
A HIERARCHICAL MULTIPROCESSOR SCHEDULING FRAMEWORK
FOR SYNCHRONOUS DATAFLOW GRAPHS

José Luis Pino, Shuvra S. Bhattacharyya, and Edward A. Lee

Technical Report: UCB/ERL M95/36

May 30, 1995

This research was partially funded as part of the Ptolemy project, which is supported by the
Advanced Research Projects Agency and the U.S. Air Force (under the RASSP program, contract F33615-
93-C-1317), the Semiconductor Research Corporation (project 94-DC-008), the National Science Founda-
tion (MIP-9201605), the State of California MICRO program, and the following companies: Bellcore, Bell
Northern Research, Dolby Laboratories, Hitachi, Mentor Graphics, Mitsubishi, NEC, Pacific Bell, Philips,
and Rockwell. José Luis Pino is also supported by AT&T Bell Laboratories as part of the Cooperative
Research Fellowship Program.

J. L. Pino and E. A. Lee are with the Dept. of Electrical Engineering and Computer Sciences, Uni-
versity of California at Berkeley, California 94720, USA.

S. S. Bhattacharyya is with the Semiconductor Research Laboratory, Hitachi America, Ltd., 201
East Tasman Drive, San Jose, California 95134, USA.

ABSTRACT

This paper discusses a hierarchical scheduling framework to reduce the complexity of

scheduling synchronous dataflow (SDF) graphs onto multiple processors. The core of this frame-

work is a clustering algorithm that reduces the number of nodes before expanding the SDF graph

into a precedence DAG (directed acyclic graph). The internals of the clusters are then scheduled

with uniprocessor SDF schedulers which can optimize for memory usage. The clustering is done

in such a manner as to leave ample parallelism exposed for the multiprocessor scheduler. The

advantages of this framework are demonstrated with several practical, real-time examples.

2

1. Introduction

Dataflow is a natural representation for signal processing algorithms. One of its strengths

is that it exposes parallelism by expressing only the actual data dependencies that exist in an algo-

rithm. Applications are specified by a dataflow graph in which the nodes represent computations,

and data tokens flow between them along the arcs of the graph. Ptolemy [2] is a framework that

supports dataflow programming (as well as other computational models, such as discrete event).

Generating a stand-alone application from a dataflow graph description requires two

phases: scheduling and synthesis [3]. In the scheduling phase, the dataflow graph is partitioned for

parallel execution. We splice send and receive nodes into the graph for interprocessor communi-

cation. These nodes do the synchronization necessary for a self-timed implementation [4]. For

each target processor, a sequence of node firings is determined. In the synthesis phase, the code

segments associated with each node are stitched together, following the order specified by the

scheduler. Commercial systems that use this “threading” technique include Comdisco’s DPC [5]

and CADIS’s Descartes [6]. The techniques we describe here are complementary to those in DPC

and Descartes, and could, in principle, be used in combination with them.

There are several forms of dataflow defined in Ptolemy. In synchronous dataflow (SDF)

[7], the number of tokens produced or consumed in one firing of a node is constant. This property

makes it possible to determine execution order and memory requirements at compile time. Thus

these systems do not have the overhead of run-time scheduling (in contrast to dynamic dataflow)

and have very predictable run-time behavior. The production/consumption property on the arcs

also provides a natural representation of multirate signal processing blocks [8]. In this paper, we

will focus on scheduling SDF graphs onto multiple processors.

In the following sections, we will review scheduling of SDF graphs, including uniproces-

sor scheduling and DAG construction. Then we will present the SDF composition theorem which

is needed to apply clustering heuristics on the SDF graph. Following that we discuss the cluster-

ing techniques that comprise the hierarchical scheduling framework and the automated hierarchi-

cal scheduling algorithm.

3

2. Background

Figure 1 shows a simple SDF graph. In this graph, nodeA produces two tokens and nodeB

consumes three tokens for each firing. In a valid SDF schedule, the first-in/first-out (FIFO) buffers

on each arc return to their initial state after one schedule period. Balance equations are written for

each arc and an integral repetitions vector is found that solves this system of equations [7]. In this

simple example, the balance equation for the arc is: . Any vector of the form

 is a solution to the balance equation. For a given SDF graph, either

the balance equations do not have a nontrivial solution (a solution other than the zero vector), or

there exists a unique minimal solution whose components are all positive integers [7]. This unique

minimum vector is called therepetitions vector and it is denoted by the symbol . For the exam-

ple in figure 1, the repetitions vector is given by . Note that our con-

vention is to represent the component of the vector that corresponds to a node using the

functional notation .

An SDF graph isconsistent if it is not deadlocked, and a repetitions vector exists. Given a

consistent SDF specification, we can construct a schedule at compile-time that can be iterated an

indefinite number of times without requiring unbounded memory. Such a schedule can be con-

structed by invoking each actor exactly times, and ensuring that the data precedences

defined by the SDF graph are respected. For figure 1, one such schedule is .

2.1 Notation

We use the following notational conventions when working with SDF graphs.

• : A directed graph,G, made up of the set of nodesV, and set of arcsE1.

• : The number of samples consumed on the SDF arcα, per sink invocation.

• : The number of samples produced on SDF arcα, per source invocation.

2 RA× 3 RB×=

RA RB 3n 2n n Z
+∈,=

q

q q A() q B() 3 2= =

q x

q x()

2 3
BA

Figure 1. A simple SDF graph.

x q x()

AABAB

G V E,()=

κα

ρα

4

• : The number of initial samples (“delay”) on the SDF arcα.

• : The set of all SDF arcs that are connected to nodex.

• : The node that produces the tokens on arcα.

• : The node that consumes the tokens produced on arcα.

• A valid schedulefor a consistent SDF graph is a schedule that respects the data depen-

dencies in the graph (does not deadlock), and invokes each node exactly

times.

• If is a subset of actors in a consistent SDF graph , we define

,

wheregcddenotes the greatest common divisor. The quantity can be viewed as

the number of times that a valid schedule for invokes the subsystem corresponding

to [16].

• Similarly, if and are distinct nodes in a consistent SDF graph, then

.

We can view as the number of times that node is invoked in a single invocation

of the subsystem .

• Two nodes in a directed graph areadjacent if there is an arc directed from one of the

nodes to the other.

• Given a consistent SDF graph , a subset of nodes in is a

uniform repetition count (URC) subset if . If is

a URC subset, the associated subgraph is called aURC subgraph.

• A path in a directed graph is a finite, nonempty sequence of arcs such

1. Technically, practical SDF graphs may arise that are directedmultigraphs — graphs in which more than
one arc can exist for the same pair of source and sink nodes — rather than directed graphs. However, the dis-
tinction between directed multigraphs and directed graphs is not important for the developments of this paper:
our results can easily be extended to handle directed multigraphs. For clarity however, we restrict our discus-
sion to directedgraphs, rather thanmultigraphs.

δα

αx

α()src

α()snk

x x()q

Z G

χ Z() z()q z Z∈(){ }()gcd≡

χ Z()

G

Z

x y

Q x y,() x()q
χ x y,{ }()
---------------------------≡ x()q

x()q y()q,{ }()gcd
---=

Q x y,() x

x y,{ }

G Z z1 z2 … zn, , ,{ }= G

z1()q z2()q … zn()q= = = Z

e1 e2 … en, , ,()

5

that for . We say that a path

 isdirected from to ; we say that this pathtraverses

; and we may write

 as an alternative representation of the

path. The path issimple if are all dis-

tinct, and it is acycle if .

• We denote the set of positive integers by .

• The precedence graph (defined below) of an SDF graph is denoted by .

• Given a problem , if are real-valued parameters of a problem instance,

and is an algorithm to solve , then is

() if for sufficiently large , the number of elemen-

tary computational steps required by is bounded above (below) by a constant multi-

ple of .

• If is a real number, denotes the largest integer that is less than or equal to .

2.2 SDF graph to DAG translation

To schedule SDF graphs onto multiple processors, aprecedence graph is constructed

from the original SDF graph. In general, the SDF graph exposes some of the functional parallel-

ism in the algorithm; the precedence graph may reveal more functional parallelism, and in addi-

tion, it exposes the data parallelism available. The precedence graph for the SDF graph of figure 1

is shown in figure 2. Notice that for each node in the original SDF graph, there are multiple nodes

in the precedence graph corresponding to the repetition counts derived from the balance equa-

tions.

Formally, the precedence graph is constructed by first instantiating nodes, labeled

, for each node of the SDF graph. Each precedence graph node corresponds to

the th invocation of in an iteration of a valid schedule. For each arc in the SDF graph, an arc

in the precedence graph is instantiated from to for each ordered pair

that satisfies , , and at least one of the following two con-

ei()snk ei 1+()src= i 1 2 … n 1–(), , ,=

e1 e2 … en, , ,() e1()src en()snk

e1()src e2() … en() en()snk,src, ,src,

e1()src e2()src … en()src en()snk→ → → →

e1 e2 … en, , ,() e1()src e2() … en()src, ,src,

e1()src en()snk=

Z
+

G G()PRG

P p1 p2 … pn, , ,

A P A O f p1 p2 … pn, , ,()()

Ω f p1 p2 … pn, , ,()() p1 p2 … pn, , ,

A

f p1 p2 … pn, , ,()

r r r

x()q

x1 x2 … x x()q, , , x xi

i x α

α()src i α()snk j i j,()

1 i α()src()q≤ ≤ 1 j α()snk()q≤ ≤

6

ditions:

, or (1)

. (2)

The following fact is a straightforward consequence of the developments in [7].

Fact 1: An SDF graph is deadlocked if and only if its precedence graph contains a cycle.

Thus, if an SDF graph is consistent, then its precedence graph is guaranteed to be acyclic.

We refer to the precedence graph of a consistent SDF graph as theprecedence DAG (directed

acyclic graph) of , or simply as theDAG of .

Unfortunately, the expansion due to the repetition count of each SDF node can lead to an

exponential growth of nodes in the DAG. This growth has been overlooked in previous SDF mul-

tiprocessor scheduling work [9, 10]. An SDF graph that exhibits this growth is shown in figure 3.

It is easily seen that the number of nodes in the corresponding DAG is

.

B1

A1

Figure 2. The precedence graph for the SDF graph of figure 1.

A2

A3

B2

i 1–() ρα δα+ j 1–() κα iρα δα+<≤

j 1–() κα i 1–() ρα δα+ jκα< <

G

G G

1 M M
2 … M

N 1–
+ + + +

Figure 3. A family of SDF graphs in which the number of DAG nodes increases exponen-
tially with respect to the number of nodes in the SDF graph.

M 1
21

M 1
3

M 1
N

7

Another example can be found in [17], where a five-node SDF representation of a compact-disc to

digital audio tape sample rate conversion system expands to a DAG that contains over 600 nodes.

This growth is undesirable, especially considering that known optimal multiprocessor scheduling

algorithms under precedence constraints have complexity that is exponential in the number of

nodes in the DAG [11]. Most uniprocessor SDF schedulers, on the other hand, do not require a

DAG to be generated for scheduling purposes.

2.3 Clustering

To limit the explosion of nodes when translating an SDF graph into a DAG graph, we

applyclustering of connected subgraphs into larger graincomposite nodes. The composite nodes

will then be scheduled with one of the available uniprocessor schedulers. We cluster the nodes in

a manner that simplifies the DAG without hiding much exploitable parallelism.

The concept of clustering in an SDF graph is illustrated in figures 4(a-b). Here, the graph

on the right is obtained by clustering the subset of nodes . The “D” on arc speci-

fies a unit delay ().

Formally, clustering a subset of nodes in an SDF graph into a single com-

posite node produces a new SDF graph, denoted that consists of the set of

nodes . The set of arcs in can be expressed as

,

where is a “modification” of the set of arcs that connect actors in to actors outside of . If

for each such that and , we define by

, , , , and ;

and similarly, for each such that and , we define by

, , , , and ,

then we can specify by

.

B C,{ } B C,()

δ B C,() 1=

Z G V E,()=

Ω Z G,()cluster

V Z– Ω{ }+() E′ Z G,()cluster

E′ E e e()src Z∈() e()snk Z∈()or(){ } E∗+–=

E∗ Z Z

e E∈ e()src Z∈ e()snk Z∉ ẽ

ẽ()src Ω= ẽ()snk e()snk= κẽ κe= δẽ δe= ρẽ
e()src()q

χ Z()
----------------------------ρe=

e E∈ e()snk Z∈ e()src Z∉ ẽ

ẽ()snk Ω= ẽ()src e()src= ρẽ ρe= δẽ δe= κẽ
e()snk()q

χ Z()
-----------------------------κe=

E∗

E∗ ẽ e()src Z∈() e()snk Z∉()and() e()snk Z∈() e()src Z∉()and()or{ }=

8

This precise interpretation of clustering in SDF graphs was introduced in [23].

The precedence graph of can be derived from the precedence graph of

by consolidating each subset of invocations

(3)

into the single precedence graph node , for . This is illustrated in figures

4(c-d) for the clustering operation shown in figures 4(a-b).

Figure 4. An illustration of clustering. Parts (a) and (b) illustrate how a clustering opera-
tion transforms an SDF graph, and parts (c) and (d) illustrate the corresponding transfor-
mation on the precedence graph.

A B C
2 1 2 1

D
A Ω D

2 1 2 1D
1 1

A1

B1 B2

C1 C2 C3 C4

D1 D2 D3 D4

A1

Ω1 Ω2

D1 D2 D3 D4

(a) (b)

(c) (d)

Z G,()cluster G

zi z Z∈() k 1–() q z()
χ Z()
------------- i k

q z()
χ Z()
-------------≤<and 

 { }

Ωk k 1 2 … χ Z(), , ,=

9

2.4 Strongly connected components

A subgraph, , is anontrivial strongly connected component of a directed

graph if:

• and ;

• there is a path directed from to and there is a path directed from

to ; and

• (contains more than one node).

Figure 5 shows a graph with the strongly connected components marked. Tarjan in [19]

developed an efficient algorithm to find strongly connected components in linear time with

respect to the number of arcs and nodes in the SDF system

If is a nontrivial strongly connected component, we may also say that is a

nontrivial strongly connected component.

3. Multiprocessor DAG scheduling

DAG multiprocessor schedulers that minimize the interprocessor communication (IPC)

costs typically have two distinct scheduling phases [12-15]:

1. A clustering phase to minimize IPC costs, by improving the parallel time at each clustering

step.

2. A processor assignment phase, to map and schedule the clusters onto the available processors.

During initialization each DAG node is mapped onto a separate processor. Then, the nodes

G′ V′ E′,()=

G V E,()=

V′ V⊆ E′ E⊆

v1∀ v2 V′∈, v1 v2 v2

v1

V′ 1> G′

Figure 5. Nodes with the same pattern belong to the same strongly connected com-
ponent. Note that the clear node is a trivial strongly connected component.

V′ E′,() V′

10

are labeled with the computation times and the arcs are labeled with the IPC costs. As groups of

nodes are clustered together (mapped onto the same processor), the corresponding arc costs are

set to zero. Theparallel time (PT) can then be defined as the length of the longest path in the

graph. Figure 6 shows an initial labeled DAG and the result of one clustering step.

It is important to note that each resultant cluster is mapped onto a single processor. This

observation motivates the modification of parallel time minimization clustering heuristics for use

on the SDF graph. By clustering the SDF graph we also have the opportunity to use specialized

uniprocessor SDF schedulers, which can optimize for such parameters as code size, buffer mem-

ory, and context switch overhead [18, 23, 26, 27, 28, 29].

4. Some properties of precedence graphs

In this section, we introduce several properties of precedence graphs. In the following sec-

tion, we will apply these properties to develop an efficient test for whether or not a given cluster-

ing operation introduces deadlock.

Lemma 1: Suppose that is an SDF graph, is an arc in , and is a positive integer

such that , where is a positive integer, and where is a nonnega-

10 1

1

1

1

1

21

0 1

1

1

1

1

21

PT = 14 PT = 6

Figure 6. The graph on the left shows an initially labelled DAG. The graph on
the right shows the result after one clustering step.

G α G Q

ρα k1Qκα= k1 δα k2Qκα= k2

11

tive integer. Suppose that we divide the invocations of into groups of :

(4)

Then for each , there is at most one invocation of such that an arc in

 exists that is directed from to at least one member of . That is, no more

than one invocation of has a precedence graph output arc directed to a member of .

Furthermore, if has an output (precedence graph) arc directed to some member of ,

then has output arcs directed to all members of

As an example of lemma 1, consider figure 7. Let , and observe that for this

choice of , the assumptions of lemma 1 are satisfied with , and . Each

group of invocations is shown by one of the dashed ovals that encircles a group of adja-

cent invocations of . We see that the members of and do not have any input precedence

edges from any of the invocations of ; the members of have input precedence edges

from exactly one invocation — invocation — of ; and similarly, the members of have

input precedence edges only from . Thus, the example of figure 7 is consistent with lemma 1.

α()snk Q

I j α()snk j 1–() Q 1+ α()snk j 1–() Q 2+ ..., α()snk jQ, ,{ } j, 1 2 … k1 α()src()q, , ,= =

j y α()src

G()PRG α()src y I j

α()src Ij

α()src y I j

α()src y I j

Figure 7. An illustration of lemma 1.

A1

B1 B2 B3 B4 B5 B6

A2

B7 B8 B9 B10 B11 B12

C1

C A B
2 1 6 1

4D

α A B,()=

α Q 2= k1 3= k2 2=

I j Q 2=

B I1 I2

A I3 I4 I5, ,

A1 A I6

A2

12

Proof of lemma 1: Let and , and recall from (1) and (2) that an arc in

 exists from to if and only if one of the following two conditions hold:

, or (5)

. (6)

Now, from the given assumptions, (6) becomes

, (7)

or equivalently,

. (8)

Since there are no integers “between” and , clearly (8) cannot hold for any pair of pos-

itive integers , and thus, we conclude that a precedence graph arc exists from to if

and only if (5) holds.

Now from the given assumptions, (5) is equivalent to

, (9)

or

, where . (10)

Clearly, (10) is satisfied if and only if

, (11)

and from the definition of the sequence , we conclude that

there is a precedence graph edge from to iff for some , .(12)

Thus, if there is a precedence graph edge from to , and , then there is a precedence

graph edge from to all members of .

Now, from the definition of in (10), we see that if and are distinct positive inte-

A α()src= B α()snk=

G()PRG Am Bn

m 1–() ρα δα+ n 1–() κα mρα δα+<≤

n 1–() κα m 1–() ρα δα+ nκα< <

n 1–() κα m 1–() k1Qκα k2Qκα+ nκα< <

n 1–() m 1–() k1Q k2Q+ n< <

n 1–() n

m n,() Am Bn

m 1–() k1Qκα k2Qκα+ n 1–() κα mk1Qκα k2Qκα+<≤

rmQ n 1–() rm k1+() Q<≤ rm m 1–() k1 k2+=

n rmQ 1+() rmQ 2+() … rmQ k1Q+(), , ,{ }∈

I1 I2 …, ,

Am Bn k 1 2 … k1, , ,{ }∈ Bn Irm k+∈

Am Bn Bn I j∈

Am I j

rm µ µ′

13

gers, and are members of , then . Thus, it follows from

(12), that for a given , there is at most one invocation of that has a precedence graph output

edge directed into (directed to some member of).❏

The following lemma is analogous to lemma 1, with the roles of the source and sink nodes

interchanged.

Lemma 2: Suppose that is an SDF graph, is an arc in , and is a positive integer

such that , where is a positive integer, and where is a nonnega-

tive integer. Suppose that we divide the invocations of into groups of :

.

Then for each , there is at most one invocation of such that an arc in exists

that is directed to from a member of . Furthermore, if has an input arc

directed from some member ofIj, then has input arcs directed from all members of .

Proof of lemma 2: Follows by symmetry from lemma 1.❏

Lemma 3: Suppose that is a connected, consistent SDF graph that contains at least two

nodes, and whose edges form a simple cycle. Suppose that is an arc in , is the arc whose

source node is , and is a positive integer such that

, where , (13)

and

 where . (14)

Define and , respectively, by

, , , , , and (15)

λ λ′, 1 2 … k1, , ,{ } rµ λ+() rµ′ λ′+()≠

I j A

I j I j

G α G Q

κα k1Qρα= k1 δα k2Qρα= k2

α()src Q

I j α()src j 1–() Q 1+ α()src j 1–() Q 2+ … α()src jQ, ,,{ } j, 1 2 … k1 α()snk()q, , ,= =

j y α()snk G()PRG

α()snk y I j α()snk y

α()snk y I j

C

α C β

α()snk Q

δα kQκα= k Z
+

0{ }∪()∈

ρα jQκα= j Z
+∈

α′ β′

α′()src α()src= α′()snk α()snk= δα′ δα= ρα′ ρα= κα′ Qκα=

14

, , , , . (16)

Suppose that is the SDF graph that results from replacing , with , in , respec-

tively. Then is consistent.

As an example of lemma 3, consider figure 8 with , and

β′()src β()src= β′()snk β()snk= δβ′ δβ= ρβ′ Qρβ= κβ′ κβ=

C′ α β α′ β′ C

C′

A2

B2 B3 B4 B5 B6B1

A1

C1 C2 C3

A B

C

3 1

1

2

2

3

0D

4D

D

3

1

Figure 8. An illustration of lemma 3

A B

C

3 1

1

2

2

3

2D

2D

D A2

B2 B3 B4 B5 B6B1

3

1

A1

C1 C2 C3

A2

B2 B3 B4 B5 B6B1

A1

C1 C2 C3

A B

C

3 1

1

2

2

3

3D

1D

D

3

1

(a)

(b)

(c)

α A B,()= β B C,()=

15

, which corresponds to the clustering operation shown. Clearly (14) is satisfied with

. However in figure 8(a), while in figures 8(b) and 8(c). Accord-

ingly, the clustering operation introduces a precedence graph cycle (deadlock) in figure 8(a),

while (as guaranteed by lemma 3) the clustering operation leaves the cycle consistent in figures

8(b) and 8(c).

Proof of lemma 3: It is easily seen that the vector defined by

(17)

satisfies the balance equations for . Thus, a repetitions vector exists for , and it remains only

to be shown that is not deadlocked. We show this by contraposition.

Suppose that is deadlocked. Then from Fact 1, there exists a cycle in that

traverses some invocation, say invocation , of . From lemma 1,

there is exactly one invocation, say invocation , of such that in , is

connected to by an arc. (18)

Now observe that

 can be obtained by consolidating

 in

. (19)

From lemma 1 we know that

in , there is an arc directed from to each member of

. (20)

Now since there is a cycle in that traverses , we have from (18) that

there is a path in directed from to . Thus, from (19), it follows that

in , there is a path directed from some member of

 to , and from (20), we conclude that

Q 3=

j 1= δα kQκα≠ δα kQκα=

b

b x()
qC x() if x α()snk≠
qC x()

Q
---------------- if x α()snk= 

 
 
 

=

C′ C′

C′

C′ C′()PRG

a α()snk

b α()src C′()PRG α()src b

α()snk a

C′()PRG

α()snk 1 α()snk 2 ..., α()snk Q, ,{ } α()snk 1 Q+ α()snk 2 Q+ ..., α()snk 2Q, ,{ } …, ,

C()PRG

C()PRG α()src b

α()snk aQ α()snk aQ 1– ..., α()snk aQ Q 1–()–, ,{ }

C′()PRG α()snk a

C′()PRG α()snk a α()src b

C()PRG α()snk c

α()snk aQ α()snk aQ 1– ..., α()snk aQ Q 1–()–, ,{ } α()src b

16

in , there is a cycle that traverses . This contradicts the assumption that is

consistent.❏

Lemma 4: Assume the same hypotheses as lemma 3, except replace (13) and (14) with

 where , and (21)

 where . (22)

 Then the SDF graph that results from replacing , with , in is consistent.

Proof: Follows by symmetry from lemma 3.❏

Lemma 5: Suppose thatC is a consistent, connected SDF graph that contains at least three

nodes, and whose edges form a simple cycle ; let denote the arc that

has as its source node, for each ; and suppose that for some , we have

, where , and (23)

, (24)

where is the repetitions vector of . Then is consistent.

Proof: A repetitions vector for the clustered graph can always be derived from the repetitions

vector of the SDF graph [16]. Thus, clustering always preserves the existence of a repetitions vec-

tor. It remains to be shown that clustering does not introduce deadlock. We show this

by contraposition.

Let , and suppose that is deadlocked. Let denote the

clustered node in . Then from Fact 1, there exists a cycle in that traverses some

invocation, say invocation , of .

From (3), can be obtained by clustering each of the subsets1

1. Here, represents the th invocation of node .

C()PRG α()snk c C

δβ kQρβ= k Z
+

0{ }∪()∈

κβ jQρβ= j Z
+∈

α β α′ β′ C

v1 v2 ... vN→ → → v1= ep

vp p j 1 2 … N 1–, , ,{ }∈

q vj 1+() kq vj()= k Z
+∈

δej
0=

q C vj vj 1+,{ } C,()cluster

vj vj 1+,{ }

C′ vj vj 1+,{ } C,()cluster= C′ Ω

C′ C′()PRG

x Ω

C′()PRG

vg()
h

h vg

17

 in .

Thus, in ,

there is a path from to , for some , where , and .(25)

Now from (23), (24) it is easily seen that there are arcs in from to

every member of , and it follows from (25) that

there is a cycle in containing the arc . This contradicts the

assumption that is consistent. ❏

Lemma 6: Assume the same hypotheses as lemma 5, except replace (23) with

. (26)

Then is consistent.

Proof: Follows by symmetry from lemma 5.❏

5. The SDF composition theorem

Unfortunately, SDF lacks the composition property. That is, if we cluster two arbitrary

SDF nodes, we may introduce deadlock into the SDF graph. To compose two SDF nodes into a

valid SDF cluster, we have developed the SDF composition theorem. This theorem presents four

conditions that guarantee that deadlock is not introduced into the clustered SDF graph.

Thus, the SDF composition theorem provides a sufficient condition that a clustering oper-

ation does not introduce deadlock. Currently there is no knownexactcondition (both necessary

and sufficient) that can be evaluated in polynomial time with respect to the number of nodes in the

SDF graph. In [30], Karp and Miller give an exact algorithm for determining whether or not an

arbitrary computation graph deadlocks. When this algorithm is applied to an SDF graph that has a

repetitions vector, the following steps are effectively carried out for each strongly connected com-

vj()
1

vj 1+()
1

vj 1+()
2

… vj 1+()
k

, , , ,{ } vj()
2

vj 1+()
k 1+

vj 1+()
k 2+

… vj 1+()
2k

, , , ,{ } …, ,

C()PRG

C()PRG

vj 1+()
mk i+

vj()
m 1+

i m, 0 m q vj()<≤ 1 i k≤ ≤

C()PRG vj()
m 1+

vj 1+()
mk 1+

vj 1+()
mk 2+

… vj 1+()
mk k+

, , ,{ }

C()PRG vj()
m 1+

vj 1+()
mk i+

,()

C

q vj() kq vj 1+()=

vj vj 1+,{ } C,()cluster

18

ponent:

(a) For each simple cycle , a weighted sum of the arc delays is compared against the

inner product of two vectors1. The weights of the delays and the two vectors are functions of the

production and consumption parameters on the arcs in . If for each simple cycle, the weighted

sum of the delays exceeds the corresponding inner product, then one can conclude that the given

SDF graph is not deadlocked.

(b) Otherwise, a second pass over the simple cycles is initiated. An iterative method is

applied to each cycle that is examined. For an SDF graph that has a repetitions vector, this itera-

tive method is equivalent (in terms of complexity) to first computing the repetitions vector of

the cycle, and then starting at any node of the cycle that satisfies ;

repeatedly traversing the cycle by moving from the current node to its successor in the cycle at

each traversal step; and simulating (updating the number of tokens on the appropriate arcs)

exactly invocations of each node when it is visited, where is the input arc to the

node in the cycle, and is the number of tokens on . The test for a given cycle terminates

when either the simulated system deadlocks, in which case we know that the overall SDF graph is

deadlocked, or a state is reached where some node has been executed or more times, in

which case we know that the current cycle is not deadlocked.

Step (b) entails two levels of running time explosion since (1) the number of simple cycles

in a directed graph is not polynomially bounded by the number of nodes, and (2) there is no poly-

nomial bound (in the number of SDF nodes) on the number of node visits that occur in the simu-

lation of a given cycle.

We justify claim (2) with the aid of figure 9. Assuming that , it can be shown that the

graph in figure 9 is deadlocked if an only if . Now since the production parameter of

each arc is equal to the consumption parameter on the other arc, it follows that throughout any

execution of this graph, the total number tokens queued on both arcs remains constant. Thus, the

number of tokens residing on edge is always less than or equal to .

1. In [30], this test is expressed in a form that is suitable for general computation graphs. This form involves
the comparison of the zero vector against the product of a square matrix with a column vector. However for
the special case in which the cycle in question is an SDF graph for which a repetitions vector exists (unity
gain), it is easily verified that the rows in the matrix are constant multiples of one another, and thus, all but
one (any one) of them can be discarded from the test.

C

C

q

α()snk α()delay κα≥

b α′() κα′⁄ α′

b α′() α′

x x()q

n 1>

δ 2 n 1–()≥

A B,() δ

19

Now suppose that , which implies that . Then each time node

 is visited during the simulation defined in step (b) above, exactly one invocation of is exe-

cuted, and thus node is visited a total of times in the simulation. Since

, we see that the time required to complete the simulation increases without

bound as the parameter tends to infinity. Thus, we see that for arbitrary SDF graphs, there is no

bound on the completion time, let alone a polynomial bound, that is a function of the number of

SDF nodes alone.

An alternative exact condition can be evaluated by applying the loop scheduling algorithm

of [18], and then using a class-S scheduling algorithm [7] to process the resultingtightly interde-

pendent components. Families of graphs exist for which the technique of [18] requires

time, where is the number of SDF nodes; one such family is illustrated in figure 10. For this

family of graphs, it can be shown that in each application, thesubindependence partitioningstep

in [18] separates out the left-most node of the strongly connected component that it is applied to,

thereby reducing the size of the strongly connected component by exactly one node. Thus, sub-

independent partitions must be constructed. Furthermore each application of subindependence

partitioning involves an application of Tarjan’s algorithm for finding strongly connected compo-

nents [19], which requires time, where is number of nodes in the SDF subgraph that it

is applied to. From these observations, it is easily seen that the technique of [18] requires

time for figure 10.

For general SDF graphs, the net running time attributed to the use of a class S scheduling

Figure 9. A family of SDF graphs that is used to show that there is no upper bound on
the number of steps required by Karp and Miller’s iteration scheme that is a function
of the number of SDF nodes.

A B
n

(n−1)

(n−1)

n
δD

δ 2 n 1–()= δ 2κ A B,()<

B B

B B()q

B()q n 1–()=

n

Ω m
2()

m

n

Ω n′() n′

Ω n
2()

20

algorithm in the technique of [18] is

 per clusterization test,

where is the set of SDF nodes that are contained in the tightly interdependent components. It

has been observed that is usually empty in practice. However, the potential for behav-

ior evidenced by the example in figure 10 proves prohibitively expensive for hierarchical schedul-

ing since in such cases, the cost must be incurred at least once foreachclusterization

step, and there may be up to total clusterization steps, where is the number of edges in the

original SDF graph.

A third exact condition is described by Bilsen, Engels, Lauwereins, and Peperstraete [31]

for a computational model calledcyclo-static dataflow, which is an extension of SDF. As in the

approach of Karp and Miller, evaluating this condition for a general SDF graph requires examin-

ing each simple cycle separately. For a cycle that is not deadlocked, the tightest known upper

bound, time complexity expression for the test applied to each cycle is

,

where is the repetitions vector of and is the number of nodes traversed by . It is easily

shown that there is no upper bound on the minimum repetitions vector component that is polyno-

mial in , and thus, the approach of [31] exhibits the potential for a similar form of “two-level

Figure 10. A family of SDF graphs for which the running time required by
the loop scheduling algorithm of [18] is .Ω number of SDF nodes() 2()

A0 A1 A2 A3

2D 2D 2D

2 1

2 1 2 12

2 1 2 1 An-1 An

2D

2

2 1

1 1

Ω x()q
x T∈
∑ 

 

T

T Ω m
2()

Ω m
2()

e e

O n x()q x is traversed byC{ }()min×()

q C n C

n

21

running time explosion” as is present in the approach of Karp and Miller.

Two sufficient — but not necessary — clustering conditions that were developed previ-

ously — themerge passconditions of Buck [26], and How’s clustering ofuniform frequencysub-

graphs [27] — are too restrictive for our purposes since these conditions require that the nodes

involved in a given SDF cluster must have identical repetition counts (components of). Thus,

they cannot be used to reduce the explosion in the size of the DAG that arises from multirate sub-

graphs such as the example in figure 3. The clustering techniques described in [18, 25, 28] all per-

mit clustering across changes in repetition count; however, the first of these maintains the cluster

hierarchy on the DAG, the second technique is restricted to acyclic graphs, and the third tech-

nique was designed under the restriction that the existence of a single appearance schedule must

be preserved. Thus, these three approaches are not in alignment with our primary objectives in

clustering for hierarchical multiprocessor scheduling, which are (a) to avoid constructing a DAG

until the entire cluster hierarchy is constructed; (b) to limit the size of the DAG resulting from the

final cluster hierarchy as much as possible; and (c) to handle arbitrary topologies, including

graphs that contain cycles. After our clustering pass has constructed its decomposition of the

input graph, individual components of the resulting hierarchy may subsequently be processed by

any of the alternative clustering techniques described above; however, our objectives in construct-

ing the initial hierarchy require a cluster selection process that is significantly more general (less

restrictive) than the previous approaches.

The following theorem, which we call theSDF composition theorem, establishes four

clustering criteria that together provide a sufficient condition that a given clustering operation

involving two adjacent nodes does not produce deadlock. The first three conditions prevent the

introduction of cycles into the precedence graph. The last condition prevents the introduction of

new cycles into both the SDF graph and the precedence graph.

Theorem: Suppose thatG is a consistent, connected SDF graph, and is an ordered pair of

distinct, adjacent nodes inG. Then , the graph that results from clustering

 into a single node , is consistent if the following four conditions all hold.

1. Precedence shift conditionA: If is in a nontrivial strongly connected component , then:

q

x y,()

x y,{ } G,()cluster

x y,{ } Ω

x C

22

for each ,

there exists a positive integer and a nonnegative integer such that

 and ,or (27)

for each ,

there exists a positive integer and a nonnegative integer such that

 and . (28)

2. Precedence shift condition B: If is in a nontrivial strongly connected component , then:

for each ,

there exists a positive integer and a nonnegative integer such that

 and ,or (29)

for each ,

there exists a positive integer and a nonnegative integer such that

 and . (30)

3. Hidden delay condition: If and are in the same strongly connected component, then (a) at

least one arc fromx to y has zero delay,and (b) for some positive integer , or

.

4. Cycle introduction condition: There is no simple path from to that contains more than

one arc.

Figure 11 illustrates graphs that violate the conditions of the SDF composition theorem.

Note that the conditions given in the SDF composition theorem may be satisfied for the

ordered pair , even though they are not satisfied for . Thus, in general, both order-

ings should be tried before ruling out a clustering operation.

α α′ α′()snk x=() α′()src C∈() α′()src x y,{ }∉()and and{ }∈

k1 k2

ρα k1Q x y,()κα= δα k2Q x y,()κα=

α α′ α′()src x=() α′()snk C∈() α′()snk x y,{ }∉()and and{ }∈

k1 k2

κα k1Q x y,()ρα= δα k2Q x y,()ρα=

y C

α α′ α′()snk y=() α′()src C∈() α′()src x y,{ }∉()and and{ }∈

k1 k2

ρα k1Q x y,()κα= δα k2Q x y,()κα=

α α′ α′()src y=() α′()snk C∈() α′()snk x y,{ }∉()and and{ }∈

k1 k2

κα k1Q x y,()ρα= δα k2Q x y,()ρα=

x y

k q x() kq y()=

q y() kq x()=

x y

y x,() x y,()

23

Proof of the SDF composition theorem:Let . As mentioned in the

proof of lemma 5, clustering does not cancel the existence of a repetitions vector, so we need only

show that is not deadlocked. As in lemmas 3 and 5, we prove this by contraposition.

Suppose is deadlocked.

From condition 4, no new cycles areintroduced by the clustering operation. That is, for

every cycle in that con-

tainsΩ, there is a unique corresponding cycle in , and this cycle has one of the following forms:

(a) (same as , but with replaced by);

(b) (same as , but with replaced by);

(c) (same as , but with replaced by

).

 For example, figure 12(a) corresponds to scenario (a) above; figure 12(b) corresponds to

y

z

y

x z

3
y1

x1 z1

x2

x3

z2

z3

SDF PRG

SDF PRG

(b)

(a)

(c)

Figure 11. Systems that violate the SDF composition theorem. System (a) violates precedence
shift condition A; system (b) violates the hidden delay condition; and system (c) violates the cycle
introduction condition. Notice that the clusterings in systems (a) and (b) introduce cycles in the
precedence graph, while the clustering in system (c) introduces cycles in both the SDF graph
and its corresponding precedence graph. Here, in the SDF graphs, and for all
arcs , with the exception that in (a).

ρα 1= κα 1=
α κ x y,() 3=

y

x z

y

x z

x

D

D

G′ x y,{ } G,()cluster=

G′

G′

C a1 a2 ... am 1– am→ → → → Ω am 1+ ... aN→ → → a1= = = G′

G

a1 a2 ... x ... aN→ → → a1= C Ω x

a1 a2 ... y ... aN→ → → a1= C Ω y

a1 a2 ... x y ... aN→ → →→ → → a1= C Ω

x y→

24

scenario (b); figure 12(c) corresponds to scenario (c); and the situation in figure 12(d) cannot arise

due to condition 4.

Since is deadlocked, at least one of the cycles that traverse must be deadlocked. Let

 be a deadlocked cycle in that traverses . Suppose that is of form (a). Then from

lemmas 3 and 4, and condition 1, it follows that the corresponding cycle in must be dead-

locked, and thus that must be deadlocked. Similarly, if is of form (b), then it follows from

lemmas 3 and 4, and condition 2 that theG must be deadlocked. Finally, if is of form (c), then

lemma 5, lemma 6 and condition 3 guarantee that G is deadlocked. Thus the assumption that

is deadlocked implies that is deadlocked. But this contradicts our assumption that is consis-

tent.❏

Clearly, both of the precedence shift conditions and the hidden delay condition can be

checked exactly in an efficient manner. A number of exact and approximate (conservative) tests

are possible for the cycle introduction condition. Currently, we are trying to determine which test

for the cycle introduction condition yields the best trade-off between accuracy and efficiency for

practical applications.

6. Clustering techniques

In this section, we review our clustering techniques for SDF graphs. There are currently

four clustering techniques: user specified, resource constraint limited,well-ordered URC sub-

graphs (an acyclic graph is well ordered if it has only one topological sort), and the parallel time

G′ Ω

C∗ G′ Ω C∗

G

G C∗

C∗

G′

G G

x

y

y

x

x

y

(c)(b) (d)
x

y

(a)

Figure 12. Examples used in the proof of the SDF composition theorem.

25

reduction heuristic.

The first clustering technique is by far the simplest: we allow the user to specify clusters

that will be mapped onto a single processor. This clustering technique empowers the user with

fundamental scheduling decisions. A potential problem is that the user can introduce artificial

deadlock. However, this error is easily caught at compile time [20]. We have implemented this

technique in Ptolemy, where it has enabled the development of multiprocessor applications that

have previously been impossible to synthesize using other SDF multiprocessing techniques.

When we automatically cluster subgraphs, we must ensure that the constructed clusters do not

introduce artificial deadlock. We can accomplish this by using the SDF composition theorem.

The next clustering technique takes into account resource constraints. When mapping SDF

graphs onto heterogeneous processors, a group of connected nodes may be required to be mapped

onto a particular processor. Here, we are free to cluster these SDF subgraphs as long as we do not

introduce artificial deadlock.

The third clustering technique groups the nodes in a well-ordered, URC SDF subgraph

where the nodes do not have internal state (or equivalently, have self loop arcs). One source node

is connected to all the input arcs and one destination node is connected to all the output arcs.

Thus, when clustering well ordered SDF subgraphs, we do not group overbranch or merge SDF

nodes (nodes that have multiple sources or destinations), where functional parallelism is exposed.

This clustering does not hide any of the available parallelism that will be exposed in the final

DAG. An example is shown in figure 13.

Finally, the last clustering technique is based on an adaptation of Sarkar’s multiprocessor

DAG scheduling heuristic to SDF graphs [14]. Sarkar’s algorithm is described below, and an

example is shown in figure 14:

1. Sort arcs of a DAG in descending order of arc costs

2 2
BA

3 3
C

1 1
D

1 1

Figure 13. A well-ordered, URC

1

26

2. Zero the arc with the maximum weight if the parallel time does not increase

3. Repeat step 2 for all arcs

To apply Sarkar’s algorithm to SDF graph, we must first construct anacyclic version of

the SDF graph. We construct an acyclic version of our SDF graph by:

1. Removing all arcs that satisfy .

2. Clustering all remaining strongly connected components in the modified SDF graph.

7. Hierarchical scheduling algorithm

We are now ready to present the proposed hierarchical scheduling algorithm. This algo-

rithm will be implemented in the months to come within the Ptolemy project.

7.1 Initialization

1. Cluster nodes that are on SDF well-ordered URC subgraphs without internal state [1].

2. Cluster nodes that share resource constraints which satisfy the SDF composition theorem.

3. Compute the repetitions vector, , .

4. Construct theacyclic SDF graph.

5. Compute the total IPC cost for each arc on theacyclic SDF graph.

10 1

1

1

1

1

21

0 1

1

1

1

1

21

PT = 14 PT = 6

Figure 14. An illustration of Sarkar’s algorithm.

0 1

1

1

1

1

01

PT = 3

α δα καq α()snk()≥

q O V E+()

27

7.2 Main loop

1. Apply one step of Sarkar’s multiprocessor clustering heuristic on theacyclic SDF graph.

2. Using the SDF composition theorem, test the resulting cluster candidate to make sure it does

not introduce deadlock.

3. If the candidate does not introduce deadlock, then perform the corresponding clustering

operation, and update the repetitions vector.

4. Repeat 1,2 until we reach a stopping condition. We plan on using a stopping condition similar

to: .

7.3 Wrap up

1. Schedule SDF uniprocessor clusters with the loop scheduler of reference [18], which has time

complexity that is , where , and is the set of nodes that

are contained in thetightly interdependent componentsof the SDF graph [16].1

2. Schedule user specified clusters with the given scheduler.

3. Schedule the clustered system with the user specified multiprocessor scheduler

8. Performance

The hierarchical scheduling framework for user specified clustering has been imple-

mented in Ptolemy [1]. Four signal processing applications have been synthesized for a heteroge-

neous multiprocessor consisting of a RISC and a DSP processor. An example system that was

designed within this framework will be detailed in the following section. A table comparing the

results of user specified hierarchical scheduling versus full DAG expansion multiprocessor sched-

uling is given in table 1, and this data is depicted visually in figures 15 and 16. Note that for all

systems, the hierarchical scheduling time was around 1 - 2 orders of magnitude faster, while the

1. It has been observed that tightly interdependent components appear to be nonexistent in most practical SDF

graph, and thus, the complexity is often simply [16].

q vi() Kmax V P,()<
vi V∈
∑

O m2 q v()
v T∈
∑+() m max V E,()= T

O m
2()

28

generated code was 1 - 2 orders of magnitude smaller. Also, three of the four systems scheduled

using the full DAG expansion scheduling techniques exceed the DSP processor memory

resources. The DSP card only has 16K available while all of the modem examples used at least

29K. For hierarchical scheduling the modem examples needed 1.5K or less. Finally, there was vir-

tually no penalty for doing hierarchical scheduling, as can be seen in the makespans of the final

multiprocessor schedules.

9. Acoustical modem example

In this section we detail a 320 bps quadrature amplitude modulation (4-QAM) acoustical

modem [22] that is scheduled onto two heterogeneous processors (RISC, DSP). The SDF specifi-

cation is shown in figure 17. A pseudo-random bit stream is generated on the workstation and then

packed into a DSP word stream(22 bits/word). The stream of words is sent to a DSP which

unpacks each word to form a bit stream. These bits are then encoded into a symbol (2 bits/sym-

bol). The DSP transmits and then receives the symbol stream over a analog channel. The received

symbols are then decoded, packed and sent back to the workstation, where the errors are dis-

played to the user. The user can control the alignment of the symbol period and examine the

resultant constellation and eye diagram using the peek/poke mechanism described in [24]. All of

System
SDF

Graph Size DAG Size

Scheduling
Time in CPU

Seconds Makespan

P1: DSP
Code Size
Assembly

P2: Sparc
Code Size

C
FM-Synthesis

128 pt. spectrum
44 14 / 806

57 x smaller
0.47 / 4.35

9.25 x faster
28832 / 28832
no difference

408 / 408
same

34K / 420K
12 x smaller

bpsk (530 bps)
31 9 / 2628

292 x smaller
0.37 / 14.71
40 x faster

41566 / 41368
< 1% difference

424 / 32045
75 x smaller

14K / 56K
4 x smaller

4-QAM (320 bps)
eye diagram

59 15 / 9267
618 x smaller

0.91 / 80.87
87 x faster

150123 / 150123
no difference

1421 / 87533
62 x smaller

38K / 63K
1.7 x smaller

4-QAM (640 bps)
52 10 / 3490

349 x smaller
0.69 / 20.1
29 x faster

40037 / 39707
< 1% difference

848 / 29720
35 x smaller

35K / 56K
1.6 x smaller

Table 1. Performance of the hierarchical scheduling framework for user-specified clustering.

31

the transmitter and receiver filters are polyphase FIR filters with interpolation and decimation fac-

tors of 50 samples respectively.

Note that the SDF graph shown in figure 17 is expressed hierarchically. There are a total of

59 SDF nodes; the corresponding DAG has a total of 9267 nodes. Since we are able to use SDF

uniprocessor schedulers on the SDF subgraph clusters, for this example, we are able to obtain a

single appearance schedule which leads to very compact code. A single appearance schedule is

an SDF schedule in which each node only appears once [18]. To obtain the single appearance

schedule, three uniprocessor schedulers and one multiprocessor scheduler were used by the hier-

archical scheduling framework. By using the cluster hierarchy, the multiprocessor scheduler only

had to schedule a DAG with 8 nodes. The multiprocessor schedule generated from the fully

Figure 17. A 4-QAM acoustical modem. The top center block diagram is the top-level modem
schematic. The hierarchy of Pseudo-Random Bits, DSP Modem, and Error Display blocks is
expanded in the accompanying block diagrams. All of the blocks except for the DSP Modem
execute on the host workstation. The DSP Modem executes on the Ariel S-56X DSP board.

32

expanded DAG has one function call (or inlined procedure) for each of its 9267 nodes as com-

pared to only 59 function calls for the hierarchical schedule.

10. Conclusions

In this paper, we have introduced a hierarchical scheduling framework for SDF graphs

being mapped onto multiple processors. Using user specified clustering, this framework has dra-

matically improved the scheduling time and reduced the memory requirements needed in the gen-

erated system. In some cases, the hierarchical scheduling framework enabled the synthesis of

applications previously impossible using full DAG expansion multiprocessor scheduling tech-

niques.

We plan to implement automated clustering heuristics for use on the SDF graph before the

SDF to DAG translation. These will be inspired by the DAG clustering heuristics found in multi-

processor schedulers. The objective is to hide only that parallelism that would not be exploited,

and in doing so, simplify the DAG.

References

[1] J.L. Pino and E.A. Lee, “Hierarchical static scheduling of dataflow graphs onto multiple pro-
cessors,”IEEE International Conference on Acoustics, Speech, and Signal Processing, Detroit,
Michigan, IEEE, 1995.

[2] J. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt, “Ptolemy: A framework for simulating and
prototyping heterogeneous systems,”International Journal of Computer Simulation, special issue
on Simulation Software Development, vol. 4, 1994, p. 155-182.

[3] J.L. Pino, S. Ha, E.A. Lee, and J.T. Buck, “Software synthesis for DSP using Ptolemy,”Jour-
nal of VLSI Signal Processing to appear in special issue on Synthesis for DSP, 1993.

[4] E.A. Lee and S. Ha, “Scheduling strategies for multiprocessor real-time DSP,”IEEE Global
Telecommunications Conference and Exhibition. Communications Technology for the 1990s and
Beyond, vol. 2, Dallas, TX, USA, IEEE, 1989, p. 1279-1283.

[5] D.G. Powell, E. A.Lee, and W.C. Newman, “Direct synthesis of optimized DSP assembly
code from signal flow block diagrams,”IEEE International Conference on Acoustics, Speech, and
Signal Processing, vol. 5, San Francisco, CA, IEEE, 1992, p. 553-556.

33

[6] S. Ritz, M. Pankert, and H. Meyr, “High level software synthesis for signal processing sys-
tems,”International Conference on Application Specific Array Processors, Berkeley, CA, USA,
IEEE Computer Society Press, 1992, p. 679-693.

[7] E.A. Lee and D.G. Messerschmitt, “Synchronous data flow,”Proceedings of the IEEE, vol.
75, no. 9, 1987, p. 1235-1245.

[8] J. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt, “Multirate signal processing in Ptolemy,”
IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, Toronto,
Ont., Canada, IEEE, 1991, p. 1245-1248.

[9] H. Printz,Automatic mapping of large signal processing systems to a parallel machine, Ph.D.
Dissertation CMU-CS-91-101, Carnegie Mellon, 1991.

[10] G.C. Sih and E.A. Lee, “Dynamic-level scheduling for heterogeneous processor networks,”
Second IEEE Symposium on Parallel and Distributed Processing, Dallas, TX, USA, IEEE Com-
puter Society Press, 1990, p. 42-49.

[11] M.R. Garey and D.S. Johnson,Computers and Intractability: A guide to the theory of NP-
completeness, New York: W.H. Freeman, 1991.

[12] A. Gerasoulis and T. Yang, “A comparison of clustering heuristics for scheduling directed
acyclic graphs on multiprocessors,”Journal of Parallel and Distributed Computing, vol. 16, no.
4, 1992, p. 276-291.

[13] S.J. Kim and J.C. Browne, “A general approach to mapping of parallel computations upon
multiprocessor architectures,”International Conference on Parallel Processing, vol. 3, Univer-
sity Park, PA, USA, Pennsylvania State Univ, 1988, p. 1-8.

[14] V. Sarkar,Partitioning and scheduling parallel programs for multiprocessors, Cambridge,
Mass.: MIT Press, 1989.

[15] G.C. Sih and E.A. Lee, “Declustering: A new multiprocessor scheduling technique,”IEEE
Transactions on Parallel and Distributed Systems, 1992.

[16] S.S. Bhattacharyya,Compiling dataflow programs for digital signal processing, Ph.D. Dis-
sertation UCB/ERL M94/52, University of California at Berkeley, 1994.

[17] P.K. Murthy, S.S. Bhattacharyya, and E.A. Lee,Combined code and data minimization for
synchronous dataflow programs, Memorandum UCB/ERL M94/93, Electronics Research Labora-
tory, University of California at Berkeley, December,1994.

[18] S. S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Lee, “Generating compact code from data-
flow specifications of multirate signal processing algorithms,”IEEE Transactions on Circuits and
Systems — I: Fundamental Theory and Applications, vol. 42, no. 3, p. 138-150, March, 1995.

[19] R. Tarjan, “Depth-first search and linear graph algorithms,”SIAM Journal on Computing,
vol. 1, no. 2, p. 146-160, 1972.

[20] J.L. Pino, T.M. Parks, and E.A. Lee, “Automatic code generation for heterogeneous multi-
processors,”IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2,

34

Adelaide, South Australia, 1994, p. 445-448.

[21] T.H. Cormen, C.E. Leiserson, and R.L. Rivest,Introduction to algorithms, New York: MIT
Press, 1990.

[22] E.A. Lee and D.G. Messerschmitt,Digital communication, Boston: Kluwer Academic Pub-
lishers, 1994.

[23] E. A. Lee,A coupled hardware and software architecture for programmable digital signal
processors, Ph. D. thesis, Dept. of Electrical Engineering and Computer Sciences, University of
California at Berkeley, May, 1986.

[24] J.L. Pino, T.M. Parks, and E.A. Lee, “Mapping multiple independent synchronous dataflow
graphs onto heterogeneous multiprocessors,”IEEE Asilomar Conference on Signals, Systems,
and Computers, Pacific Grove, CA, 1994.

[25] S. S. Bhattacharyya and E. A. Lee, “Scheduling synchronous dataflow graphs for efficient
looping,” Journal of VLSI Signal Processing, December 1993.

[26] J. T. Buck,Scheduling dynamic dataflow graphs with bounded memory using the token flow
model, Ph.D. thesis, Memorandum UCB/ERL M93/69, September, 1993.

[27] S. How,Code generation for multirate DSP systems in Gabriel, Memorandum UCB/ERL
M94/82, Electronics Research Laboratory, University of California at Berkeley, October, 1994.

[28] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,Two complementary heuristics for translat-
ing graphical DSP programs into minimum memory implementations, Memorandum UCB/ERL
M95/3, Electronics Research Laboratory, University of California at Berkeley, January, 1995.

[29] S. Ritz, M. Pankert, and H. Meyr, “Optimum vectorization of scalable synchronous dataflow
graphs,”Proceedings of the International Conference on Application-Specific Array Processors,
Venice, October, 1993.

[30] R. M. Karp and R. E. Miller, “Properties of a model for parallel computations: determinacy,
termination and queuing,”SIAM Journal on Applied Mathematics, vol. 14, no. 6, p. 1390-1411,
November, 1966.

[31] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-static data flow,”Pro-
ceeding of the International Conference on Acoustics, Speech, and Signal Processing, Detroit,
May, 1995.

