple
processors in the assumption that any processor is equally likely to initiate the next reference to
that data.

We measure processor locality using reference runs, strings of consecutive references to a
shared data block by one processor without any interleaved references to that block by another
processor. Reference runs can be divided into two classes: (1) read runs, which consist solely of
read references, and (2) read/write runs, which contain at least one write. Read runs actually
have little significance to protocol performance because all protocols, with the exception of
directory schemes with limited pointer entries, allow any number of processors to share read-
only data with no overhead. In contrast, writes can cause considerable overhead, since a write
may require invalidates or updates of remote copies of data; invalidated data may later need to

be reread. Thus read/write run durations will have a strong impact on protocol performance.

In addition to measuring read and read/write run length, we also measure write run length
[Egge88], which is basically the number of writes within each read/write run. If write runs are
short, data tends to bounce between processors when invalidates are used to maintain con-
sistency. This ping-ponging effect results in poor performance, since virtually each write will
generate a cache miss. Update-based protocols handle short write runs more efficiently, but are
inefficient on long write runs, since many updates are made that are never used by other proces-
SOrS.

Table 5 lists the number of read, read/write, and total runs in each workload as a function of
block size. Note that there is a write run for every read/write run in a workload, and that the
number of runs varies with block size. Figure 2 displays average run lengths for all workloads
as a function of block size. The four plots in Figure 2 show average lengths for (a) read runs, (b)
read/write runs, (¢) write runs, and (d) total (read + read/write) runs.

S 13-

Number of Runs in a Workload
Workload Block Size Read Read/Write Total

Ardent (7 traces) 4 14,777,416 | 10,6693,356 | 25,470,772
" 8 7,353,199 5,623,328 12,976,527

" 16 4,966,168 3,238,862 8,205,010

" 32 3,738,987 2,001,898 5,740,885

" 64 3,124,931 1,375,252 4,500,183

T-bit (3 traces) 4 517,393 237,629 755,022
" 8 691,753 267,653 959,406

" 16 637,456 279,721 917,177

" 32 624,233 287,754 911,987

" 64 622,703 291,938 914,641

MIT (4 traces) 4 9,727,844 399,789 10,127,633
" 8 9,887,770 802,535 10,690,305

" 16 12,726,799 1,411,305 14,138,104

" 32 13,061,860 1,589,247 14,651,107

" 64 13,218,865 1,689,494 | 14,908,359

Table 5: Number of runs in cach workload vs. block size

For a block size of 4 bytes, average run lengths for all workloads agree fairly well. For
larger block sizes, average run lengths for the T-bit and MIT workloads remain fairly constant,
while average run lengths for the Ardent vector workload increase considerably. The rate of
increase is largest for write and read/write runs, as processor locality is clearly stronger in write-
shared blocks. In [Gee92b| we found that vector workloads traced on Ardent machines contain
large amounts of spatial locality. As we increase block size, this spatial locality leads to longer
run lengths to shared data. These results suggest that for the Ardent workload, the best results
would be obtained from an invalidate-based protocol and a large block size. Conversely, the T-
bit and MIT workloads should be paired with an update-based protocol and a small block size.

For comparison, both Eggers and Katz |Egge88] and Agarwal and Gupta [Agar88a] meas-
ured average write run lengths for a block size of 4 bytes. At that block size, average write run
lengths for all three of our workloads are fairly short (1-2 writes) and in good agreement with
[Agar88a). Eggers and Katz found average write runs to also be short in two of their traces but
much longer (5-6 writes) in two others. Agarwal and Gupta also measured average lengths for
read/write runs and for all run types. Average read/write run lengths range from 4 to 9 refer-
ences, and the average length for all runs is roughly 2 references. Both figures are in line with
our observed results, which is unsurprising given that two of the three applications used in
[Agar88a] are in our T-bit applications workload and are traced on the same VAX architecture,
although tracing methods and the number of processors differ.

SUOTINQLNSIP UNJ QDUSISJOI PROPHIOM JUIPIY € danSi

y1Sua uny

0ot 118 1

L - 00
$314q 19
sakqze -
sAkq 9| C'0

sakqg .. -

SNAQY ccceecanen

9ZIS dorg

yISua uny
001 ot

244

=01

S +9

saqTE .

SIY] o
SAAQ Y e _-

s21§ Yoolg

et

e

" suny A/ JO vonngisicy

SO R e =

Oz g

ODE =t o——0oa

ySua] uny
001 ol [
- A 00
s34q 9
sAkqze _ _ -
sa£q 91 =C0

sALQQg .. -
sahq ¢

az1§ Yool

424

=90

-t Lol
SUnP 2LIAA JO UONNQLISIC]
YISuoT uny

001 1] t

b A 00
$318q +9

safqze o . -
-0

ST commmmmmmnme
SN G emmmen -

sAhq ¢
221§ Yoog

=

suny peay Jo uonnquIsi(]

i@ Q= ~O=

[OF=3=

UOSE M-S0 w~0oo

l“Mﬂl

9ZIS Y00[q "SA SYISUD] UNI DU 95RIAAY T d1ndig

(s214q) az1g yoorg
8y (43 91 0
s 00
L0'C
L0y
-0’9
08
! R Lo'ot
(sunir [[e) 15U UNY ISRIDAY
(sm1£q) 221§ Yoorg
8 3 91 0
00
L0’
L0l
oSt

ISuaT uny M/ 95eIdAY

— VS oo

oo

MOE U So-a

(sa14q) az1g yoorg
] sy 43 91 0
s s n n 00
MLy - — 4 - = = =
R {27 S + ; *.1oz
A L0y
....m 09
Wapry, :
m....l.i.wy ('8
ot Lool
YISua uny
(sm4q) az1g yoorg
+9 st 3 91 0
= * * * 7o
LN Fi— b e o
: i w Lo~
=e,_.._.h|.ll|.-|llr(.\|+\
" i sempmeeene ; o
jroemnneee $eommmeees boeeeene ormmnennees FO'E
wi L
! : : N P

YI5usT uny peay aSe1oay

—_ D QS

oo

— VS o

[a" =R

SUOTINQLNSIP UNI 90USISJOI PRO[YIOM LTI S 21nSig

PSua uny
ot 8 9 14 (1 0
. o A A . 80
$314q $9
sakqge . _
$2149 91
sahqg ... - 60
SAULQY eecmaan
971§ 32019 !
.\.
60
60
- - Lo'1
SUnY I1v Jjo :OC:QW.ZVMQ
(=g
IoUDT Uny
ot 8 9 t < 9
. s i N N o)
$2149 t9
safqTe
ELEC T
sa8qQ Lo — ’ >0
SALQ P ceccccoan 3
oz1S Yoorg

sumy M/ JO uonngusicq

YISuaT umy

o1 8 9 14 4 0

A a A N s 9
sA4q +9
sakqze . -
sa14q 91

sAKQQ .. —

SMMQY cememaaan ’

971§ ¥d01g i

sumy ALIA JO UONNQLISIT

ISUT umy

0t 8 9 i3 C
$9149 +9
salq e _ _
S94G O] e
sndqQ .. - -CR0
REY GG
9ZIS ¥do1d
b06°0
kS6°0
=001

-1

UDE =R o——0=

-q¢T1-

SUOTINGLIISIP UNI 90UI3JoX PRO[YIOM Q-1 :p dan1

YISUaT umyy
S v € [4 1
L 2 M A 50
s24q 9
$AKQTE _ _
saikq m_ 90
sALQQ .. -
SAHQ Y cccoomen F;
9ZIS ¥d01d !
;Lo
¢
.30
e 0'0)
sumy [[v Jo uonnquusiq
ISudT umy
S + £ 2 [
N a N A)
sAq +9
sakq e . -
wu_ﬁ m~ e— 90
20
80
234
-0’1
suny M/ JO uonnquisiq

OUBE H=RO—~0s

VUoE =R ——~0os

YISuoT umy
S 14 € [4 1
A N 2 A 580
s214q +9
sadqge _ _
52169 91
$A4QQ e -
SNAQ Y comcanann .
971S YooIg o0
eyl et SEL L b OO 1
SUNY ALIAM JO UONNGLIsIg
[IBUOT umy
S t € < [
— " 2 'S <0
s28q +9
safqze .
SMQI] e -0
sadqg .. -
EEIRG B,
oIS Yooig
L0
30
60
LO'L

SUMY] peoy JO uonnqLusi(q

USE IL=cQo——Oa

- 14 -

Distributions for the various types of reference run lengths are shown in Figures 3 through
5. Each figure contains results for a different workload. Curves in the figures are parameterized
by block size. In Figure 3, we observe the shift in Ardent toward longer run lengths with
increasing block size. Across all block sizes, a significant fraction (greater than 20%) of Ardent
write runs contain only one write. These runs typically represent events where processors reach
a synchronization barrier and increment or decrement a global variable to signal their arrival.

Distributions for the scalar VAX T-bit and MIT workloads, in Figures 4 and 5, are much
less affected by increasing block size. Write run distributions in the T-bit workload are uni-
formly short. Write run distributions in the MIT workload are somewhat longer compared to the

T-bit workload, but decrease in length for block sizes larger than eight bytes due to false sharing.

5.2. Temporal Locality

Temporal locality refers to the property that data items currently being referenced have a
high probability of being referenced again in the near future. Temporal locality arises from
sources such as program loops, stack variables, and often-used global data. In multiprocessor
systems, we wish to know whether shared data references contain temporal locality, and espe-
cially whether shared references by different processors occur over short time intervals. If
several processors are accessing and modifying shared data within short periods of time, the
resulting bus traffic to maintain consistent caches may lead to poor performance.

In this section we use reference intervals to characterize the temporal locality within shared
data references. Reference intervals are the times between two successive data references to a
shared block, where each data reference in the trace is counted as a unit of time. We measure
various types of reference intervals: (1) local reference intervals, the times between two succes-
sive references to shared data made by the same processor, (2) remote reference intervals, the
times between two successive references to shared data where the referencing processors differ,
and (3) remote write intervals, the times between the last write of a read/write run and the first
use of this result by a different processor.

In a weakly-consistent system, consistency violations can occur if a processor is allowed to
buffer its own writes (making them visible locally), and these writes do not propagate to other
processors within the nominal remote write interval. If remote write intervals are large enough
to make such violations very infrequent, then multiprocessor designs may wish to focus on
detecting and correcting consistency errors, rather than strictly preventing such errors. Preven-
tion requires processor stalls to insure that shared-memory operations have propagated to all pro-
cessors, and may degrade performance unnecessarily if remote write intervals are large, or if
synchronization barriers are normally present to enforce correctness. To factor in the effect of

barriers, we measured remote write intervals for the Ardent and MIT traces a second time,

- 15 -

assigning an infinite time to the interval if the write and read by the two processors are separated
by synchronization requests. We could not do the sume for the T-bit applications due to the
absence of locks in these traces. Table 6 provides some statistics on the use of locks in the
Ardent and MIT traces.

Remote Requests to Shared Modified Data
Proaram Preceded by Locks
e Num Pct.

arc3d 867,096 95.2
bmk | 8,967 80.5
bmkl la 3,472,748 84.9
flo82 974,503 92.5
lapack 1,458,930 88.8
simple 1,418,006 88.4
wake 1,092,723 99.0
164 32,257 99.6
simp64 335874 100.0
speech64 0 0.0

Table 6: For the Ardent and MIT traces, the number and percentage of remote
references to dirty data preceded by a lock reference.

Figures 6 through 8 show the cumulative fraction of reference intervals as a function of
interval length for our three workloads. A point (X,Y) on a graph indicates that a fraction Y of
all reference intervals are less than X references. Measurements were taken only for shared data,
and represent the number of data references within a trace between successive references to a
shared data block. Table 7 lists mean and median reference intervals for all three workloads
across all block sizes. We factor infinite intervals into the medians in Table 7, but do not include
them in the means.

The Ardent results in Figure 6 show a strong presence of temporal locality in local refer-
ences, especially for larger block sizes. Ardent remote reference intervals are much larger than
local reference intervals, and decrease far more slowly as block size increases. The T-bit results
in Figure 7 do not vary much at all with changing block size, but like the Ardent results, remote
reference intervals tend to be larger than local reference intervals. This last result differs from
results in [Agar88a] for two of the saume programs, although different tracing techniques and the
larger number of processors in our traces may be responsible for the differences. In the MIT
traces, remote reference intervals are as small or smaller than local reference intervals, which
does agree with the data in [Agar88a]. In addition, remote write intervals in the MIT workload

decrease sharply as block size increases, a likely result of false sharing.

©IEp PaIeys 0} SUONNGLISIP [BAIDIUI JUINJAI NIQ-T, XV A £ danSi]

13u9] [RAISIU] SOUIIDJY
000001 00001 0001 001 ot 1
- N ™~ " N 00
s24q +9
safage
LRLCTY — =
SILQE o - 5 -
FE RO B o u
azig yoorg °
S 1
7 i
L b0 5
7 \ ®
s I
s q
7 / ~9'0
e w
/17 :
/ 0]
/ S0
\\
=) |

S[RAIDIUT LI 2IOWY

YISuaT [BAIDIU] 20UAIDJOY

000001 00001 0001 001 o1 1
N A . 00
sa8q +y
SALQTE ~
s2149 91 7 &
salqg .. — 7/
sakq - \ 7/
AZL§ Jyoold iy .
/ o0
f
24
80
0L

S[BAISJU] 30UDIDJY S0UWIdY

UODE =S Q=m0Ox

YISUDT [RAIDIUT FOUAIDJOY

GO000T 0000 00DI Q01 01 11
N N N N A 00
sa4q 9
safqge ———f L
E RO -C0
SALQE e _
EEIT: B
9ZI§ Ydorg
0
=90
80
01

S[BAISIU] 9OUDID)DY [8007]

oo

U:E (1t T Q =

BIEP PAIRYS 0] SUOTINGLNSIP [BAISIUI SOUIISJAI JUIPIY :9 danBiyg

1Sus] [RAISIU] 20UAIDJOY

000001 00001 0001 001 o1

SA4q +9
sa4q g
EAC]
salyg ... —
sakq +

a71§ Yoorg

(PaZIUOIYOUAS J1 INT)
S[EAIRIU] DILIA\ DJOUIDY

ISUaT [BAIDIU] 2OUDIDJY

Oo00UL 00000 0001 Q01

Y

01

sA4q t9
«214q ¢
sasq 91

S[BAIDJU 90UDIDJaY J0WY

nﬁmﬂ'

OSE ~c®Ow~oo

i~ @O~ o

OsE

YISUT [BAIU] 2OUAIJOY
0001 ot 1

000001 00001 001

00

/ 3159 +9
sakace _ .
SN O e
s o -
SALY + mcmman =50
221§ Yool g
L1
S[RAIDIUT DJLIAN D1OUIDY
L—MCOJ [BATSIUT DOUID[OY
000001 00001 000 001 [1
[" N i I,)
-\\\
149 19
sakqgs ~ .
SNLQ] v -c0
sAhqg — 7
SNt cemmeeann /
g yoorg -
/ \ o)
/ \‘
\. \
S 90

STBAISJUT dDOUSIRJOY [8007]

SRR N e N =}

U= E

=R O=~oo

OUsg

-qST1-

©1Ep Pareys O] SUOIINGLNSIP [BAIRIUI S0UAISJAI [N :§ danSig

1SuaT] [BAIIU] 90UAIBJY

000001 00001 0001 0Ol ot 1
N N s M . 00
e r

s34q t9

sakqze . _

ERUCT) —
sakqg .. —_ \ eo
SNKQ P ceeccecnan

2ZIS Yoorg /
: /
[D
90
L0
PIZIUOIYDUAS J1 IN]) Lot
STRATDIUT DTLIAA DOWDY
qisuag [EAIDIUT 2OUDIDJOY
QU000 [0001 001 ot 1
- N . . 00
sady +9
sAQTE . ~.
S8 9] e FC0
SAKQQ oo —
EEIEG B,
az1g yoorg
22
90
3
D

S[BAIDIUT 0UIDJY SI0WY

i@ Qe—o o

V=g

UDE M=t —~0oo

Y13ua] [RAISIU] SOUIIDJIY
000001 00001 0001 001 Ol 1
- . POV VO 00
B
s214q t9 !
safage . _ _ ! .
sA4q 91 =C0
safqg .. - \
SAQ Y ememmaes s
sugyorg
b0
L90
LSO
) [
m_m?ﬂu:; OZ.C(/ Dzu_.:.JMm
ISUDT [RAIDIUT 20UDIDJDY
000001 00001 0001 oot 01 1
a . A . . 00
A4 +9 Ingl 7
safage _ .“\n" B
R G : o0
sa898 .. — H
SAQ b cmmmmmnn ..‘
aTISYoIg [
-0
90
50
Lo'1

S[BAISIU] 90UDIDJY [0

@O =0

Osg

OUODE =S Oo—~0ox

S 16 -

As noted earlier, significant performance gains are possible if a weakly consistent program-
ming model is implemented rather than a strongly consistent one. We therefore measured the
frequency with which data written by one processor was then read very soon after by another. If
this occurrence was infrequent enough, then an implementation which detected consistency vio-
lations and ‘‘repaired’’ them might on the average improve performance. ‘‘Repair’” would
require saving enough state to back the processors up to the state prior to the consistency error; a
strongly consistent execution mode would then be used to execute past the error point. Although
remote write intervals tend to be larger than other intervals within a workload, it is always the
case that a significant fraction (10 to 20 percent) of all remote write intervals are very short, on
the order of 10 data references or less. After adjusting remote write intervals to account for syn-
chronization references, the fraction of short remote write intervals in the Ardent traces drops
dramatically. However, the distribution of remote write intervals in the MIT traces remains rela-
tively constant. The observed frequency of short remote write intervals seems to us to be far too
high to support the use of a “‘repair’ strategy.

Reference Interval Summary by Workload
Workload Bl.ocl\ Local ' Remote . Remote va.e

Size Mecan Median Meiin Median Mean Median

Ardent 4 23465 420 48953 7729 371 >500000
Ardent 8 9640 51 39114 8260 370 >500000
Ardent 16 3871 | 31648 4028 223 >500000
Ardent 32 1796 | 23349 574 181 >500000
Ardent 64 895 | 15522 98 147 >500000
T-bit 4 13413 38 43537 466 84228 44282
T-bit 8 9891 23 28783 175 59972 18276
T-bil 16 4965 31 19770 154 40402 8367
T-bit 32 2857 56 12094 126 23213 4069
T-bit 64 1781 71 8813 77 17398 2397
MIT 4 11404 569 8939 323 43586 >500000
MIT 8 1641 148 10060 224 33943 136886
MIT 16 732 73 3981 67 7021 60
MIT 32 483 72 2140 40 3042 40
MIT 04 361 72 1412 38 1871 39

Table 7: Reference Interval Summary by Workload

5.3. Contention for Shared Data

Several processors contend for shared, writable data when they all request contemporane-
ous access to this data. Contention usually occurs for global data structures and work queues
shared by all processors, or for the locks which serialize accesses to such data.

The presence of large amounts of contention can have serious negative effects on con-
sistency protocol performance. Invalidate-based protocols may perform particularly poorly, as
these protocols purge data from other caches when writes occur. These other caches may
immediately request fresh copies from the writing processor, saturating the interconnection net-
work (e.g. a bus) with block requests, and causing delays in processing. Similar problems can
occur with update protocols, for which the interconnection network may be saturated by updates.

To quantify contention for shared, writable data, we simulated the actions of the Berkeley
invalidate-based protocol [Katz85], using an infinite cache size. During the simulation, we
measured (1) the average number of cache copies invalidated per shared write [Webe89], and (2)
the average number of processors that reread previously invalidated data back into their caches
between external write runs to that data (otherwise known as external rereads [Egge88]). Large
numbers of external rereads corresponds to the type of behavior where one processor writes data
(invalidating it in all other processors), and many processors immediately read back the data.

Figure 9 shows both the average number of invalidations per shared write and the average
number of external rereads. Both are plotted for each workload as a function of block size. In
general, there are very few invalidates per shared write. Increasing block size results in only
minor increases from false sharing in the T-bit and MIT workloads. In the Ardent workload, the
average number of invalidates per shared write is a rapidly decreasing function of block size.
This behavior is due to the high spatial and processor locality in this workload. As block size
increases, each invalidate allows more writes to that block by the same processor to complete

without need for further invalidations.

The results for external rereads show a similar pattern. As block size increases, there is
some increase in contention in the T-bit and MIT workloads, but a slight decrease in contention
in the Ardent workload. Overall, the average number of rereads is quite low for all workloads
and block sizes.

Our results confirm work previously carried out by |Webe89| and |Egge&8] for a four-byte
block size. Using the same T-bit traces as used in | Webe89], we observed the same low average
number of invalidates per shared write. At the same time, the average number of external
rereads for our three workloads are as low as measurements from |Egge88]. While these results
may suggest low levels of contention, results presented later in this paper, and in [Gee93a] show

that the contention levels are still unacceptably high.

- 18 -

Average Invalidates/Shared Write Average External Rereads
O e M R O e
I
n
v R
a e
1 r
i e
d a
a d ; : i ; ;
t D T e S
e P - - :
s
0.0 : ; ' ; 0.0 v T ¥ 1
0 16 32 48 64 0 16 32 48 64
Block Size (bytes) Block Size (bytes)

Figure 9: Average invalidates per write and external rereads

5.4. Markov Models

So far, we have examined processor locality, temporal locality, and contention within our
multiprocessor address traces. In this final phase of our analysis, we attempt to describe the
reference process using Markov chains. This methodology has been used extensively in past stu-
dies on page and file reference patterns [Lewi73, Spir77, Kure88|. After defining the models, we
analyze the traces using a separate Markov chain to model the behavior of each shared data
block in a trace.

Our first Markov model is shown in Figure 10, and contains four states specifying whether
the last reference to a shared data block was a local read, local write, remote read, or remote
write. This model assumes that there is only one copy of the data, with only one processor
accessing it locally, and that the cache size is infinite. The states in the model are labeled LLR
(Last reference a Local Read), LLW (Last reference a Locul Write), LRR (Last reference a
Remote Read), and LRW (Last reference a Remote Write). Remote reads and writes cause tran-

sitions to states LRR and LRW, while local reads and writes cause transitions to states LLR and
LLW.

- 19 -

LLR: last reference a local read Ir: local read
LLW: last reference a local write lw: local write
LRR: last reference a remote read I remote read
LRW: last reference a remote write rw: remote write

Figure 10: First Markov model

Transition probabilities measured for block sizes of 4 to 64 bytes are listed in Tables 8
through 10. Increasing block size affects all workloads, although the Ardent results are more
noticeably affected due to the strong spatial locality in the Ardent applications.

The Ardent workload is characterized mainly by large amounts of processor locality. Tran-
sition probabilities from local states back to local states increase greatly with block size, and
approach 90 percent at a block size of 64 bytes. Transition probabilities from remote states to
local states are also very large, although not quite as lurge as those from local states back to local
states. Note that even 90% is a low number; it meuans that at least one reference out of ten
(>10%) is remote, and that a bus transaction may be required. This is like having a 10% miss

ratio, which is extremely high for a large cache.

S)JLIM 3JOWSI B 90UDIDJAI IS8 MU'
PEa1 9)OWSI B 20USISJAI 1B YW1

seuniqeqod uomtsuen [T :0T 219eL,

J)LIM [BOO] B 90UIIDJAI ISl : M T']
PeaI [BOO0] B 90UDISJRIISE] (Y]

sanmqeqord uonisuen 1q-L XVA 6 8L

€0I¥'0 | ISLTO | L8YOO | 099€0 | M1
S900°0 | TESSO | 6£STO | S981°0 | YA
¥C00°0 | L6690 | 69€00 | 0I9T0 | MTT
0€00°0 | 1TITO | <0010 | 9¥89°0 | AT

ssuonnfa(q amwig

soniqiqeqoid uonisuen) JUsSpIy :§ qe],

MY Rk MTT dT1 211§

089€°0 | 0LL0O | OLLSO | 08100
Se10°0 | T9¥¥'0 | 90TO0 | 86IS0
60€0°0 | OLLOO | L6LLO | €TIT°0
19100 | ¥L90°0 | €6V0°0 | TLISO

MAT
A1
MTI
dT1

sa18q £9 :2z1§ yoo1q

MAT AT MTT 11

SN

TL0S0 | LSOTO | 869070 | €LITO | M1
GZ000 | 8SESO | 6LSTO | 8E0TO | ¥¥T
8C000 | CTI690 | 9100 | ¥PLTO | MTT
£e00'0 | 8C9C0 | ¥90T0 | ¥LT90 | ¥T1

$a1Aq £9 2215 yo01g

AT AT MTT dT1 dIEIS

soIy ¢ 2215 yoo)g

9CsS0 | e¥PI0 | TBITO | 0S8T0 | MYT
€l000 | S86Y'0 | 8SSTO | ¥rrT 0 | AT
LYOO'0 | LS69°0 | 9¥CO'0 | OSLTO | AT
0v000 | 6IPE0 | PITIO | LTPSO | ¥T1

ye0e’0 | vCy0'0o | 8¥€9°0 | ¥0ZO0
PSI00 | SLLEO | 0TCO0 | 1S8S0
pee0’0 | IyyI'0 | 6¥89°0 | 9LETO
STE00 | 98800 | 9S90°0 | v¥I80

MY
dd1
MTI
dT1

MAT AT MTT AT

aelg

Sa1kq ¢ 12215 Y204

MY AT MTT AT QIELS

660C°0 | S9S0°0 | 680L°0 | LYCOO
COCO0 | 6L8TO | LELOO | T8990
I[8V00 | 668T0 | TTLYO | 66810
09900 | LZYTO | GIOTO | ¥689°0

MAT
AT
MTT
ATT

sa1kq g raz15 yooq

MAT AT MTT AT

BN

ICCS0 | TLOT'O | SLTTO | TEPT'0 | MY
LOO0O | €PSS0 | TOVTO | 6S61°0 | YT
18000 | 00ILO | SO6IO0 | ¥T9C0 | MTT
19000 | 61ISC°0 | OVIT'O | 64250 | ¥T1

sa1lq 9 221§ yoo1g

MU AT MTT dT1 ey

PEST'O | 0LSE0 | SEPE0 | TOTIO
0¥60°0 | 61CC0 | vVITO | L69VO
ov00 | EVOV0 | 61610 | 9¥9T°0
IEIT'0 | ITITO | TLET'O | 9L£S0

MAT
ddT
MTT
dT1

saiiq g raz15 yooig

MAT AAT MTT AT

B

896G°0 | €06€0 | 0L000 | 00SO0 | MIT
S1€00 | €LL8O | 8EVO0 | SLVOO | AT
€CC0°0 | TC8TO | LTIOO | 82890 | MTT
S000°0 | 66610 | 91SE0 | 08¥¥'0 | ¥T1
L k- MTT dT1 21818
sa1lq £9 2215 yo01q
10650 | S8¥PE0 | 8¥000 | L9SO0 | M1
65C0°0 | €5880 | TOVO'0 | 98¥0°0 | ¥AT
€SO0 | LLOTO | 08000 | 06L9°0 | MTT
LOO00 | 9VITO | 16€C0 | LSPPO | AT
MAT] kb8! MTT dT1)
sa1lq zg :221§ yoo g
L88Y'0 | 8CEVO | €OID0 | TR0 | MY
8GC0°0 | €8L80 | 6CL00 | 0€90°0 | ¥AT
6960°0 | 88€TO | €¥O0'0 | 10990 | MT1
80000 | I8LT°0 | S80C'0 | LZIFO | ¥T1
MAT ddT MNTT ATT)
sailq 9y raz1§ yoog
6680 | LYLYO | SO000 | 06ET°0 | MM
66100 | OI¥Y80 | 92200 | SOTT°0 | ¥AT
0C00'0 | S06C0 | €9100 | €169°0 | MTI
8L00°0 | 806T°0 | 9€€T0 | 6L9Y0 | AT
MAT dAT MTT AT1 2Ae1g
sa1iq g :az215 yoorg
SCOT'0 | LLTSO | 8I000 | 6V9€0 | MM
8¥00°0 | LL88O | TTI00 | S960°0 | ¥AT
Yr00°0 | 8L0¥'0 | L6TOO | T8SSO | MTI
eI10°0 | 86£€°0 | I8ET0 | 80IS0 | ¥T1
MAT bk MTI AT 21815

88650 | TCST'O | 8IBT'O | €LOT'O | MY
Y0000 | LY6SO | ¥9ET0 | S89T'0 | YT
91100 | 0OSL8'0 | ¥SIO0 | 08600 | MTI
L6000 | TTITO | TISTO | 08790 | ¥ATI

sailq g o215 yoo1q

saihq ¢ 12215 yoorq

MIT AAT MTT dTI SN

LSSTO | £61S°0 | 06£00 | 1981°0
L8ETO | 6V9V0 | 9VPT0 | LISTO
YrLOO | 9T8S0 | VP00 | 686C°0
SOPT'0 | €SLT0 | #P9T°0 | 86IF0

MAT]
p:b: !
MTT
qT1

sa1iq ¢ ;2215 yooig

AT ddT MTI AT

LTS

sal)i[Iqeqotd uonisuely, LA

sa1lq ¢ :2215 yooigq

SeDI[IqeqO1] UOHISUEL] }IqG-L XV A

l“@ﬂl

SaNI[IqRqOI UOIJISURL], JU3PIY

-20 -

The T-bit workload also contains processor locality, provided the local processor is
currently reading the data. After a local processor has written shared data (i.e. moves to the
local write state), the next reference to that block will often be a remote read. This suggests a
producer-consumer relationship between different processors. There are also fairly large diago-
nal probabilities for state LRR, indicating the presence of fine-grain read sharing where a remote
read is typically followed by another remote read. Diagonal probabilities for state LRW are
almost as large, which suggests the presence of surprising amounts of fine-grain write sharing.

Fine-grained read sharing is even stronger in the MIT worklouad, as diagonal probabilities
for state LRR are well over 80 percent. Fine-grain write sharing is also present, but is mainly a
product of false sharing, as diagonal probabilities for state LRW are not quite as large for
smaller block sizes as observed in larger block sizes. We note that local writes are very often
followed by local, rather than remote reads. This reference pattern does not follow the
producer-consumer paradigm observed in the Ardent and T-bit workloads.

Stationary probabilities, representing the probability that a shared data block is in a specific
state, are listed in Table 11. In the Ardent workload, stationary probabilities for the local states
increase with block size at the expense of the remote states. Remote state probabilities are larger
only when the block size is four bytes. T-bit and MIT stationary probabilities are less affected
by block size. Blocks in the T-bit workload are most likely to be in the remote read state,
although the local read state is just as likely when block size reaches 64 bytes. Blocks in the
MIT workload spend the vast majority of their time in the remote read state. For all workloads,
stationary probabilities for state LRW are consistently low, as reference runs rarely begin with a
write.

For the MIT workload (Table 10), we notice a strange trend in the stationary probabilities
for state LLR. They peak at a block size of 8 bytes, drop when block size is increased to 16
bytes, and then increase again for larger block sizes. We believe that there are two conflicting
processes at work here: (a) false sharing, which reduces the chance of a local read at block sizes
beyond 8 bytes, and (b) spatial locality within the local processor, which improves the possibility
of a local read at block sizes larger than 16 bytes.

Mean state durations are listed in Table 12. These durations represent the average time, in
references to that block, that a block spends in a particular state. Ardent state durations for local
states greatly increase with block size, while remote state durations are fairly constant. T-bit and
MIT state durations are affected tur less by varying block size. As the T-bit and MIT workloads
share data on a much finer granularity, state durations for remote states LRR and LRW are
higher relative to the Ardent workload.

(13pows puoodas) seminiqeqoid uonisuen 1q-L XVA b1 dIqeL,

peal AJIIp 910WAI B 90USISJAI Ise] (YA YT
PeaI UBS[O SJOWAI B 90USIAJAI Ise] (YD YT

- ¥100°0 | LKOTO | 6L09°0 | 09810 | YAYI
ISLT'0 | £0T¥°0 - L8Y0°0 | 099¢°0 | MY
- 88000 | OVIL'O | ¥060°0 | L9810 | ¥YOUT
L6690 | ¥T00°0 - 69¢0°0 | 019T°0 | MTI
69900 | 0€000 | TSKT'O | €00T0 | 9¥89°0 | AT
AAAT | MIT | IO¥T | MTIT dT1 'S
sa1kg p9 :2z1§ yo019
- ¢I00°0 | 9S60°0 | S989°0 | 891C0 | AAAT
LEOTO | 1L0SO - 8690°0 | £LIT0 | MYT
- CE00°0 | 8CEL'G | TE9O0 | 6L61D | DAL
Cr69'0 | 82000 - SIE00 | FFLCO | MTT
OFLO'0 | €€00°0 | 88810 | +901°0 | +LT90 | ¥TI
AMAT | AYT | MOAT | MTT AT SRS
saikg g rozig Yoo g
- 60000 | 9€80°0 | 9F69°0 | 0ITCO | AT
eFrl0 | 92EC°0 - CBITO | 0S80 | AT
- CIO00 | 06L9°0 | 6F90°0 | 9FSCO | ADUT
LS690 | LFOOO - OFC00 | 0SLTO | MTIT
elL00 | OF000 | 90LT0 | FITTO | LTESO AT
AT | MAT | DT | MTT AT SIS
sa1ig o[271§ yoo1g
- 80000 | <0600 | +6L9°0 | S6TT0 | dAAT
oro | 1geso - SLTTO | TEFTO | MYT
- 90000 | 9FEL'D | 0TSO0 | 8TSID | YDA
001L°0 | 18000 - CO100 | +T9T0 | MTI
€090°0 | 19000 | 9160 | OFIT0 | 6,250 dT1
ATQAT | MYT | YT | MTI AT RN
sailg g 12715 yoorg
- 90000 | TOOL'0 | ¥6£9°0 | L6STO | AT
[ZE1°0 | 88SC0 - 8IS0 | €L0I0 | MYUT
- €000°0 | €8I80 | TrSO'0 | TLII'O | OV
0SL8°0 | 91100 - PS10°0 | 08600 | MTI
LETO0 | L6000 | €S8T°0 | CISIO | 08790 dT1
AAAT | MAT | 9DUT | MTI AT QIS
saIkg p 12215 yooig
Seljijlqeqodd uonisues 3q-1, XVA

(1epow puooas) seniqeqoid uonisuen JUSPIY €T dfqe],

:S2IDIS MIN

suotyemp a1e1s UeSN 171 3lqe],

- 1100 | 6601°0 | 8L90°0 | T8080 | AAYI
0L£00 | 0890 - OLLS'O | O8I00 | MYUT
- PE10°0 | €SS0 | 08000 | TebP0 | YOAT
0LLO'0 | 60200 - L6LLO | €2IT0 | MTI
09000 | I910°0 | ¥I90°0 | €6¥0°0 | TL98°0 AqT1
AAQAT | MAT | dO¥T | MTI ATT RN
$218g 9 2215 yoo1 g
N STIO0 | 9L60°0 | €100 | 98¢8°0 | AU
PCHO0 | FCOE0 - 87e90 | FOTO0 | MY
- €910°0 | €06F0 | TOI00 | 6T8F0 | ADAT
ITr1°0 | Fee00 - 6F89°0 | 9LeT0 | MTI
1600°0 | €TE00 | $6L0°0 | 95900 | ++I80 AT
ATAT | AIT | YT | ATT ATl SN
SAUNG € 171§ Yoo g
- LTIO0 | 96L0°0 | 6OFO'0O | 89980 | AT
C9CO0 | 66070 - 680L°0 | LFC00 | MY
- 8FCO0 | 6LIF'O | FEIO0 | 00SS0 | AT
668T0 | I8F00 - [CLEO | 66810 | AT
COL00 | 09900 | 99Z1°0 | 6101°0 | +689°0 AT
AQAT | AAT | AT | AT ATI SIEIS
SILG 9] 12718 Y014
- LEST'O | 86IT0 | €LLTO | TLFSD | AAAT
0e6e0 | ¥e8l°0 - Sere’0 | 10210 | MYT
- 08+0°0 | FTLFO | €L90°0 | ITIF0 | ¥DVT
er6t’0 | T6F00 - 6161°0 | 9F9T0 | MT1
CPEO0 | TET1°0 | O8LT'0 | CLETO | 9L£S0 | ¥T1
QAT | MAT AAT | MTT dTl AN
sailg g 121§ yoo1g
- 8661°0 | 068T°0 | ¥9ETO | LVLTO | QAT
€610 | LSSTO - 06800 | 1981°0 | MY
- 69600 | +E8C0 | 8I800 | 09¢T0 | YOI
9¢8C0 | +¥LO0 - IFF00 | 68620 | MTT
FeLO0 | SOFTO | 610T0 | +F91°0 | 861F0 ATl
AAAT | MAT | JOUT | MTI AT S
saikg p 1az1S yoorg
SINHIqEQOJ UOLISURL], JUIPIY

xNONl

orz [srs | 101 | 181 | +9 LIN
vz | T8 | 10T | 081 | zg LIN
96T | 28 | 00T | o1 | 91 LIN
€T | 679 | Z0T | 881 | 8 LIN
T | 068 | €01 | vOT | 1IN
oLt | ¥z | vor | Lie | v9 na-L
€07 | STz | €01 | 89 | e ng-1,
€2z | 661 | €01 | 617 | o1 nq-1,
60T | ¥TT | ol | 2rT | 8 ng-,
e | we | ot | et | ¥ na-,
8T | 18T | vSt | €L | 9 epry
1| 191 | Lre | ees |z epry
&1 | orr | 681 | zwe | 91 Juepiy
| owr | s | otz |8 wapry
veT |81 | ocol | zwr | p wepry
AT | WA | ATT | ATT | oS
prOPHOA,
D:.erz xoomm
(893ud19 0.4) suoLRINC DILJ§ URIIN
satiiqeqord Krevonelg 111 ojqe L
62500 | LFL90D | L2600 | L8210 | 19
€600 | §L890 | 000 | TeLlo |
LS00 | LLOLD | SSLOD | 9910 | 91
9FTO0 | €990 | FELOO | sstTo | 8
L9000 | 865L°0 | L9500 | 19610 | +
PPopyiopM LI
SLOOO | 8LEFO | TLSIO | 91650 | +9
8000 | TLsto | €eor0 | reLe0 | zc
€900°0 | €£4+0 | FSOT0 | 0sSg0 | 9l
SLOOO | SPISD | <8910 | £6080 | 8
FLIOO | L3S0 | OELTO | 648T0 | +
PPO[yIop 1]
L6200 | 90110 | £6220 | 0890 | +9
LOFO'0 | 68E1°0 | ZLITO | €6090 | T
97900 | LF6I'0 | 64610 | 66050 | OI
€FOT°0 | LSOE0 | SO9T0 | s62b0 | 8
$8F1°0 | OT€r0 | szzio | 8L6T0 | +
PYOIYAO p TUIPLY
MAT _ WIT | mT1 _ ATT | ezis
g ¥oorg
sanljiqeqold Lteuoyels

=21 -

In addition to this Markov model, we also looked at a slightly different Markov model
which distinguishes between remote reads of (a) clean and (b) dirty blocks. Blocks become dirty
after a processor writes the block, and dirty blocks become clean only after they are read by a
different processor. By making a distinction between remote clean and remote dirty reads, we
can provide separate analyses for read-shared and write-shared blocks. The new Markov model
replaces state LRR of the first model with two new states: LRCR (Last reference a Remote Clean
Read) and LRDR (Last reference a Remote Dirty Read). Remote reads which follow a read run

are remote clean reads, while remote reads following a read/write run are remote dirty reads.

State transition probabilities are listed in Tables 13 through 15. Note that not all state tran-
sitions are possible. A remote read following uny write is always a dirty remote read. Similarly,
any remote read immediately following a remote read is always a clean remote read, since the
previous remote read cleaned the block. This leuves only one state, LLR, from which a block
can make a transition to either state LRCR or state LRDR. For all workloads, transition proba-
bilities from state LLR to state LRCR are much higher than transition probabilities from LLR to
state LRDR.

In the Ardent and T-bit workloads, write-shuared blocks contuain far more processor locality
relative to read-shared blocks, as transition probabilities from state LRDR to other local states
are much higher than corresponding probabilities from state LRCR. The same is not true for the
MIT workload. From either of states LRDR and LRCR, the probability of a remote reference is
far greater than the probability of a local reference. For all workloads, blocks in state LRCR are
usually read-shared blocks referenced in a highly-interleaved manner, which is evident from the
large diagonal probabilities for that state.

Table 16 lists stationary probabilities for the second Markov model. Stationary probabili-
ties for state LRDR are low relative to stute LRCR, becuuse (1) state LRDR has a maximum
duration of one reference, and (b) this state can only be entered after a read/write run. Stationary
probabilities for state LRCR are extremely lurge in the MIT workload, moderately large in the
T-bit workload, and quite small in the Ardent workloud. Meuan state durations are shown in
Table 17. As mentioned above, the duration of state LRDR is always one reference, since a
remote read to a dirty block cleans the block. For state LRCR, mean durations range from
roughly two references in the Ardent workload, to up to five references in the T-bit workload,
and up to ten references in the MIT workload.

(Topout puod9s) suoneinp 91e1s Uesjy L] dlqe],

001 | 9zz | seot | 101 [1871 9 LIN
00T | ¥T | 0TOI | 107 | 08’1 143 LIN
00T %61 | 68 00T) OLT ot 1IN spouwr puodas) saniiqeqoid uonisue : |
00T | TUT | 6801 | €01 | +0T v LIN
oot | ot | ose | ot | ire o ML VA " | Ir1E0 | 89950 | sg010 | L5100 [¥ANT
00T | €T | 8L | €0 | 89C z ne-L XVA E06£0 | 89550 | 0E000 1 00500 | MAT
001 | €T | Tre | €01 | 61T 91 gL XVA .| BLO0O | ¥E060 | LS00 | 10SD0 | UIWT
o1 | ez | e | w1 | 212 e NE-L XVA TT8T0 mmco.o | L2100 | 82890 | ATI
o1 | zz | ose | zo1 | 602 N NE-L XVA 0£20°0 | S0000 | 69L1°0 | 9ISE0 | 08+H0 | ¥TI
ACAT | MAT | MOAT | mT1 | 911 | 2
00'1 8¢°1 SIe Yey | £€°L 9 jueply $218g £9 10718 yo014
00T | €1 | 961 | LIt | 6€C 163 wepry - 611T0 | €£990 | TI00O | 96200 | MA¥T
00T | Lz1 | oLt | 68t | TTe oI wapry S8FE0 | 10650 - 8FO00 | L9S0°0 | AT
00T | T | 06T | FTT | 91T 8 1uap1y - 0100 | 61060 | 9S€00 | +OSO0 | DYT
0T | ¥l | T | SOT | el v anlind LLOTO | €SHO0 | - | 08000 | 06L90 | AVTT
AT | AT] W [W [T | o oo S1T0°0 | LO00D | 8T6L'0 | T6£50 | LSHFO | ¥WTI
Qg ACAT | AT | WAT | ATT | w11 | 2w
(S20UR19J0.1) SUOPRIN(] 18IS URIJN SaINg € 12ZIS YI0Ig
- 62L00 | SE08°0 | €900 | 0r00 | M
(Tepow puodas) sanijiqeqosd Areuonueig 191 apqe | RTEFD | L8870) LOL0D | 28900 | A
- STTO0 | SESR0 | 86TO0 | TF00 | WO
80S00 | 8ISO0 | 0STY0 | 9E60°0 | LRLIO 9 LIN S8eL0 | 69600 : EFO00 | 10990 | AT
ISHO'0 | 0TSO0 | REF9'0 | 89800 | TTLIO € LIN [ST00 1 8OVO'0 | 009T0 | €80L0 | LTHFO dTl
9THO0 | 66Y0°0 | LS990 | €SLOD | $9910 91 LIN ARAT | ANT | AT | ATT | w11 | 2meig
1LE00 | 9KTO0 | 00290 | TELOD | ISFTO 8 LIN SoINg 07 2718 Y001
HITO0 | S900°0 | LEFLD | 950D | 1610 2 AN - w900 Toteo0 Teieoo T ez T
R R o | cocro | crec . - LELEO | 658E°0 - 0000 | 06ET0 | AT
ol sl SO IR Bl i ot - | ILI00 | RS8O | 02200 | 69010 | ADAT
SOPTO | 85000 BLIED | 0T9UD) seLeD ce o 06T | 0Z000 | - | Z9100 | £1690 | MTI
wmmm wwwm.m Mvwwm Mww” m Mwmmm W _L M TLIO0 | 8LO0O | 9ELTO | 9EETO | 6L9F0 | WTI
S ; 3 ¢ £80€ 19- - -
FOSI0 | TITOO | 08LED | +891°0 | 19870 ¥ ug- AT | NMT | BOMT | AT | ATT | =98
s21Ag § 12218 yooIg
§TT0 | L6TOO | $880°0 | 06ZTO | TOEYO +9 wp1y - 98F0'0 | 9FLTO | €691°0 | SLOSO | MANT
S8E0°0 | LOFO'O | EIOI0 | 691T0 | LT090 43 2pay LLTSO | SE0T0 - 81000 | 6r9€0 | MYT
96900 | ST900 | S9ZI'0 | SLEI'O | 6EFSTO 91 u2pay - ££00°0 | T806'0 | 8S000 | LTR0'0 | WOWT
GOET0 | FFOT0 | OFLTO | 90910 | S6T+O 8 wap1y 8LOFO | HHO00 - L6200 | TSSO | MTT
9691°0 | I8FT'0 | 1€9T0 | LIZIO | SL6TO ¥ wapry 19100 | €110°0 | LETED | I8S10 | OISO | ATl
AQAT | MAT | AAT | ATT | uT1 MAAT | MAT | AT | ATT | ¥T1 | ows
271G Yool | propHoA -
QeIg sa1g p 221 yoorg
sanijiqeqoad Aleuonels sanIliqeqold uonisued], LI

-e[Z-

6. Conclusions

6.1. Summary of Results

In this paper, we have used trace-driven simulation to study the reference behavior of three
multiprocessor workloads: a vector-scientitic workload running on a four-processor Ardent
Titan, and two scalar workloads running on VAX, IBM, and Encore machines. This study pro-
vides a major contribution to this field simply by analyzing all of these traces, which represent a

wide range of application programs including an actual, production-quality vector workload.

The other major contribution of this research is the detailed evaluation of sharing behavior
in multiprocessor systems, carried out through a number of measurements across a range of
block sizes. Our results show that both the amount and type of sharing present in the traces are
extremely workload dependent. The Ardent vectorized workload makes many more references
to shared data (70% of all data references) relative to the two scalar workloads (less than 30% of
all data references). The Ardent workload also contains u much larger fraction of writes to
shared data, while references to shared data in the T-bit and MIT workloads are predominantly
reads.

Processor locality is very strong in the Ardent workload, due mainly to inherent spatial
locality in vector applications coded with short strides, and partly to the fact that the applications
ran on a small multiprocessor system (4 processors). Our two scalar workloads, running on
larger 16 and 64-processor systems, contain far less spatial locality and share data on a much
finer grain. Increasing block size in the scalar workloads only increases the chance that different
processors will reference data in the same block due to false sharing. One commonality in all
workloads is that processor locality is stronger for write-shared data than for read-shared data.

In the MIT traces, 10 to 20 percent of all shared data writes followed by reads from dif-
ferent processors are closely spaced in time (within 10 data references), without locks to serial-
ize access to the data. These are examples of applications which may not be able to tolerate a
weakening in the memory consistency model, despite its performance benefits, without large
amounts of recoding. The Ardent applications, however, do frequently serialize access to shared
data, and would benefit greatly from relaxing consistency. In fact, relaxing consistency on the
Ardent applications should improve performance beyond earlier estimates |Zuck92, Ghar91,

Tore90] because vectorized applications generate such lurge numbers of shared references.

Finally, two Markov models were developed to provide further insight into reference and
sharing behavior. Transition probabilities were meuasured directly from the traces, and used to
generate solutions to the Markov chain. The results provide further evidence that the Ardent
traces contain large amounts of processor locality, while sharing behavior in the T-bit and MIT

workloads consists mostly of fine-grain read-sharing.

-23 -

6.2. Implications for Consistency Protocols

Based on this analysis, we can determine to some extent the types of consistency protocols
and protocol features that should be matched to these different applications and workloads. The
vectorized workload that we examined contained large amounts of processor locality and little
contention for write-shared data, characteristics that are well-suited to invalidate-based protocols
and large block sizes. The temporal characteristics of this workload also favor protocols with
relaxed consistency. Our two scalar workloads contained less processor locality and more false
sharing, characteristics that are better-suited to update-based protocols and smaller block sizes.
Unlike the Ardent workload, the scalar workloads may require protocols which support sequen-
tial consistency. We carefully note that these conclusions are very much a function of how these
particular programs were structured and coded, and should not be considered representative of
all vector or scalar programs.

We note that the state transition probabilities for our Markov models show relatively high
rates of transition from local reference to remote reference states. This suggests a high level of
bus (or interconnection network) traffic for the maintenance of consistency. As will be seen in
[Gee93a], without significant recoding of application and systems software, we do not believe
that multiprocessors can function very effectively.

Since sharing behavior does seem to vary widely across different workloads, it appears that
cache-consistency protocols which «adapt to different sharing patterns [Karl86, Arch88,
Egge&9c] may be a useful alternative for machines running a wide variety of applications. In
[Gee93a], we propose a protocol which updates data only once, and then invalidates the data on
the next write if the previous update has not been used by other processors. This protocol is par-
tially motivated by observed write run lengths in our programs, which vary in length from as lit-
tle as 1 to 2 writes in the T-bit and MIT workloads, to as many as 6 writes in the Ardent work-
load with a 64 byte block size. If the first update is never used by other processors, then it is

highly likely that many more updates will also be performed and never used.

In a companion paper [GeeY3al, some of the ideas presented here are evaluated and vali-
dated through simulation of a large number of cache consistency protocols. Results from that
paper confirm that invalidate-based protocols combined with large block sizes perform best on
the Ardent vectorized workload, while update-based protocols and small block sizes perform
better for the scalar T-bit and MIT workloads. Two adaptive protocols which switch from
update to invalidate based on reference history yield satisfactory performance across all work-

loads, and would be a good alternative for general purpose machines.

Bibliography

[Agar88a]l A. Agarwal and A. Gupta. ““Memory
Reference Characteristics of Multiprocessor Applica-
tions under Mach,”” Proc. ACM Sigmetrics, May,
1988, Santa Fe, NM, pp. 215-225.

[Agar®8b] A. Agarwal, R. Simoni, J. Hennessy. and
M. Horowitz, **An Evaluation of Directory Schemes
for Cache Coherence,”” Proc. 15th Int’l Symp. Comp.
Arch., May, 1988, Honolulu. HI. pp. 280-289.

[Arch&4] J. Archibald and J.L. Baer, “*An Economi-
cal Solution to the Cache Coherence Problem,”” Proc.
Hth Int'l Symp. Comp. Arch.. also Sigarch News, 12,
3, June, 1984, pp. 355-362.

[Arch86a] J. Archibald, “*High Performance Cache
Coherence Protocols for Shared-Bus Multiproces-
sors,”” Technical Report 86-06-12, June, 1986, Com-
puter Science Dept., University ol Washington, Scat-
tle, Washington

[Arch86b] J. Archibald and J.L. Bacr, “*Cache
Coherence Protocols: Evaluation Using a Multipro-
cessor Simulation Model.”” ACM Trans. on Comp.
Sys., November, 1986, pp. 273-298.

{Arch88] J. Archibald, **A Cache Coherence
Approach for Large Multiprocessor Systems,™ Proc.
1988 Int. Conf. on Supercomputing, July, 1983, St.
Malo, France, pp. 337-345.

[BaylI89] S.J. Baylor and B.D. Rathi, “*A Study of the
Memory Reference Bchavior of
Engineering/Scientific Applications in Parallel Pro-
cessors,”” Proc. 1989 1nt’l Conf. on Parallel Process-
ing, August, 1989, St. Charles, IL, pp. I 78-82.

[Broo90] E.D. Brooks and J.E. Hoag. “*A Scalable
Coherent Cache System with Incomplete Directory
State,”” Proc. 1990 Int’l Conf. on Parallel Processing.,
August, 1990, St. Charles, IL, pp. [-553 10 1-554.

[Chai90] D. Chaiken, C. Ficelds, K. Kurihara, and A.
Agarwal, “‘Directory-Based Cache Coherence in
Large-Scale Multiprocessors,”” Computer, vol. 23, no.
6, June, 1990, pp. 49-58.

[Chai91] D. Chaiken, J. Kubiatowicz, and A.
Agarwal, “‘LimitLESS Dircctorics: A Scalable Cache
Coherence Scheme,’” Proc. ASPLOS-1V, April, 1991,
Santa Clara, CA, pp. 224-234,

[Dare87] F. Darema-Rogers, G.F. Phister, and K. So,
““Memory Access Patterns of Parallel Scientific Pro-
grams,” Proc. 1987 ACM Sigmetrics. May, 1987,
Banff, Canada, pp. 46-58.

[Died88] T. Diede, C. Hagenmaier, G. Miranker, J.
Rubinstein, and W. Worley, “"The Titan Graphics
Supercomputer Architecture,” Computer, September

1988, pp. 13-30.

[Dubo86] M. Dubois. C. Scheurich, and F.A. Briggs,
“Memory Access Bulfering in Multiprocessors,””
Proc. 13th Incl Symp. Computer Architecture, June,
1986. Tokyo. Japan, pp. 434-442.

[Dubo8&] M. Dubois, C. Scheurich, and F.A. Briggs,
*Synchronization, Coherence, and Event Ordering in
Multiprocessors,” Computer, February, 1988, pp. 9-
21

[Egge88] S. Eggers and R. Katz, “*A Characterization
ol Sharing in Parallel Programs and Its Application to
Coherency Protocol Evaluation,”” Proc. 15th Int'l
Symp. Comp. Arch., May, 1988, Honolulu, Hawaii,
pp. 373-382.

[Egee89a] S. Eggers, "Simulation Analysis of Data
Sharing in Sharcd Memory Multiprocessors,”” Ph.D.
Thesis. University of California Berkeley, April,
1989, Tech. Rpt. No. UCB/CSD 89/501.

[Eggc®9b] S. Eggers and R. Katz, “"The Effects of
Sharing on the Cache and Bus Performance of Paral-
lel Programs.” Proc. ASPLOS 111 Conference, April,
1989, Boston, Mass., pp. 257-270.

[Egge®Yc] S. Eggers and R. Katz, “*Evaluating the
Performance of Four Snooping Cache Coherency Pro-
tocols.”™ Proc. 16th Int’l Symp. Comp. Arch., June,
1989, Jerusalem, Isracl, pp. 2-135.

[Egge90] S. Eggers and T. Jeremiassen, ““Eliminating
False Sharing,”” University ol Washington Technical
Report 90-12-01, 1990,

[GeeY2al J. Gee and AJ. Smith, **The Performance
Impact of Vector Processor Caches,™ Proc. of the
25th Hawaii Ini'l Conf. on Svstem Sciences, Kauvai,
HI Jan, 1992, pp. 1:437-448.

[GeeY2b] 1. Gee and AJ. Smith, “*Vector Processor
Cuaches,” U.C. Berkeley Computer Science Division
Technical Report UCB/CSD-92-707, 1992,

[GeeY3al J. Gee and AJ. Smith, “*Absolute and Com-
parative Performance of Cache Consistency Algo-
rithms.”” paper in preparation, 1993,

[GeeYdb]). Gee, ““Analysis of Cache Performance in
Vector Processors and Multiprocessors™, Ph.D.
dissertation, Computer Science Division, UC Berke-
ley, April. 1993,

[Ghar91| K. Gharachorloo, A. Gupta, and J. Hen-
nessy. Performance Evaluation of Memory Con-
sistency Models for Shared-Memory Multiproces-
sors,”” Proc. ASPLOS-IVR, April, 1991, Santa Clara,
CA. pp. 245-257.

[Gup90] A. Gupta, W. Weber, and T. Mowry,
“Reducing Memory and Traffic Requirements for
Scalable Dircctory-Based ~ Cache Coherence
Schemes,” 1990 Ini’l Conf. on Parallel Processing.
August, 1990, St. Charles, IL, pp. I: 312-321,
[Gupt92] A. Gupta, W. Weber, *Cache Invalidation
Patterns in Shared-Memory Multiprocessors.”” IEEE
Trans. Comp., vol. 41, no. 7, July, 1992, pp. 794-810).
[Karl86] A.R. Karlin, M.S. Manasse, L. Rudolph, and
D.D. Sleator, “*Competitive Snoopy Caching,”
Proceedings of the 27th Annual Symposium on IFoin-
dations of Computer Science. Toronto, Canada.
October, 1986, pp. 244-254.

[Katz85] R. Katz, ct. al., “Implementing a Cache
Consistency Protocol,”” Proc. 12th Int’l Symp. Comp.
Arch., June, 1985, Boston. MA, pp. 276-283.
[Kold91] E. Koldinger. S. Eggers, and H. Levy, On
the Validity of Trace-Driven Simulation for Multipro-
cessors,”” Proc. 18th Int’l Symp. Comp. Arch., May,
1991, Toronto, Canada, pp. 244-253.

[Kuma&9] M. Kumar and K. So, “"Trace Driven
Simulation for Studying MIMD Parallcl Computers.™”
Proc. 1989 Int’l Conf. on Parallel Processing,
August, 1989, St. Charles, IL, pp. I: 68-72.

[Kure&8] O. Kure, “*Optimization of File Migration in
Distributed Systems,” U.C. Berkeley Technical
Report No. UCB/CSD 88/413, April. 1988.

[Lamp79] L. Lamport, “"How to Make a Multiproces-
sor Computer That Correctly Exccutes Multiprocess
Programs,”” IEEE Trans. Computers. Scpt. 1979, pp.
690-691.

[Leno90] D. Lenoski, J. Laudon, K. Gharachorloo, A.
Gupta, and J. Hennessy. " The Directory-Based Cache
Coherence Protocol for the DASH Multiprocessor.™
Proc. 17th Int’l Symp. Comp. Arch., May, 1990, Scat-
tle, WA, pp. 148-159.

[Lewi73] P. Lewis and G. Shedler, “Empirically
Derived Micromodels for Sequences ol Page Excep-
tions,” IBM J. Res. Develop.. March. 1973, pp. 86-
100.

[Okrag9] B. O Kralka, “*An Empirical Study of Three
Hardware Cache Consistency Schemes for Large
Shared Memory Multiprocessors.” Electronics
Research Laboratory Memorandum UCB/ERL
M&9/62, University of California, Berkeley, May,
1989.

[Okra90] B. O’Kratka and A. Newton, ““An Empiri-
cal Evaluation of Two Memory-Efficient Directory
Methods,”” Proc. 17th Int'l Symp. Comp. Arch., May,
1990, Seattle, WA., pp. 138-147.

[Sche®7) C. Scheurich and M. Dubois, “‘Correct
Memory Operation of Cache-Based Multiproces-
sors,” Proc. Hih Inel Symp. Computer Architecture,
June. 1987, Pittsburgh, PA, pp. 234-243.

[Site&8] R. Sites and A. Agarwal, “*Multiprocessor
Cache Analysis Using ATUM,” Proc. 15th Int'l
Symp. Comp. Arch.. May, 1988, Honolulu, Hawaii,
pp. 186-195.

[Smit91] AJ. Smith, “*Sccond Bibliography on Cache
Memories,” Computer Architecture News, June,
1991, pp. 154-182.

[Spir77} J. Spirn, Program Behavior: Models and
Measurements, Elsevier North-Holland, Inc., New
York. NY, 1977,

[Stwnv!l] C. Swnkel, B. Janssens, and W.K. Fuchs,
“Address Tracing lor Parallel Machines,”” Computer,
January, 1991, pp. 31-38.

[Swea6] P Sweazey and A.J. Smith, “*A Class of
Computible Cuache Consistency Protocols and their
Support by the IEEE Futurcbus,” Proc. 13th Int'l
Svinp. Comp. Arch.. Tokyo. Japan, June, 1986, pp.
414-423,

[Tore90] J. Torellas and J. Hennessy, “"Estimating the
Performance Advantages ol Relaxing Consistency in
a Shared-Mcemory Multiprocessor,”” Proc. 1990 Int'l
Conf. on Parallel Processing, August, 1990, St.
Charles. IL. pp. I: 26-34.

[Vash93] Bart Vashaw, “*Address Trace Collection
and Trace Driven Simulation of Bus Based, Shared
Memory. Multiprocessors”. Carnegie Mcllon Univer-
sity. Dept. of Electrical and Computer Engineering
Technical Report CMUCDS-93-4, March, 1993.
[Webe&9] Wo Weber and A, Gupta, “*Analysis of
Cache Invalidation Patterns in - Multiprocessors,””
Proc. ASPLOS-11, Boston. April, 1989, pp. 243-256.
[Zuck92] R. Zucker and J. Baer, A Performance
Study of Mcemory Consistency Models,” Technical
Report 92-01-02, January, 1992, Computer Science
Dept. University ol Washington, Scattle, Washing-
ton.

