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Abstract

Belief Network Induction
by
Charles Ronald Musick Jr.
Doctor of Philosophy in Computer Science
University of California at Berkeley
Professor Stuart J. Russell, Chair

This dissertation describes BNI (Belief Network Inductor), a tool that automatically in-
duces a belief network from a database. The fundamental thrust of this research program has been
to provide a theoretically sound method of inducing a model from data, and performing inference
over that model. Along with a solid grounding in probability theory, BNI has proven to be a quick,
practical method of inducing data models that are highly accurate. The results include a belief
network that stores beta distributions in the conditional probability tables, coupled with theorems
demonstrating how to maintain these distributions through inference; techniques for applying neu-
ral network and other learning techniques to the task of conditional probability table learning; and
a decision theoretic sampling theory which addresses scalability issues by characterizing the size of
the sample needed to produce high quality inferences.

The setting for this work is in database mining. Database mining is one of the fastest
growing topics in Artificial Intelligence today, with industry providing at least as much impetus as
research labs and universities. The general goal is to extract interesting quantities or relationships
that are “hidden” in large corporate or scientific databases, with the potential benefits of a successful
technology being enormous. For example, models can be built that characterize what types of
customers will respond to what types of marketing schemes, retailers will be able to predict sales
to help determine correct inventory levels and distribution schedules, and insurance companies will
be able to predict expected claim costs and better classify who will buy what type of coverage.
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Preface

Two of the chapters in this dissertation follow closely two previous publications. Chapter
3, entitled “Propagating Distributions”, is similar to my paper “Maintaining Inference Distributions
in Belief Nets”[63] which appeared in the conference on Uncertainty in Artificial Intelligence in 1993.
Chapter 4 “Decision Support” is in large part a paper that I coauthored with Jason Catlett and
my advisor Stuart Russell, “An Efficient Method for Constructing Approximate Decision Trees for
Large Databases”[64] which appeared in the Machine Learning conference in 1993. In this paper,
Jason provided the empirical evaluation, Stuart and I were responsible for the theoretical details.



Chapter 1

Introduction

1.1 Motivation

Information is useless without knowledge of how to use it.

This is the principle behind any system that attempts to build a model of some domain,
then reason from that model instead of from the domain directly. Data in its raw form exists
mainly to be processed. It is not organized to elicit any degree of understanding, it often contains
a large percentage of random noise and irrelevant events, and it tends to be incomprehensible until
summarized in some intelligent fashion. Consider the human senses. In order to make any sense
of the stream of sensory input that we get from our eyes (millions of bits of information from
rods and cones), our ears (two streams of multiband frequency readings), and our skin (billions
of nerve pulses), the brain must first translate this information into a high level “language” that
strips the noise and the majority of irrelevancies, presenting a clean, simple representation of the
actual input. Without this high level model, most of the data would be completely unusable to
us. Automatic model construction is one of the main objectives of Machine Learning, and is one
of the fundamental problems in Artificial Intelligence. Automatic model induction is the topic of
this dissertation.

Model induction is useful in a variety of settings, from both a practical and a theoretical
standpoint, thus there are several possible modes of presentation of this type of research. This
dissertation is presented in the context of database mining, which is the task of extracting the
interesting and relevant information from a large database. Database mining is directly relevant
to every computerized industry in the world, and it seems evident that the related technologies
will end up being one of the most widespread and successful applications of Machine Learning
technology that we have yet seen.

Databases are at the core of all but the smallest companies. They are the repository of
any and all information that might be useful now or in the future to that company, and great
troubles are taken in order to protect them from harm. But until recently, little has been done
along the lines of managing all of the information stored in the database. How can we transform the
raw data in a database into high level descriptions or models that present the useful information
in easy to understand, easy to access forms? For years now corporate and scientific databases
have been growing at tremendous rates, far surpassing our ability to manually dissect and analyze
their contents. For example, Lawrence Livermore has over 32 terabytes of information representing



the Lab’s research data and results from the past fifty years. Other national laboratories, oil and
gas exploration companies, and NASA all have databases that rival or exceed the amount of data
stored at LLNL. The US Meteorological services [90] and NASA Jet Propulsion Labs are considering
systems that can process one terabyte of satellite and telescope image data on a day to day basis.
The National Storage Lab is working to build storage systems that can handle and provide access
to quantities of data measured in pedabytes (a pedabyte is 1000 terabytes, or 1,000,000 gigabytes).
The result is that for the most part, the users of these large relational databases often
have little idea of the type and value of the information that is contained in the raw data of their
database. The pure size and complexity of these databases alone is enough to deflect any but
the most serious attempt at modeling. The problem is compounded by restrictions that many
companies place on the availability of certain sensitive, private or classified areas of the database.
Among the information that is hidden (or at least not directly represented) in these large
relational databases is descriptions of the relationships between the variables in the database.
Beyond indexing information, a relational database does not explicitly represent how, for example,
the probability of an injury relates to the sturdiness of a car in a car accident, or what type of
people have bought lawn mowers in the past five years. The goal of database mining is to bring
all such relations to light in an easy to understand manner. The potential benefits of a successful
technology are enormous. Some of the industries that will or have already been affected are [57]:

¢ Marketing: predicting which customers will respond to a mailing or buy a particular prod-
uct; classifying customer demographics.

¢ Banking: forecasting levels of bad loans, modeling credit card spending patterns of customers
to detect fraudulent credit card usage, and predicting which kinds of customers will respond
to (and qualify for) new loan offers.

¢ Manufacturing, sales, and retail: predicting sales; determining correct inventory levels
and distribution schedules among outlets.

¢ Manufacturing and production: predicting when to expect machinery failures; finding key
factors that control optimization of manufacturing capacity; predicting excessive vibrations
in a steel mill when rolling; determining values for circuit trim resistors.

¢ Brokerage and securities trading: predicting when bond prices will change; forecasting
the range of stock fluctuation for particular issues and the overall market; determining when
to trade stocks.

e Insurance: forecasting amount of claims and cost of medical coverage; identifying which
factors have the largest affect on medical coverage; predicting which customers will buy new
policies.

e Computer hardware and software: modeling disk drive failure; forecasting how long it
will take to create new chips; catching potential security violations, and resource requirements.

e Government and defense: forecasting the cost of moving military equipment; testing
strategies for potential military engagements; predicting resource consumption.
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Figure 1.1: Process Flow Chart
The leftmost portion shows a database as an urn, indicating it to be a loose collection of datum that can be sampled from. The
middle picture represents the model that will be learned from the database. The rightmost equation represents the desire to

use to model to answer questions about the environment.

¢ Medicine: modeling a drug’s mechanism of action; classifying anti-cancer agents tested in a
drug screening program; allocating resources in emergency rooms; discovery of new cures.

This dissertation describes BNT (Belief Network Inducer), a tool that automatically in-
duces belief networks from a database. The fundamental thrust of this research program has been
to provide a theoretically sound method of inducing a model from data and performing inference
over that model. Along with a solid grounding in probability theory, BNI has proven to be a quick,
practical method of inducing data models that are substantially more accurate and complete than
previous database mining techniques. Belief networks are the foundation of this approach since
they allow the user to ask for any conditional or marginal probability in the network, they are
incrementally updatable, and they provide a representation that is concise, understandable and
amenable to manipulation consistent with probability theory.

Figure 1.1 shows a summary of the three main steps that BNI will carry out in describing
or modeling the environment from the database; sample construction, model learning, and inference.
BNI has made contributions to each of these tasks. The urn on the left makes the point that a
database can be, and in many case should be sampled from instead of used in its entirety. The main
question to answer here is how large the sample should be in order to build a model that is accurate
enough to suit the user’s needs. The condition “accurate enough” must be user-definable, as it will
change depending on domain and situation. The middle figure represents the belief network model
that is being learned from the data. The main goal in learning the model is to improve prediction
accuracy over the environment. The righthand portion of the figure represents the desire to use
the model to answer questions. The question BNI addresses in this portion is how to provide
information that measures the degree of belief one can have in the answers returned by the induced
model.



1.2 Domain Characteristics

What follows is a characterization of the domains that database mining techniques might
be applied to. This is useful in identifying desiderata that should be satisfied by potential solutions.

¢ Large amounts of data. Today databases on the order of gigabytes are common; terabyte
databases exist. Tomorrow, terabyte databases will be common, pedabyte databases will
exist.

e Sparse information. Even a one thousand pedabyte database (10'® bytes) is not nearly
large enough to characterize even a small fraction of the set of events that could occur in a
moderate sized domain. For example, 100 variables with 5 values each gives rise to 5190 (or
~ 10%9) different events that could occur. Of course, it would be rare that all of the variables
would be deemed as relevant or descriptive of the situations or events that are interesting. For
example, the variable Car-Color is irrelevant to the expected cost of an accident; Car-Model
would be much more relevant. Thus, all the data describing cars with different colors can be
grouped together and treated as if the color variable does not exist, effectively reducing the
number of “interesting” events. Continuing the above example, if only 10 of our 100 variables
are needed to describe our most complicated interesting events, then there are on the order
of 107 possibilities. A much smaller database can cover these events. However, even if just a
few variables are needed to describe our interesting events, the fact that the events will not
be equally probable leads to a gloomy conclusion; no matter how large or small the database,
the event space will often be sparsely described. There will be interesting events that do not
have enough information to characterize them.

¢ Unfriendly data. Continuous variables are possible. The data is expected to be imperfect,
having both missing information, incorrect information, information that is uncertain by
nature (the probability of heads when flipping a coin), and information that is not measurable
but known to have an affect on the rest of the data.

¢ Changing domain. We live in a continuously changing environment, and must deal intelli-
gently with a steady stream of incoming data. This data will be characterized by a certain
amount of concept drift. The quantitative relations that exist during one time period are
likely to change in the next.

These characteristics lead one to several conclusions. First, the model must be incremen-
tally updatable. Updating is necessary because the model must be able to accommodate the steady
stream of new incoming data. Incrementality is needed, otherwise the system will have to reprocess
all previous data each time new data is received, and therefore will be hopelessly slow. Second,
any practical system must be tractable in all phases from model construction to reasoning. The
demand of tractability is especially harsh in this environment since the data set may be huge, and
the user may require highly accurate models. Finally, the potential sparseness of relevant events in-
dicates that the system should be robust and graceful in the presence of low probability events. All
potential information available should be used when determining the probabilities of those events.
Furthermore, since some events may be predicted with high accuracy, and others with very little,
the system must be able to indicate a degree of confidence in the answers provided, otherwise it
would be very difficult to have any degree of faith in the quality of the results provided.
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Figure 1.2: A Smoker Belief Net
A belief net showing a simplistic relation between smoking, bronchitis and having parents who smoke. The name of each node

is in bold face, and the possible values appear under the name.

1.3 Approach

A quick description of the approach follows, then below each point is specifically con-
sidered. BNI constructs a modified belief network from databases that are replete with errors,
uncertainty, missing and continuous values. The focus is on the induction and use of belief nets.
We take advantage of the human ability to specify qualitative relationships and therefore make the
assumption that the graphical structure is given. Given the graphical structure, we learn condi-
tional probabilities as distributions instead of as point probabilities, and show how to propagate
these distributions in inference. Where data in a node is sparse, we use traditional learning meth-
ods to supplement the statistical inference. To allow the learning techniques to scale up to large
databases, we perform decision theoretic subsampling to decide the sample size that has the max-
imum utility. A hidden node is an unmeasurable variable in a database, a variable without any
data. We add hidden nodes when the addition will dramatically reduce the size of the learning
problem, and we discuss methods of supplying values to them.

1.3.1 Belief networks

The belief network is the model to be learned and used to reason with in BNI.

A belief network is a directed acyclic graph consisting of a set of nodes X; for ¢in 1...n,
a conditional probability table T; for each node, and a set of directed arcs between the nodes. Each
node represents a random variable, and has an associated, possibly infinite domain z;; € Dy;,.
Note that in general uppercase will be used for variables and lowercase for values. An arc from
X; to X; represents a dependency between the two, and establishes X; as the parent of its child
X;. The conditional probability table (CPT) of every node in the network represents the set of



Pr(P)
0| .62
P1].23
2 1.15
Pr(S|P)
P
0 1 2
S 61 | .57 | .53
11.39| 43| 47
Pr(D|S)
S
0 1
b | .75 | .51
D | h|.20] .41
n | .05 | .18

Table 1.1: CPTs for the Smoker Network
These are the conditional probability tables for the smoker network.

Pr(D,P,S)
P.S
00101 ] L0 L,1]20]21
b | .28 .13 .10 | .05 | .06 | .04
D[h|.08].10.03].04].02].03
n|.02].04].00].02] 0 |.01

Table 1.2: Joint Probability Table for the Smoker Network
This is not a conditional probability table, but rather a joint table representing all possible events that could occur in the

smoker domain.

conditional probabilities Pr(X;|I[;)!, where II; represents the set of parents of X;. Finally, X; is
conditionally independent of every other variable in the network given its parent instantiations, or
Pr(X;]1L;, X;) = Pr(X;|II;) for any X; # X; and X; ¢ II;.

Figure 1.2 shows a simple belief net, with the domain of each variable printed beneath
the name of the variable. The corresponding CPTs are shown in Table 1.1. Table 1.2 shows the
joint probability table for the problem, where the joint table explicitly describes the probability of
every possible combination of variable values. The joint is typically large enough even in smaller
networks that it is not directly representable on current storage systems.

!This is actually shorthand for all probabilities matching Pr(X; = x4|1l; = mi)



In fact one of the primary benefits of belief networks is space compaction. In Table 1.2
seventeen independent cells are required to represent the joint probability table, whereas only
nine independent cells are required to store the belief network. The factorization gets much more
dramatic if the number of parents grow, or the domain sizes grow. For example, if each node had
ten possible values, then the joint would require about one thousand cells, while the belief net
would require a little over two hundred. The space compaction is achieved by taking advantage of
the known independence conditions between the variables in such a way that the belief network
still accurately represents the probabilities stored in the joint space. For any belief network, the
joint probability space can be reconstructed by multiplying through all the conditional probabilities
represented in the network, as Pr(Xy,..., X,) = [T, Pr(X;|1L,).

There are just a few other related definitions to cover. Let  and ¥ be mutually exclusive
subsets of the nodes in the network. An inference problem can be defined as the task to provide a
value for a query of the form:

Pr( /\ Xi=au | /\ X;=z). (1.1)
X, €0 X, e

For example, the question Pr(Disease = bronchitis | Smoker = true) is an inference problem
involving the Disease and Smoker variables in the network. Inference in a belief net can be done in
accordance with the axioms of probability. In most cases it is reasonably quick, however the worst
case is NP-complete. There are techniques to generate approximate results with user controlled
bounds on the amount of time used, the most prevalent of these being stochastic simulation.

In this dissertation, updating refers to the process of computing the posterior probabilities
in the belief network on the basis of a set of data. The idea is that when constructing the network,
the CPTs are initially given a prior distribution, then these distributions are modified or updated
with each additional sample seen. Belief networks are incrementally updatable, meaning that the
network can be updated sequentially on the fly, as opposed to batch processing large sets of samples.
The updating process is well understood [23, 47, 71], and we go over it in depth in Section 3.1.1.



1.3.2 Learning
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Figure 1.3: A Model of Learning

We want to learn about the real world through a database; to reason about and make
predictions for the real world based on what has been discovered in the process of learning.

The form of learning that we concentrate on is the construction of a simplified model of
the environment with the express goal of facilitating a question and answer process, where questions
take the form of Equation 1.1. There is an abstract model of learning from Dietterich [28] that
lends a bit more form to our description. The model consists of four elements, the environment,
the learning element, the knowledge base and the performance element. The model is shown in
Figure 1.3. The environment is the world, or the portion of the world that is being considered in
the problem, while the knowledge base is a model of that environment. The learning element is the
system that modifies the knowledge base on the basis of the environment and feedback from the
performance element. The performance element uses the model to do inference.

The environment in BNT is seen through the database that we learn from, meaning that we
are taking the database to be representative of the world. The knowledge base is basically a belief
network representation of the database. The performance element consists of a fairly standard
set of inference algorithms that produce probabilities over sets of variables in the network, plus a
new theory that gives the power to produce probabilistic distributions as answers as well. Finally
we have the learning element. This dissertation begins with simple statistical induction to learn
the conditional probability tables of the belief network, and then works on improving the learning
process to take better advantage of the available information.

The exact nature of the BNI learning task has been briefly touched on, and now that
belief networks have been described we can go into more depth. Looking back, Figure 1.1 shows
a summary of the three main steps that BNT will carry out in modeling and describing the envi-
ronment from the database; sample construction, model learning, and inference. These correspond
to selection of the environment, the construction and updating of the knowledge base, and the
operation of the performance element.

When constructing the sample, the specific task is to randomly choose a subset of the
database with the purpose of using that sample to learn a model of the environment. A significant
part of the problem is to determine the size of the sample that is actually needed in order to induce
a model that is good enough to solve the problem at hand. To date little thought has been given



to this problem, meaning that no matter how large the database, and how much (or little) the user
cares about accuracy, the entire database will be used for learning the model. This does not scale
up very well in the face of slower learning techniques or large databases, and is simply not the
economically rational approach in the time constrained environment in which we live.

Model induction is the second component of BNI, the task being to induce a belief network
from the data in the sample. Belief networks were designed from the beginning to model prob-
abilistic domains and to handle the incremental updating of the beliefs contained in the model.
However, there have been notable gaps in the field concerning issues related to induction. Portions
of this problem have received some attention recently [22, 23], dealing for the most part with learn-
ing the structure of independencies in the model, or learning the qualitative or graphical structure.
The focus of the model induction component of BNT is instead on improving the current theory
and practical methods for learning the gquantitative structure of the network, or the conditional
probabilities that make up the model.

This focus has been chosen to shore up the weak link in the model creation chain. As
humans, our ability to make qualitative judgements about which variables affect the value or state
of another is good, and this ability can be directly applied to establishing the graphical network
structure. On the other hand, our ability to make quantitative statements is extremely poor [99].
For example, where we might be able to say that weather has an effect on traffic, when asked to
predict numerically how the throughput on I880 will vary with snow, chances are that we would
not be able to make an accurate guess. Whether we are constructing an expert system from a
training set [48, 62, 10], discovering regularities in a scientific or business database [54, 55, 56, 49,
101, 104, 103], or more generally, building a belief network from a database [29, 42, 73], we can take
advantage of our innate ability by specifying the qualitative structure of the database. But then,
other methods must be used to aid our judgement in the specification of the quantitative structure.
The typical approach is to learn the CPTs with statistical induction techniques, we expand this
and show results of applying neural nets, decision trees and non-linear regression techniques to this
problem.

The third component of BNT is the inference system. The main goal in this portion of the
dissertation is to provide precise inference distributions. In a belief network, the learned probabil-
ities are normally point probabilities, therefore the inference are typically also point probabilities.
The problem with a point probability is that there is typically no process or information that can
take two point probabilities and distinguish the one that was produced from a large set of data
from the one that suffered from a lack of relevant data. Up until now there have been no methods
with the capability of manipulating and providing precise inference distributions. Many systems
simply do not consider this issue and just provide point probabilities as inference results. Oth-
ers provide estimates of the Bayesian distributions, or instead decide to maintain bounds on the
inference probabilities.

Statistical Induction

Let 6 represent the unknown probability of some event occuring. The statistical induction
approach being referred to is the task of estimating # from a sequence of observations of the event
that it describes. We delay an in-depth discussion on this topic until Section 3.1.1 which establishes
the context necessary for understanding the rest of Chapter 3. For now it is enough to accept that
the beta distribution is a fitting choice for representing 6. See Appendix A for an introduction to



10

the beta distribution.

CPT induction is mapped to the statistical induction problem by taking each cell in a
CPT to be an unknown conditional probability 6; ;5 (the cell for node X;, value z;;, and parent
instantiation m;), and to treat the database as a set of observations S of these probabilities. It
follows then that each unknown 6;;; will be estimated by a beta. This method of learning the
CPTs is the strawman that we use to evaluate the strengths and weaknesses of our new learning
approaches.

We have chosen to compare our methods to this strawman for two reasons. First, it is
the standard learning mechanism for systems that induce belief nets. The more compelling reason
is that when running an SQL query on a relational database, the events relevant to that query are
returned. The counts of these events are sufficient to produce the beta distributions describing the
events; this basically means that the standard relational database query techniques are equivalent
to the strawman. The strawman then is the method currently in use in nearly every existing
database.

One of the particular results of this type of learning is that each explicitly represented
conditional probability 6; ;i is learned as a distribution, rather than as a point probability. There is
often confusion as to what meaning this second order distribution (a distribution over a probability)
could have, but the interpretation is simple, meaningful and natural. A distribution is a weighted
range of possible values for some random variable. The heavier the weight is, the more likely that
value is. If that random variable happens to be a probability, then distribution is actually a second
order distribution. The fact that each 0; ;; is being learned on the basis of a set of observations of
the real world implies that each is in essence a random variable, and therefore the beta distributions
are actually second order distributions.

In general, whenever a model is constructed from observations, it is more advantageous
to represent the learned quantities as distributions rather than point probabilities, or means. To
begin with, the information in a distribution subsumes the mean in that the mean can be produced
from the distribution if desired. The other information represented is useful as well, giving a
good indication of the stability of the current estimate. This information has the potential to affect
decision making in many ways. For example, a company working on particularly sensitive problems
might only be willing to accept and use an inference if it can be made with a specific degree of
confidence or certainty. A distribution provides the information necessary to compute these degrees
of belief. More meaningful comparisons can also be made in situations where there are multiple
models of some task with each model producing recommendations. For instance, instead of choosing
the recommendation with the highest probability of success (maximize potential gain), it might be
more desirable instead to choose the recommendation with the most certain information so as to
minimizes potential loss.

Beyond Statistical learning

By using other learning algorithms, it is possible in many cases to do much better than
the statistical approach. To understand why, we must first conceptualize the structure of the data,
and how it relates to the CPTs. We use Figure 1.4 for reference. First, every table represents a set
of conditional probabilities Pr(X;|Il;). Assuming without loss of generality that the data in the
database is complete (no missing values), then each sample will assign a value to each variable, and
thus each sample will be relevant to every individual CPT in the belief network in some way. The
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Figure 1.4: Conditional Probability Table for a Happy Child
This table is Pr(happy child | Leaves on clover). The numbers at the top of the table represent the probability of that

instantiation of parent variables.

unique parent instantiations for any node X, are mutually exclusive, each one is a column in the
CPT for X;. Each sample will be relevant to exactly one column in the CPT, the column for which
the parent instantiation is consistent with the sample. Thus, to describe the CPT, there must be
enough samples to cover each column in each CPT.

In a realistic domain the number of unique parent instantiations for a node can be a large
number. The situation is aggravated by the fact that the probability of each parent instantiation
is not the same. What often happens then is that a table will have a small fraction of the parent
instantiations that together have a very high probability, and thus take in the bulk of the data.
Consider Figure 1.4, where the 2 and 3 leaf clovers represent 95% of the total number of clovers
that can be found. The set of low probability columns (0, 1 and 4 leaf clovers) rarely see the light
of day. The implication of this is that to cover a table, the number of samples already likely to
be needed is multiplied by the inverse of the probability of the lowest probability column. The
upshot of this is a technique that requires an overabundance of data and time to process the data,
and produces inferences that are less accurate than they could be because they do not use all the
information available.

The problem is that statistical induction assumes that the data in each column of a CPT
is independent of the rest of the columns, and thus each column must be learned independently.

The approach taken here is to apply other learning techniques like neural networks, non-
linear regression techniques, and decision trees to the task of learning the CPTs. These techniques
all apply some bias to the problem, somehow combining information from all the columns in order
to better learn each individual one. This has been the standard theme in induction ever since the
weaknesses inherent in the idea of learning by memorizing every possible event (table learning)
were exposed. It is interesting that this is also similar in concept to analogical [31, 81] and case
based reasoning [72, 2]. They all take the approach that by supplementing direct experiences with
knowledge derived from relevant but slightly different situations, the end product will be faster
learning, and the ability to cope with situations previously unseen.

A primary task of BNT is to learn a good conditional probability table for each node. BNI
is flexible enough to attach a different learning mechanism to each conditional probability table,
learn each table according to the selected method, then put the results together in the final belief
network model. We can go even further by mixing and matching methods, such that for columns
in a CPT that are data rich, we ignore whatever learning function was specified for that table and
just return the beta distribution derived from the statistical summary. These columns are then
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merged with their data-poor neighbors whose values have been supplied by the selected learning
method. On the insurance database that we have used extensively for testing, this has resulted in
25% to 60% improvements in general on the accuracy of the learned tables.

1.4 Thesis statement

The BNI approach enhances the benefits of statistical rote learning techniques with new,
practical theory for decision support and inference mechanisms, smoothly integrating these ideas
with other learning algorithms such as neural nets or nonlinear regression to provide a cohesive
outlook on the learning and use of belief networks for decision making and modeling. With this
approach, we show the following;:

Thesis:

The BNI approach provides a practical and effective theory for the automatic induction of useful
models of large sets of data in large real world applications where the data may be erroneous,
uncertain, and incomplete. Specifically, new results include:

1. Theorems demonstrating how to maintain probability distributions as opposed to point prob-
abilities when computing probabilites from the network,

2. A decision theoretic theory for subsampling to determine the sample size required to induce
a model that is accurate enough to produce inferences with specifiable degrees of accuracy.

3. Techniques for applying neural network, non-linear regression, and decision tree algorithms
to the task of conditional probability table learning.

4. An implementation of the above demonstrating enhanced conditional probability tables that
provide on average from 25% to 60% improvement over traditional statistical methods.

1.5 Outline

This dissertation proceeds as follows. Chapter 2 provides a description of previous work
in related areas, and the impact it has had on this dissertation. Chapter 3 describes in full detail
the statistical learning process, and lays out the theory for manipulating and returning inference
distributions in the belief network. Chapter 4 describes the sampling theory that is useful in dealing
with problems of scale, and user established requirements on accuracy. Chapter 5 describes the
use of neural network, decision tree and non-linear regression techniques in learning CPTs. It also
describes issues in learning hidden node, and details the results obtained from an implementation
of the ideas. Chapter 6 is the conclusion.
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Chapter 2

Previous Work

This chapter briefly discusses previous related work, setting the background for the devel-
opment of belief network induction and related topics. This is not meant to be comprehensive as
some of the areas that are discussed are too broad to be fully covered. This should be viewed as
an introduction to related work and to different approaches to related problems.

2.1 Belief Network Learning

In AT there has been a relatively long history of induction [91], but a relatively short history
of complex probabilistic model induction, particularly the induction of belief networks. This section
presents some of this work, including the induction of both belief networks and influence diagrams
(an influence diagram is a belief network with decision nodes, and utility nodes added).

There are three aspects of belief network learning that we consider independently in order
to add some structure to this presentation, though in reality the boundaries between the three are
often indistinct. The three sub-problems are the learning of the graphical structure of the belief
network, the learning of the conditional probabilities, and the inference processes in the belief
network. The inference processes are relevant, as the types of inference algorithms that can be
applied will be dependent on the type of learning that has been done.

2.1.1 Learning Structure

This dissertation makes the assumption that the graphical structure of the belief network
has been provided already, either by knowledge engineers, domain experts, or an automated struc-
ture discovery algorithm. One of the main reasons for this assumption is that humans tend to
make much more accurate qualitative statements than quantitative, implying that human supplied
structures tend to be fairly accurate.

Another reason is that there are already several methods that are well on the way to
doing the right thing when it comes to discovering graphical structures. In particular, Cooper and
Herskovits [22] have presented a Bayesian method for doing a greedy search among possible network
structures to try to find the most likely structure. It is not clear how well this approach scales up
to large networks, but the ideas are very appealing and the general mechanism seems correct.
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The goal is to find the most probable belief structure B, given a database D of instances,
or to maximize Pr(Bg|D). This task is very difficult, as the number of possible structures is super-
exponential in the number of variables, and there is no clear way of effectively pruning the search
space as synergistic affects might occur between any set of variables. Five assumptions are made,
namely that

1. The process that generated the database is representable by a belief network containing just
the variables in By, which are discrete.

2. Cases occur independently, given a belief network model.
3. Cases are complete, that is, there are no cases that have variables with missing values.

4. The belief about the assignment of a value to a conditional probability is independent of
the assignment of a separate conditional distribution. For example, Pr(X5 = 0|X; = 0) is
independent of Pr(X,; = 0/X; = 0).

5. The density function f(B,|B,) is uniform, where B, is the quantitative structure, or the
probabilities. This says that there is no initial preference as to what probabilities to place on
the structure Bj.

Assumptions 1 and 3 are removed in later papers [23, 21] where they show how to deal
probabilistically with hidden variables and missing values (see also York and Madigan [102]). The
last assumption is relaxed in the same paper to allow a Dirichlet prior. From Bayes rule, we know
that the probability of a structure given a database of examples D is found as Pr(B;|D) = %
If instead we have a pair of structures, and we need to choose the most probable of the two, then
we can use the relative probabilities

Pr(Bs,|D)  Pr(Bs,,D)

Pr(Bs,|D) B Pr(Bs,, D)’

obviating the need for a prior on the data. Cooper and Herskovits therefore use the above assump-
tions and Bayes rule and derive an expression for Pr( B, D). The algorithm starts with a one-node
network, and repeats the following steps.

1. Add a node to the set of parents of the current node.
2. Calculate the probability of the new structure and compare it to the old.
3. If the new structure is noticeably better, then keep the newly added node and try another.

They make the point that this is just one of the many potential algorithms that are possible in
tackling this problem.

Given the size and the complex nature of the problem, their results are surprisingly good.
The algorithm can reproduce models that are nearly equivalent to those selected by humans on
small and medium sized problems. Also, with an approach of this nature it is clear that this is a
good interactive modeling tool, able to give the user feedback on the probability that adding that
arc will actually improve the network.
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Finally, in deriving closed forms for Pr(Bs| D), Cooper and Herskovits show expressions for
the conditional probabilities in the CPTs based on frequency counts obtained from the data. These
frequencies, or cell counts, are later equated to the sufficient statistics of the beta distributions' that
were described in Chapter 1. The sufficient statistics of a distribution are the set of parameters
that are necessary to describe a distribution in detail (for example, a Gaussian needs the mean
and standard deviation). The beta distribution turns out to be fundamental to our method of
manipulating the inference distributions, and we will explain its origin in depth in Section 3.1.1.

There is other work that complements this approach rather well. Part of the process of
building a relational database is to put it in BCNF form [19, 18, 20], or to normalize it. The goal
of normalization is to minimize the duplication of stored information and to speed search times by
properly structuring the functional dependencies within the tables. Wen [98] shows how to map
the results of the normalization process into a belief network structure. It is easy to imagine this
being used as a starting point for the Cooper and Herskovits algorithm mentioned above.

There has also been work in the area of belief network reformulation, where the goal is to
be able to sensibly modify the current structure of the belief network to explore new ideas, or try
to improve the modeling performance of the current structure. When building a belief network,
one decision that must often be made is how to discretize the continuous variables in order to
fit them into the standard belief network model. This discretization problem is also termed the
granularity problem. Chang and Fung [14] tackle the granularity problem by making it easier
to visualize and explore the space of different granularities, and to help the process of choosing
a proper discretization of continuous variables. They present a fairly user-intensive refinement
process whereby the user provides a mapping from an original set of node values for one node in
a network to new set. The mapping is a refinement if the new node is larger (by adding more
node values we are looking at the distribution in more detail), and is a coarsening if the new node
is smaller. Their task then is to find new probabilities for the CPT of the node such that the
constraints set upon the values from the old network are not violated. They maintain locality,
isolating the changes from the rest of the network by working entirely within the Markov blanket
of the node in question. The Markov blanket of node X; consists of the parents and children of X},
and the parents of the children of Xj.

There are many other approaches to graphical model construction [11, 7, 24, 43] that we
will not explore in this dissertation.

2.1.2 Learning Probabilities

In this section we examine the different possibilities that exist for estimating the condi-
tional probabilities.

When constructing a network, the most common mechanism for updating the conditional
probabilities is to do simple bookkeeping and count where the samples are hitting. For the con-
ditional probability 6; ;, (Pr(z;;|mt)), a hit occurs when the sample instantiates the variables X;
and II; as z;; and m;;. Doing this gives a simple mechanism for generating point probabilities that
are consistent with the data, as well as supplying the sufficient statistics for several representative
distributions.

! Actually, Cooper and Herskovits recognize the statistics as those of the Dirichlet distribution, the n-dimensional
beta distribution.
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There are other ways to learn the conditional probabilities; in many cases these methods
far outperform the bookkeeping described above. For example, this dissertation describes a way of
applying neural networks to the task of learning CPTs. Neural networks have been used by others
as well.

The work that bears the closest resemblance to this dissertation was developed indepen-
dently in Tseng’s thesis [97]. The goal behind combining neural networks and belief networks into
a single model is to use the strengths of each approach in a way that accents the power of the
overall model. The advantage of the neural net is that it is a powerful learning mechanism with
the potential for a fast parallel implementation. Among the benefits of belief networks, the chief
advantage is its ability to break the overall modeling task down into local components that then
can be modeled with neural networks. The complexity of each local task is much less than learning
the overall domain, thus further increasing the efficiency and effectiveness of the neural network
approach. Also, by mapping the learning results back into the belief network, we are not limited to
answering one question or learning one function (as the case with a neural network), but instead
can answer any general query.

Tseng actually uses an influence diagram to structure the learning process. Making the
assumption that each underlying set of conditional probabilities has a multi-modal normal distri-
bution, he constructs a specialized Self Organizing Probabilistic Neural Network (SOPNN) that
essentially combines normal distributions to build a model of the conditional probabilities. The
idea is similar to the fact that any continuously differentiable function can be represented by a
family of sine and cosine functions.

The presentation of the SOPNN model is very detailed and mathematically rigorous.
Tseng proposes a rather unique neural network construction and specifies algorithms for setting the
weights, updating the neurons, and propagating the evidence. We do not describe the construction
in great detail as it has minimal impact on this dissertation. At a high level, an SOPNN is built for
each family of nodes in the influence diagram, where a family is a node as well as all of the parents
and all of the children of that node. It is not clear how Tseng integrates the SOPNN for X; and
the SOPNN for a child or parent of X;, indeed it seems that he basically considered the task to be
to model only one family within each influence diagram.

Consider the problem of learning a CPT. Each column of the CPT has been assumed to
be a multi-modal normal distribution. The main feature of an SOPNN is that it proposes to model
the multi-modal normals with K localized Gaussian receptive fields, where K is a user-specified
parameter. The construction of the K receptors gives a good amount of insight into the workings
of SOPNN. The purpose of each of the receptors is to represent a cluster of the input data with
a normal distribution (the distributions are later added together and normalized to produce the
output). The standard deviation of the normal is user-specified and is the same for each receptor.
The mean of the normal is equivalent to the mean of the data in the cluster. The main difficulty
with the construction of the receptors is that a greedy approach is used to determine the clustering
of the data. Let each sample s; be a vector consisting of the node value z;; along with values for
the parents of X;.

1. Construct the vector X¢ for each cluster C, where X¢ is the vector mean of the data in the

cluster.

2. Get a new sample s, attach the sample to the cluster with the lowest mean-squared error:
(X —sp)T(X° — s1).
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3. Goto step 1.

It is not clear in the thesis how the initial X ¢ vectors are established. The two possibilities that seem
consistent with his approach are that the initial vectors are user-specified, or they are randomly
set from the first K samples in the data, 1 sample per receptor. What is clear is that by clustering
the data like this, the output of SOPNN will be strongly dependent on the order of the input data.
In particular, a poor spread of the initial K samples will result in poor clustering for the receptors,
adversely affecting the results.

Tseng’s thesis shows impressive results for cases when the underlying distributions are
normal. Since SOPNN does not need a negative training phase, it is faster than a Boltzman machine
(the typical neural network construction for generating probability distributions; see [66] for other
work in this area). There are, however, some difficulties in interpreting the results, as the method
of testing was not discussed. It is not clear how much data is being used, how many times each
test case was run, how the input data was generated and organized, how large K was chosen to be,
and how the cluster vectors X ¢ are initially chosen. The approach in general has a few weaknesses
as well. The biggest concern is that it is not at all clear what will happen to performance when
non-Gaussian distributions need to be learned. As discussed, the clustering method used leads to a
strong dependence on the input order of the data, and also makes it impossible to model nominal
variables. Tt is not clear what a good choice of K will be, but it is clear that the best choice will be
different for each SOPNN. Finally, the rigidity of the construction of SOPNN and its integration
into the influence diagram is overly restrictive, as there are many situations in which it will be more
appropriate to use other learning techniques, such as decision trees, more general neural nets, or
regression techniques.

A different viewpoint on learning the probabilities comes from Madigan et. al. [59]. They
use the bookkeeping approach to generate probability values for the CPTs in each belief network,
but with a very interesting twist. Their premise is that when inducing belief networks, it is incorrect
(or at least inaccurate) to propose a structure with a (relatively) high probability given the data,
and then use only that structure to determine the probabilities for the model. Their approach is
to take the structural uncertainty of the model into account when determining the probabilities in
the model. For example, instead of returning the Pr(xz;;|m;) of the most likely model, they return
the average of that probability over all of the high probability models. Their distribution over the
model space is based on Occam’s Razor; simpler models that are as descriptive as more complicated
models have a higher probability. Neuenschwander and Flurry [68] confirm this preference system
in a way, showing that a higher model complexity carries with it a larger degree of instability,
implying that more data would be needed in order to justify the use of a more complex model.

A similar approach comes from Paab [71], but where Madigan actually precomputes and
stores the new probabilities, Paab delays the computation until inference is performed. He defines
a set of possible worlds (analogous to Madigan’s multiple models), then uses these possible worlds
to aid in the computation of the probability at hand. Specifically, if the goal is to generate some
confidence that the desired probability is within a certain interval, this can be calculated by sum-
ming over all the possible worlds whose probabilities lie within the interval. Of course, something
like this would be impossibly slow if one were to actually try it, but approximations can be made,
and the presentation of the calculation of the possible worlds is nice in itself.

The rest of this section deals with learning second order distributions or intervals as
opposed to point probabilities. The main purpose behind the second order distributions here is to
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smoker sickly

Bronchitis

Figure 2.1: A Bronchitis Belief Net
This shows a model of the dependency of bronchitis on whether the patient is sickly, and whether the patient smokes.

provide a way to determine some degree of belief in the learned probabilities.

The approach taken by Spiegelhalter and Lauritzen [94, 93] is to specify two types of
variables in the network: core variables, and uncertainty variables. The core variables correspond
to typical belief net variables. Fach node has a set of core variable parents, and a set of uncertainty
variable parents (one for each unique instantiation of the core variable parents). The uncertainty
variables provide a discrete specification of the second order distribution of the corresponding con-
ditional probabilities. Spiegelhalter and Lauritzen show how to update these uncertainty variables,
and mention their use in providing estimates of the inference distributions as inference is done. The
selling point of this approach is the smooth integration of the uncertainty variables into a speedy
inference algorithm. On the down side, there are three factors that degrade the quality of these
distributions. First, the addition of the uncertainty variables to the network may substantially
increase the size of the representation that is constructed in that inference algorithm. Second,
as with most statistical approaches, a strong independence assumption is made which they call
local independence. The assumption is that the uncertainty variables attached to a particular core
variable are mutually independent. As an example of what this implies, from Figure 2.1 we could
say that the distribution of Pr(bronchitis | sickly, smokes) is independent of the distribution of
Pr(bronchitis | sickly, smokes). The last factor is that the uncertainty variables must approximate
continuous distribution functions with discrete representations.

Klieter [47] starts in a similar fashion to Spiegelhalter and Lauritzen by transforming
human supplied data into corresponding beta distributions. Then, for diagnostic inferences in
a tree-structured belief network (actually, an expert system), an expression for the distribution
of the inference is produced. This expression is approximated as a beta distribution, where the
mean and variance for the beta are produced from approximations of the mean and variance of
the original expression. This approach, though complicated, yields good results for the particular
inference problem that is analyzed. It would require more work to extend the results to inference
within general DAG-structured belief networks. Neapolitan and Kenevan [67] have done similar
work, concentrating more on bounding the variance of the distribution while doing inference. Their
approach require a tremendous amount of work and space; it is necessary for the user to specify
E(p), E(p*) and E(p1p2) for every pair of probabilities in the network. Also, again it is limited to
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networks with tree structures.

Fertig and Breese [33] propose an approach based on interval probabilities. Using the
fact that there is a set of network transformations with which any inference can be done in a in-
fluence diagram (a proof of this is alluded to in Olmstead’s thesis [70] and a sketch of it is given
in Chapter 3), they show how to keep consistent upper and lower bounds on inference probabil-
ities. Unfortunately, the bounds tend to get weaker with each transformation, and intervals are
not as informative as actual distributions. The concept of there being a small set of transforma-
tions sufficient to describe any inference in a belief net is, however, central to Chapter 3 of this
dissertation.

2.1.3 Inference

We have talked about different approaches to learning the different parts in a belief net-
work, now we discuss inference methods.

There are two schools of thought (or maybe one and a half). Inference in a belief network
is the process of trying to find some conditional probability over two sets of mutually exclusive
variables in the network. Several mechanisms have been developed to perform this inference, both
exact and approximate. The main difficulty is that both the exact inference problem (Shwe and
Cooper [89]) and the approximation problem (Dagum and Luby [25]) have been shown to be NP-
complete. Dagum and Luby, however, have shown that for major classes of the problem, the task
is merely polynomial in the size of the input. The goal is to find a technique that works well in
most cases, where “working well” must be measured both by execution time and accuracy.

One form of exact inference is to use the set of transformations identified by Olmstead
[70] and Shachter [86]. There is a minimal set of four transformations that are powerful enough
to compute any inference in a belief network. These transformations can be precisely and simply
defined, they are nice tools for network reformulation, and they tend to be very useful for theoretical
work in a belief network. Chapter 3 goes into these transformations in much depth. Unfortunately,
direct application is too slow to be an effective inference algorithm. The eventual hope is to be
able to map these transformations into one of speedier inference algorithms below.

Henrion [41] shows several basic algorithms for speeding up exact inference. The basis of
the algorithms is that in special cases of belief networks called polytrees for which there are O(n)
algorithms for inference. If the network can be modified to be a polytree either by reformulation,
or instantiating certain critical variables in the network (thereby removing that node from the
network and leaving a polytree behind), then the fast O(n) algorithms can be applied. Another
rather famous set of algorithms comes from QMR [42], where the specific structure of the belief
network allows for specialized speedy “exact” inference algorithms. Breese and Horvitz [8] have
analytically described the run-time tradeoff between the cost of reformulating the network compared
to the expected required inference time if the current network is used, thus clarifying how and when
reformulation should be done.

The other main category of exact inference is based on junction trees [92, 45, 51, 69]. The
idea in this approach is to precompute much of the information in the network, and organize it
in such a way as to minimize the need to do expensive work at inference time. The process is
described in any of the papers above. A central concept to the approach is the belief universe.
A belief universe is a clique of a subset of the nodes in the belief network. The belief universe
stores the joint probability “mass” of the nodes in the universe, where the probability mass can
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be converted into conditional probabilities by normalizing to 1. The process then is to modify the
current network so that a polytree of belief universes is created. When an inference is done, or
evidence must be propagated, changes are made locally within the belief universe, and then the
result is passed off to the next belief universe in the set. The main difficulty is that the size of
the representation will be exponential in the number of variables in the largest clique, and the
problem of finding the most parsimonious way to break the original networks into a junction tree
is NP-complete. Even so, this approach is probably the most successful exact algorithm to date for
belief networks.

One last note: Lauritzen [51] shows how to integrate the junction tree approach with
methods of handling continuous variables. The methods rely on a very specific hierarchy and set of
rules regarding the structure of the network and the relation between the continuous and discrete
variables. Tt also assumes that the continuous variables are Gaussian in nature.

There are many forms of approximate inference. For example, Shimony and Charniak [88]
translate a belief network into a network of Boolean variables, then give algorithms for working
in this network to upper bound the aposteriori value of the nodes. The most commonplace by
far, however, are techniques based on Monte Carlo sampling, Gibbs sampling, or logic sampling.
The basis of these techniques is to use the belief network as a generator of random samples, check
how many times the desired cases show up in the random sample, and from that compute the
probabilities of those cases. There are ways of speeding this process up by selecting which sample
to create and then discounting the value of the sample. These techniques are very necessary
for doing fast inference, but are not strongly connected to this dissertation. For reference, see
[87, 96, 39, 16, 89].

2.2 Database Mining

This dissertation concentrates on automatically inducing graphically appealing probabilis-
tic models from data, and using these models to make predictions and reason about the environment.
The field of database mining has not seen much work yet with these explicit goals, as there has
been much more effort on the task of rule learning, and more generally function learning within the
data. The quantity returned from a typical database mining approach is a list of rules of different
strengths, where the rules describe simple mathematical functions between subsets of variables in
the database. This type of result is different from what this dissertation is proposing for several
reasons; primarily, the rules do not form a decent model of the data, and the general process is
much less automated than that of BNI.

This work is interesting for several reasons. It would be expected in a scientific database
that many of the quantities to be learned will have linear or simple non-linear relations between
variables in the database. One would think that approaches that concentrate on learning these
types of relationships will be able to find them faster and more accurately than other techniques
such as the statistical induction described in Chapter 1, neural nets, or decision trees. We would
like to be able integrate these particular function learning approaches into BNI in order to take
advantage of any domain specific information, or representational advantages. For example, if the
relationship between the parent variables and the node variable of a CPT is a linear function,
then instead of the extensional representation of the CPT as a table filled with the conditional
probabilities, an intensional representation that represents the CPT as a mathematical equation



21

makes much more sense. This section explores some of the different approaches taken so far.

We look at rule-learning tasks first. A simple example of this task comes from the KiD3
project [75] in which Piatetsky-Shapiro presents a model of discovery where the learned rules are of
the form cond(A;) — cond(A;). His approach is to let the user select the potential rule attributes
A; and A;. Then the instances are hashed according to their A; value and presented to the user in
a modified form. The user is then asked to draw conclusions from this data.

Much of the value of the KiD3 work was actually in setting the field of database mining
apart as an interesting and useful problem, along with identifying the goals to be achieved and
the problems that must be overcome. As a general approach to database mining, KiD3 has some
obvious difficulties. KiD3 built a hash table containing all the instances in the database. For a large
database, this structure would not fit in the main memory plus swap space of any conventional
system. The general lack of autonomy was bothersome, forcing a large degree of user interaction.
The antecedent of the learned rule is too simple, the issue of uncertain data is not addressed, and
it is not clear how to efficiently extend the hashing approach to more complicated antecedents.
Piatetsky-Shapiro recognized several of these difficulties in the paper. He discusses the use of
random sampling as a tool in managing the complexity of his approach. He also presents an
analysis of the affect random sampling will have on the expected accuracy of the learned rules,
given that the consequent is of the form A; = a or ag < A; < ay. This analysis is based on an urn
model from Feller [32].

Later Piatetsky-Shapiro and Matheus [76] move to learning a form of determinations [81],
which they call p-deps. They develop an interestingness function that removes a large portion of
noise from the set of possibilities, relaxing the need for user interaction.

One interesting new approach from Matheus and Piatetsky-Shapiro [77, 60] is the claim
that the truly interesting events in a database are not the discovery of existing rules, but rather
the discovery of how these rules and quantities are changing as the database evolves (the discovery
of deviations). The system KEFIR works in the health care domain, trying to answer questions
such as “Why are GTE’s health care costs rising?” and “What are the main factors in this rising
cost?”. They make use of existing domain knowledge on trends to pinpoint when trends are in line
with overall industry trends, or are off track. With this data, a simple trend analysis can be done
to determine that an abnormality exists, and by adding some knowledge of utilities, they can relate
these changes to actual company costs.

The main difficulties that rule-based learning systems face are the impossibly large number
of potential rules, and the need for domain-dependent knowledge to sensibly determine which rules
are interesting.

The function learning approaches [101, 104, 103] that attempt to learn linear or non-linear
functions within the data can be characterized by the BACON project. This research project
actually covers a set of six versions of Bacon [49].

Bacon takes as input data for two variables X; and X;. In order to determine the relation-
ship that exists between the two (if any), four heuristics are used to search the hypothesis space.
One proposes X; as a constant, one looks for a linear relationship between X; and X, the other
two are constructive induction rules forming new terms X;X; or X;/X; depending on the behavior
of X; as X; increases. More extensive approaches were developed in the later versions of Bacon.
The early Bacons were limited to learning relations between two variables, but later systems like
Zytkow’s Forty-Niner and Wu’s KEPLER [101, 104] introduce some interesting ways to learn more
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complex relations.

Another look at a function learning approach comes from Frawley [36]. Frawley defines a
new type of decision tree called a functional decision tree, and uses this to induce functions. The
idea is that in a normal decision tree, it is not possible to represent relations like z = x + y. In fact,
the set of relations that can be learned is rather limited. In Frawley’s model, each node in the tree
(each building block) can either be an attribute or a function of those attributes. Once functions
are learned, they can then be interactively thrown back into the learning process.

Function discovery is a hard problem. Databases can be large, and the number of potential
functions is infinite. The introduction of error into the system gives license to postulate almost
any function as fitting the data. The main problem in these initial attempts at function learning
seems to be the lack of communication between the Al and Statistics community. Statistics has
been studying the determination of functional models from data for centuries, Al perhaps for two
decades. Current AT techniques do not address issues of scale, examine a limited range of functions,
do not deal convincingly with uncertainty or error in data, and have no sense of how to choose the
“best” function out of the set of possibilities. None of the approaches from Al come close to current
statistical packages such as LEAPS [38] that by linear regression can find all sorts of linear models
quickly, and present rankings of the discovered functions based on MSE, Cp or Sp criteria. For more
complex learning problems, packages for non-linear regression techniques such as PIMPLE [9] or
MARS [37] are quite sophisticated, and produce good results. This dissertation allows any of these
learning techniques to be inserted into the general belief network induction scheme as methods to
learn the individual CPTs.

2.2.1 Clustering

This last section discusses clustering techniques. The goal of a clustering system is to
take a set of instances as input, and output a set of groupings that reflect the natural clustering
of the input instances. Although these techniques have little bearing on the methods used in this
dissertation, they are a viable approach to database mining that are currently in use. For example,
the problem of customer modeling (from the list in Section 1.1) is a natural application of these
techniques. In a direct mailing scheme, a company will send out mailers to some population from
its customer database. The customers that respond are modeled with these clustering approaches,
and that model is applied to the entire customer database. The potential customers that match
the model are then the targets of the second direct mailing. American Express has used techniques
like this going from about 4% success rates up to about 10%.

Classification systems can be split into two categories, those that classify based on statis-
tical methods, and those that classify based on conceptual coherency.

Research in numerical taxonomy and cluster analysis [3] instigated the Statistical Clus-
tering class of techniques. The most current example is AutoClass 1T [17], a Bayesian classifier.
AutoClass determines the number of classes to split the data into by using a hypothesis prefer-
ence function that is a combination of Bayes theorem and the prior probabilities of the hypothesis.
The result of classification is a taxonomy in which each class is described by the probabilistic dis-
tributions of the features. A taxonomy of this type allows the computation of the membership
probability of an instance in a class, and the prediction of subsets of feature values for any given
instance. Other nice features are that uncertainty handling and incrementality naturally fall out
of the approach. Also, the user is insulated from the decision process.
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AutoClass has some difficult problems. First, it is computationally expensive to compute
the marginals, so iterative techniques have to be used to estimate them. Second, the learned
taxonomy indicates that all attributes are important in predicting any other attribute; this is
essentially equivalent to proposing a model that uses all the predictors available no matter what
their significance. Finally, the biggest problem is that attributes are considered independent and
normally distributed to make the approach computationally tractable. There are a few domains in
which this assumption doesn’t hurt too much, but in many it induces a high error rate. Wu et. al.
[100] have tried to lower the error rate by using domain knowledge to classify examples whenever
possible, thereby reducing the dependence on the Bayesian classifier. The idea was nice, but the
results were a bit depressing, improving the error rate to 37% from 40%.

The second approach is Conceptual Clustering. The primary difference in this research
compared to the statistical techniques is in the hypothesis preference functions that are used.
The goal is to include preference functions that discriminate based on how well the instances
match a predefined concept. This makes it possible to define domain specific preference functions.
Michalski and Stepp [95, 61] describe Cluster/2 and Cluster/S in which the instances are first
clustered into groups that maximize the clustering preference criterion, then a classification phase
is initiated within each cluster. These programs use LEF (Lexicographical Evaluation Functional
with tolerances) as the preference function. LEF is a list of user specified preference functions that
are applied to the set of potential hypotheses. The low scoring hypotheses are discarded as each
successive preference function is checked, until only one is left.

In [35, 34], Fisher et. al. take a more restrictive approach to conceptual clustering by
defining what the “correct” preference function is. Specifically, they use category utility (CU).
Category utility rewards classifications that both maximize Pr(C} | A; = V;;) (the probability that
the attribute value determines the cluster) and Pr(A; = Vi; | C%) (the probability that the cluster
determines the attribute value) over all the attributes. For this dissertation, finding classifications
that allow high probability predictions of attribute values would be sufficient, so this preference
function might be interesting to explore.

Out of a sense of completeness, we are compelled to address the origins of discovery, as
database mining can easily be seen as a child of those first few systems.

Discovery in Al is often associated with Lenat’s work on AM and EURISKO [54, 55,
56]. Other original work in discovery includes the projects GLAUBER, STAHL, DALTON, and
DENDRAL [50, 10] which provide different ways to view discovery as a search through a hypothesis
space, and DeJong’s explanatory schema acquisition [27] which uses background knowledge to guide
the discovery process instead of the more typical correlational techniques.

2.3 Sampling Theory

How much information do we need to make good decisions? Consider a manufacturing
problem, where the variable X in question is the percentage of defective products coming off the
assembly line. The possible actions are to accept the entire batch, or to test every element in the
batch for defects and accept those that pass. The catch is that if the first action is chosen, but
then it is discovered that there were more than Y% defects in the accepted batch, then it would
have been more worthwhile to choose the second action on the assembly floor. The fundamental
problem then is how much sampling should be done on the assembly floor in order to determine X
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accurately enough to maximize the utility of the action choice.

In general the two-action decision problem is a fairly common phenomenon, and there has
been a good amount of work done on this topic in the medical, business and scientific fields. A
two-action decision problem is one where we have some information on two random variables Xy
and X3 and can sample to get more. These represent, say, the chance of success of two actions that
can be taken. There is a utility attached to each, which is commonly a function of the random
variables. The core of the problem is such that with the information currently available on X7,
that associated action might be the correct choice to maximize utility, whereas if more information
is gained, then the second action might become more attractive. The goal is to trade off the cost
of obtaining this extra information against its value.

This problem was discussed by Raiffa [80], and then seven years later in 1968 Bechhofer
et. al. [6] redefined it, established several variants and provided a first crack at a solution to some
of the variants.

The problem is typically stated as the following. Let A7,..., N} for & > 2 be normal
distributions with a known common variance o2 and unknown means i, ..., ;. Rank the means
pi as pp) < ... < ppgge There is a database with & attributes, each of these attributes has an
associated normal distribution in A7,...,N;. Find the attribute that corresponds to Pix]s the
distribution with the highest mean. The solution procedure P has to have the property:

Pr,(CS using P) > P*
for all u = (p1, ..., px) satisfying ppg — ppp—1) > 6* (2.1)

where ('S is the correct solution and 6* and P* are user-specified parameters. This goal then
requires a solution procedure to have a probability of P* of correctly selecting the attribute with
the highest mean, as long as there is at least a 6* difference between the highest and next highest
means. The format of the original problem Bechhofer et. al. stated was actually to set &k to 2.
The variants include allowing k& > 2 as stated above, allowing the set of distributions A7,..., N} to
belong to different classes of distributions, and finally allowing the procedure P to involve sequential
sampling techniques.

The problem is a difficult one, and in general there is no normative method to date of
generating the optimal sequential sampling strategy. We show a recent approach from Liu [58] that
is fairly representative of the work that has been done on this problem for the past thirty years in
this area.

The method of Liu [58] is, at stage n, for preassigned numbers P* € (%, 1) and 6* > 0,

1. Take an instance x;, from the database, and rank it so that

2. Add the vector x;, to y;,, which represents the sum of the n samples seen to this point.
3. Rank y;, so that ypy, < yppn <o < Ypgn-

4. Fliminate as unable to affect the final outcome the %, — [ attributes such that:

: fok —q+1 65*21[]]1/0'2 wEn=q
l=minq ¢:1<q<k,. o EETEE > P* k=1 )
=1
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where k, is the number of attributes left at stage n; ¢ is selecting the number of attributes
that are “interesting”, and [ is the smallest ¢ such that the conditions in Equation 2.1 are
still met.

5. If there is only one attribute left, stop and return it as the attribute with the highest mean,
else go back to step 1.

What this procedure does basically is to take one sample at a time and check to see which attributes
are still likely to be those with the highest mean. The k,, — [ attributes which are not likely are
incrementally eliminated from consideration. Assume that there are a total of r stages before the
best attribute can be picked. This final attribute has survived r stages of elimination. Let the
number of attributes eliminated at stage n; be s;, 1 <@ <s;, and > ;_; s; = k — 1. Then since

f[ PR = P

=1

it is clear that the final attribute has the highest mean with probability P* as desired. Note that
any procedure P that eliminates attributes such that the final product of the probabilities is P*
will be a procedure consistent with the goal in Equation 2.1.

The rest of the paper proceeds to compare this approach to algorithms from Perng [74],
Kao and Lai [46], Bechhofer and Goldsman [4, 5], and Edwards [30]; all of which are slight variations
on the same theme. The comparison in itself is interesting, as the metric by which the algorithms
are typically judged is the expected number of samples needed to pick the best attribute as the
probability of a correct choice P* approaches 1.

Most of the work in this field has lived with several assumptions that must be recognized
and addressed in order to fit sequential sampling schemes to the problem of inducing models from
data.

One of the major differences is that the distributions A7,..., N} that are being chosen
from are in most cases assumed to be normal with a common known variance. In our case, we are
not selecting between known, static distributions, but rather building distributions that represent
the sum of our knowledge, and using these to make decisions. These distributions are unknown,
and not static. The more data seen, the smaller the sample variances of the distributions are likely
to become.

Second, the basic goal espoused by Equation 2.1 is flawed. The goal states that if the
difference between the highest mean and the next highest mean is at least é*, then the answer must
be at least correct with a probability of at least P*. If the difference is less than 6*, then a random
choice is ok. This does not work in our domain, partly because the different interpretation of the
distributions implies that the distributions change as more data is seen. For example, if the data
so far indicates that two attributes have identical means, it does not necessarily mean that we can
choose either one. What if very little data has been seen so far, so the distributions have large
variances? Then the probability that those sample means will move as more data is seen is very
large, thus spoiling the choice made at that point. What needs to happen is to incorporate the
notion of Fzpected Loss into this goal, where loss will use the current means and variances of the
distributions to predict the expected cost of an incorrect choice. This is discussed in great detail
in Chapter 4.
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Third, the fact that the sequential sampling strategies are based on the idea of taking
one instance at a time until the condition specified in Equation 2.1 is met is disturbing. This will
minimize the number of samples taken in the long run, but it will not minimize the total expected
cost. In our domain, the database is already at hand, the proper goal is not to minimize the number
of instances, but to minimize resource cost (primarily time). There will be an overhead associated
with the process of extracting a sample from a database; if this overhead is amortized over a larger
number of instances per sample, then we reduce the average cost of an instance. The new goal then
becomes to find a sequential sampling strategy that reduces the expected cost of the computation,
rather than the amount of data used.

The portion of work that is transferable is the idea of estimating the expected sample sizes
required to get results of specific degrees of accuracy. Here all approaches are basically equivalent
in that the general form of the equation to solved for the sample size is the same (see Section 4.2.3
for details)

1 1
L(S) = / / (X2 — X1) f3 (X2) f7(X1)d Xod X
X1=0J X=X

The new ideas and work are introduced when finding the distributions f5'(X3) and f(X;), and
solving the integral.

Chapter 4 addresses all of the issues stated above, producing a sampling theory that fits
comfortably in the new domain of database mining.
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Chapter 3
Propagating Distributions

This chapter focuses on the induction and use of the conditional probabilities in a belief
network, given the graphical network structure. A straightforward approach to learning conditional
probabilities of variables in a database is to infer them statistically by sampling from the database,
or treating the entire database as one large sample itself [75, 23]. These values can be learned as
point probabilities, intervals [33], or even as second order distributions [47, 64, 63, 94]. Distributions
are generally preferable to point probabilities or intervals because they contain more information,
and thus are more useful. For example, distributions give the ability to assign some degree of
confidence to the inferences performed; they also allow comparison between inference solutions
produced by different networks or algorithms. There is potential for much more. To date, however,
there is no completely satisfactory method with the capability of propagating distributions correctly
through inference; the assumptions that have been required compromise the validity or generality
of the resulting learned distributions.

This chapter provides a theory based on a set of four network transformations that can
produce any inference distribution in a given network, with the main assumption being that the
given qualitative structure of the network is correct. The theory proves that inference distributions
can be propagated without significant loss, and without debilitating assumptions.

3.1 Framework

b| 6 | 6 | 03 | 04 | 05 | 66
D |h| 6 Os Oy | 010 | 011 | O12
n | 03| 6s | 05| s | 017 | Ois

Table 3.1: A General Joint Probability Table for the Smoker Network
This is the joint probability table representing all possible events that could occur in the Smoker domain. Note that the s here

are actually products of the 0s in the table below. For example, 81 = 619022025.
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Parents
Smoke Ll
[0,1,2]

Smoker =
[0,1]

Disease

[bronchitis, =
halitosis,

no disease]

Figure 3.1: A Smoker Belief Net
Repeated from Chapter 1, this is a belief net showing a simplistic relation between smoking, bronchitis and having parents that

smoke.

Pr(P)
P |1 020
Pr(S|P)
P
0 1 2

Pr(D|S)
S
0 1

b | O35 | a9

n | 03y | Os3

Table 3.2: CPTs for the Smoker Network
These are the conditional probability tables for the smoker network.

Figure 3.1 (repeated from Chapter 1) shows a simple smoker belief net that we will use to
demonstrate some of the ideas described here. The CPTs for the network are repeated in Table 3.1
and Table 3.2, where the top table labeled Pr(D, P,S) is actually the joint distribution over all
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three variables, with the following three tables being the CPTs connected to the belief network.

The problem of learning the CPTs is really the problem of learning each of the thetas
shown in these tables. Fach theta represents an unknown conditional probability, one per cell. The
thetas within any particular column of a table are dependent: they must all add to 1. Since we
learn distributions for each theta as opposed to point probabilities, the distributions will also be
dependent.

The requirement is to be able to take the belief network and ask for any probability
involving the belief network variables that comes to mind. Since a distribution for each theta is
directly represented (as will become clear in the next section), it should be clear that if the value
of 619 (Pr(P = 0)) is asked for, the distribution can be returned directly. Furthermore, we would
like to be able to ask for a probability not directly stored in the CPTs (and therefore not directly
learned) such as Pr(D|P), and still be able to return a distribution.

The next section provides a formal derivation showing what the distributions are and how
they come about. Examples are given to clarify the exposition. The rest of the chapter is devoted
to the question of how to answer Pr(D|P) and other inferences like it.

3.1.1 A formal description

The purpose of this section is to clarify exactly what the distributions for BNT are, where
they come from, and how they will be learned from samples. In particular, the beta distribution
is introduced and proposed as the natural representation for the conditional probabilities that are
being learned. See the Appendix for a preliminary description of the beta distribution.

We are given a database of instances D, where D might be very large. Let S C D be a
subsample of the database that is drawn by sampling with replacement, and let Bp be the belief
net that corresponds to the underlying model from which D was drawn. There are n variables
Xi,..., X, represented in Bp, where variable X; takes values from the set z;; € Dx,. A complete
instance s is an element of S that assigns a value from Dy, to every variable X;. Let II; be the
parents of variable X;, ¢; be the set of unique instantiations of the parents II;, and ¢;[j] be the jth
unique instantiation. Finally, ¢; ;% is the combination of the parent’s instantiation ¢;[j] with the
variable instantiation x;z.

The formal update process, the mechanism by which the conditional probability tables is
learned, is derived from the following arguments. In the belief net Bp there are a set of unknown
conditional probabilities 8; ; ;. that are being estimated for each possible instantiation ¢; ;; in the
network. The estimation problem can be considered one of statistical inference in which observations
have been taken from a p.d.f. f(s;]6;;x), where 6; ; is unknown. Take p independent random
samples s1,...,s, from a distribution f(s;|6; ;). Let the joint p.d.f. of the p samples be

To(sl0ijr) = fo(s1,.-,8p00i5k)
J(s1l0i k) - f(8pl0ijk)-

Choose some prior distribution £(6; ;) for 0; ; . The posterior distribution £(6; ; x|s), which is the
estimate of 6; ; 1, is then found as

fo(s]0:5.6)6(0: ;1)

02' S LIS) = fOr 02 / < 97
5( 7],k| ) fQ fp(s|027]7k)£(027]7k)d027]7k 7]7]6
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which is proportional to f,(s|6; ;%)€(8; ;.x)-

When sampling with replacement from the database D, a natural description of the sample
distribution f(s;|6; ;%) is as a Bernoulli distribution'; in a relevant sample, there is a 0; ;.x chance
that the sample will have X; assigned to z;; (given that the parents II; have the assignment
¢ilj]), and a 1 — 6; ;  chance that X; will have a different value. With priors distributed as beta
distributions, the posterior distributions will be betas as well. More precisely, if the prior is a
beta with parameters a and b (3(a,b)), and we take p samples, y of which are successful (meaning
Xi = xi, II; = ¢i[j]), then the posterior is (a + y,b+ p — y). An extended proof of this can be
found in [26].

We store the distribution for each conditional probability by storing the sufficient statistics
a and w of a beta distribution. Though the prior in each cell of the table for variable X is arbitrarily
set to f(a = 1,w = |Dx,|— 1), the theorems in the following section depend only on the prior being
a beta. With the priors established, the induction of the quantitative structure of the network
is simply a matter of incrementing the o and w statistics of each conditional probability for each
relevant sample seen. A sample is relevant to the conditional probability Pr(X; = x;|1l; = ¢:[j])
if the sample is consistent with TI; = ¢;[j]. The « statistic is incremented if both X; = 2;; and
IT; = ¢;[j] hold in the sample; the w statistic is incremented if X; # a1, but I; = ¢;[j].

3.1.2 An example

Using the results is much simpler than describing them. Table 3.3 depicts the situation
where the original CPTs with prior are described on the left, and the CPTs on the right show
what happens after updating for one example of Parents smoke = 0, Smoker = 1 and Disease =
bronchitis. Each bullet shows where the sample “hits” in each particular table.

Consider the task of using this table to find the probability that a patient has bronchitis
given that his parents smoke. For this equation only, let D, S and P represent the variables Disease,
Smoker and Parents smoke, and let b represent bronchitis.

Pr(D = b|P =0) > Pr(D=0|S=kPr(S=klP=0)
ke{o,1}
= Pr(D=0|5=0)Pr(5=0P=0)+

Pr(D=5S=1)Pr(S=1/P=0

Then using the means of the beta distributions from the CPTs above as estimates of these proba-
bilities,

= (1/3)(1/3) +(2/4)(2/3)

= .444 vs prior estimate of .333

The cell distributions were converted into point probabilities in order to complete the compu-
tation of this inference. If instead the goal was to find the distribution of the random variable
Pr(D = b|P = 0), we would need to be able to find a closed form for 5(1,2)3(1,2)+ 5(2,2)5(2, 1).

This is not easy, since in the general case the beta distribution is not conjugate across addition,

1A sample distribution can be equivalently described as a multinomial over the joint space, in which case the
priors and posteriors would be Dirichlet distributions.
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Pr(P) Pr(P)
A1) 53,9)s
P 1] B(1,2) P 1] B(1,3)
21 52 2| AL
Pr(S|P) Pr(S|P)
P P
0 1 2 0 1 2
S0 AL | L) (AL [§ 0] AL [ AL [ AT
T AL De | BLD | AL T3z e | BLD | AL
Pr(D|9) Pr(D|9)
S S
0 1 0 1
b AL | A, IECERECS
D [T AL) | ALY D [T AL | A3
n | B(1,2) | B(1,2) n | B(1,2) | B(1,3)

Table 3.3: Updating the CPTs
This shows the process of updating from the original CPTs on the left to the new CPTs on the right, after seeing a sample of
P=0,S=1,D =b.

which means there is no simple closed form for the addition of two betas. Therefore, the typi-
cal approach for systems without the ability manipulate distributions is to represent the random
variables representing the cell probabilities with point probabilities from the start.

Note that the original answer from the prior is .333, and after the first update the solution
changes to .444. The problem is that .444 gives no information on how much the estimate can be
trusted; for example, there is no information on the expected variance of this result. In fact, this
number is based on the evidence of one instance in the database so one would not expect to be
able to put any faith at all in this answer. If a distribution were returned here instead of a point
probability, then there would be much more information available to aid in judging the quality of
the result.

3.2 Assumptions

The estimate Bg of Bp that is being constructed from a sample .S has an updatable beta
distribution for every conditional probability that is to be explicitly stored in the network. For very
simple inference tasks, like those that ask for probabilities already explicit in the network, the mean
and variance of the corresponding beta can be returned as the result. But when a more general
inference is desired, distributions across nodes must be combined. Without strong assumptions
about independence, or without approximation, there exists no readily apparent way to combine
them.

The trick to combining the distributions is not to look for a universal method of adding
betas together, or to approximate the result, but instead to make specific arguments for specific
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Sk

Figure 3.2: Node Removal

Vi represents the set of nodes which are parents of X; but not X;; V3 represents the set of parents common to both X; and

W

Vi1, Vo and Vi are all defined as the Node Removal Figure. Vi, Vs and Vg are defined similarly, but represent sets of children of

X; and X;.
(=) )
Y oad
Figure 3.4: Node Merging
() f®
() = ()=
()

Figure 3.5: Node Splitting

Xj; and V3 is the set of nodes which are parents of X; but not Xj.

Figure 3.3: Arc Reversal
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transformations. In this way, by using the conditional independence information encoded by the
transformations, and the a and w statistics of the given distributions, we are able to compute the
sufficient statistics of the new distributions. This is not a general approach; there will be a unique
way to obtain each desired frequency for each particular transformation. The approach is viable,
however, because we need only find the betas for a few fundamental transformations.

From Chapter 1, if Q and ¥ are mutually exclusive subsets of the nodes in the network,
then an inference problem is defined as the task of finding the conditional probability

Pr( /\ Xi=zip | /\ X;=z). (3.1)
X, €0 X, e

Olmstead and Shachter [70, 86] have shown that there are a fundamental set of transformations
on an influence diagram, such that all inferences can be done in terms of these transformations.
The transformations are Node Removal, Arc Reversal, Node Merging, and Node Splitting, which
are shown in part in Figures 3.2, 3.3, 3.4 and 3.5. Olmstead uses these transformations to show
how to propagate point probabilities through the network while doing inference. We use the same
transformations in a belief network, demonstrating how to propagate the inference distributions, as
opposed to the point probabilities.

Two main concepts form the basis of the proofs in this section. One is that the inference
distribution is beta-representable. From Section 3.1.1, it is clear that when considering one cell
of a conditional probability table, Pr(X; = z4|Il; = ¢i[j]), the «a statistic represents all of the
samples that fall into that cell (all samples consistent with X; = 2, Il; = ¢;[j]), and the w statistic
represents the samples that satisfied the parent variable instantiations ¢;[j], but not the value z;;
for variable X;. When the distribution for Pr(X; = x;|Il; = ¢;[j]) is considered in terms of the
joint space over the network, it can be seen that a and w are actually statistics over two clusters
of cells in the joint space: the cluster of cells that correspond to the case where X; = z;; and
IT; = ¢;[j], and the cluster of cells corresponding to X; # z;; and II; = ¢;[j]. A simple extension of
this idea leads to the fact that any inference problem in the form of Equation 3.1 can be structured
in terms of two disjoint clusters of cells over the joint space, and thus is beta representable.

The other commonality is that the proofs all require the Network Assumption.

Network Assumption: Assume that the independence conditions stated implicitly in the given
qualitative structure are correct.

For the rest of the chapter, we use X;; to represent the instantiation of the variable X; to the
value x;, or X; = z;. For the network fragments in Figures 3.2, 3.3, 3.4, and 3.5, the Network
Assumption allows the following simplification to take place:

PT(Xilejk7V1p7V2q7V3r) = PT(XilejkvV2q7VST)PT(V1p|Xilejk7V2qvv37°)
= PT(XilejkvV2q7V3T)PT(V1p|Xjk7VQq)

PT(Xilv Xjk7 V2q7 VBT)PT(lev Xjk7 V2q)
PT(X]‘k, qu)

The Network Assumption is allowing the simplification from Pr(Vi,| X, Xk, Vag, Var) to Pr(Vip| Xk, Vag)
to take place, since all of the fragments are such that the set of variables V; are independent of
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X; and V3 when given values for X; and V5. What this assumption allows us to do is to compute
the joint over the sets of variables X;, X;, V4, V5 and V3 by using 3 smaller joints over the same set
of variables. This result turns out to be extremely useful in proving the theorems in the following
section. This assumption is quite common in the community currently, although there has been
some work by Madigan [59] to avoid it. It seems that his work should fit quite smoothly into this
framework, while still achieving the benefit of the result above. This has not yet been tried.

There is one more assumption that is commonly made, and indeed it seems impossible to
get around. The assumption is that the database represents an unbiased random sample of the real
world, at least the real world pertaining to the set of variables we are interested in. That is, we often
take the database to be an undistorted reflection of the environment, but in fact it will frequently
be heavily biased by the method of data collection. For example, medical databases often do not
reflect the ailments of the poorer segment of the population that does not have the resources to
look properly after their health, so it would not be completely correct to draw conclusions about
the general population on the basis of this data.

3.3 Distribution Propagation

This section gives the proofs showing the network transformations and the correspond-
ing inference distributions. At the end of the section an outline is given of the proof that the
transformations are sufficient for any inference in a belief network. In the theorems below, in
order to diminish the notational nightmare, spurious subscripts have been removed except where
necessary. For example, the probability Pr(X;|X;k, Va,, V5,) might be represented as oy, whereas
the complete description would be a; ;1 ,,. They both refer to the alpha statistic in the cell for
which X; = z;,..., V3 = z3,. We will be using: #X;; to represent the number of samples in which
variable X; takes the value z;;. Also, the notation # X refers to the number of samples in which
X; takes any value but z;;.

The Arc Reversal Theorem describes the arc reversal operation in full generality. The
Node Removal, Node Splitting, and Node Merging Theorems are a bit weaker than they could be,
since the network fragments given are not completely general. This simplifies the presentation of
the theorems without losing the ability to do every inference in the network.

Finally, the proofs below are constructed with 5(0,0) priors, which allow the theory to
be used with arbitrary priors. To add an informed prior, the theorems can be strictly applied
as written; the priors will simply be treated as samples already seen. For uninformed priors, the
prior must be stripped from the distribution before the transformation is performed; after the
transformation the new prior can be added back to the result.
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Theorem 3.3.1 Node Removal

- S8

The Network Assumption, and the network fragment shown above, where Vi represents the set of
nodes which are parents of X; but not X;; Vo represents the set of parents common to both X; and
X;; and V3 is the set of nodes which are parents of X; but not X;. Also, given:

Pr(Xiy| Xk, Vag, Va,)  distributed as (o, w)

Pr(X;iVip, Vag) distributed as  f(aq,wq).
Then,
Pr(Xi|Vip, Vag, Vs,) is distributed as §(ay,w;), where
Qo _ waq
Qg = ZdEDXJ ZfeDVl 1 and Wy = ZdEDX] ZfGDvl o

and the notation Zfepvl ay represents the sum of the a statistics in the table for variable X; that
correspond to cells where the variables in V; take any value, X; = 21, and V3 = vq,.

Proof. We know that

gy = #XZ[ A le A qu A V3T, and
Wy = #X_Zl/\ le A qu A V37«.

For ay:

(&%)

#Xi AVip A Vag A Va,
= ZdeDXJ #X;a N Xy ANVip A Vag A Vag;
then by the network assumption,

a _ Z (#X”/\X]d/\VQq/\Vgr)(#le/\X]d/\VQq)
2 - dGDXJ (#de/\VQq)

= Ddep L
€ X] ZfGDvl a1
For wsy:

Wy = #X_H/\le/\vgq_/\ V3T
Z (#X]d/\Xil/\V2q/\v3r)(#X]d/\V1p/\V2q)
dGDXJ (#de/\VQq)

wWaoq

- ZdEDX] ZfGDV oq'
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Theorem 3.3.2 Arc Reversal

Given:

The Network Assumption, and the network fragment shown above, where Vi represents the set of
nodes which are parents of X; but not X;; Vy represents the set of parents common to both X;
and X;; and Vs is the set of nodes which are parents of X; but not X;. V4, Vs and Vg are defined
similarly, as children of X; and X;. Also, given:

Pr(Xiy| Xk, Vag, Va,)  distributed as (o, w)
Pr(X;iVip, Vag) distributed as  f(aq,wq).

Then,
Pr(Xi|Vip, Vag, Vs,) is distributed as §(ay,w;), where

wWaoq

g = and wy = =
ZdeDXJ Z:feDvl ! ZdeDXJ Z:feDw o
and
Pr(X ;i X, Vip, Vag, Va,) is distributed as f(as,ws), where as = % and
d 1

GDV1
W3 = Qg — Q3.

Proof. The proof is very similar to the proof of the Node Removal Theorem. The first
portion of the theorem that finds Pr(X;;|Vi,, Vo, Vs,) has already been proven in the Node Removal
Theorem.

For as:
a3 = #X]‘k AN X A le A qu A Vs,
(#X“/\X]k/\VQq/\Vgr)(#le/\Xjk/\ng)
o (#Xjk/\v2q)
— [e1e5] X
ZdeDV 1
For ws:
wy = #X]‘k A XA le A qu A Vs,
= #X;A le A qu A Vs, — #X]‘k AXg A le A qu A Vs,
Q9 — (3.
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Theorem 3.3.3 Node Merging

- JEds

The Network Assumption, and the network fragment shown above, where Vi represents the set of
nodes which are parents of X; but not X;; Vo represents the set of parents common to both X; and
X;; and V3 is the set of nodes which are parents of X; but not X;. Also, given:

Pr(Xiy| Xk, Vag, V3,») distributed as  f(a,w)
Pr(X ;i Vip, Vaq) distributed as  [(ay,wq).

Then,
Pr( X, X;k|Vip, Vag, Va,) is distributed as f(agz,ws), where ag = oa and
ZdeDV 1

w—a)oq
+ ZdeDX ZfeDV o
1

Wy = —_—1
Zfepv

Proof. The result for @y was proven above in the Arc Reversal theorem.

For wsy:

Wy = #ﬁ/\Xjk/\le/\VQq/\VST_
= #X;A le A qu A Vs, — #X]‘k AXg A le A qu A Vs,

and from the proof of the Arc Reversal Theorem,

w — _ [e1e5]
? ZdeDXJ Z (ZdeDXJ Z:feDvl o Z:feDw al)

(w—a)ay

= +> —_
Zfepvl deDX ZfeDvl aq

GDV1
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Theorem 3.3.4 Node Splitting

()
DdOn
)

Given:
The Network Assumption, and the network fragment shown above, where V3 represents the set of
parents common to both X; and X;; and Vs is the set of children for both nodes. Also, given:

Pr(Xi, X;i|Va,) distributed as  f(a,w).

Then,
Pr(X;;|Va,) is distributed as 8(aq,wq), where
ap = ZdeDXi a, and wy = ZdeDXi ZfeDX],f;ék a;
and
Pr(X| Xk, Vag) is distributed as B(ag,wq), where ag = a, and wy = 3~ jep, 4 Q-

Proof. Again the proof is very similar to the proof of the Node Removal Theorem.

For aq:
ar = #X; AV,
For wi:
w = #FXjpAVy
= 2aepy, #Xik N Xia A Vay
2o deDx, 2ufeDx, sk #Xis N Xia A Vag
= ZdeDXi ZfeDXJ,f;ék .
For asy:
ay = #XgNXjp AV
= .
For wsy:

#X_zl A X]‘k A qu
= ZdeDXi,d;él #Xia N Xjp AV
= ZdEDXi (d£l &

W2
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O

The final thing to show in this section is an outline of the proof that these transformations
are sufficient for any inference in a belief network. Consider an inference in the form of Equation 3.1.
Choose any source node (a node with no children) in the network, and label that the target. Choose
a parent; if the parent is a part of the desired probability, use the Node Merging transformation
to merge the parent with the target, otherwise use Node Removal to remove it. Do this until
the only node left in the network is the target node. Then for every node in ¥, perform the
Node Splitting transformation to split off those nodes from the target. The end result is that the
conditional probability table for the target will explicitly contain the inference distribution asked
for in Equation 3.1. This approach would, of course, be horribly slow in practice.

3.3.1 Examples

In this section we work through several examples to get a better feeling for what these
theorems mean, and how to apply them.
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| | fo,bp | fo,bp | fo,bp | fo,bp |

lo,do, hb 4 10 0 1
lo,do, hb 0 1 0 0
lo,do,hb 0 1 0 0
lo,do, hb 0 7 0 5
lo,do, hb 1 4 3 10
lo,do,hb 0 1 0 1
lo,do,hb 0 0 0 1
lo,do, hb 0 3 3 44

Table 3.4: The Frequency Distribution for FO,BP,LO,DO,HB

This shows the total number of events that occurred for every possible variable instantiation.

Dog-Out Example

Taken from Charniak, all variables are binary. FO = fo when the family is out, fo when not. Similarly, BP = bp when the dog

Figure 3.6: The Dog-Out Example

has bowel problems, LO = [o when the outside lights are on, DO = do when the dog is out, and HB = hb when you can hear
the dog barking.

The network for the first example is shown in Figure 3.6 taken from Charniak [15]. Tt is
a qualitative model used by a fictitious Mr. Smith to predict whether his family is out or not. The
prediction is based on whether the outdoor lights are on, and whether the dog’s barking can be
heard. When the family leaves, they often put the dog out, and turn the outdoor light on. Also,
when the dog is having bowel problems, he might be put out. An early indication of the dog being
out is whether or not his barking can be heard.

Instead of attempting to construct the quantitative structure from memory of past expe-
riences, Mr. Smith decides to start with an uninformative prior, and record his experiences daily
(one can consider this an expensive sampling process for the more general task of sampling from a
large scientific or business database). After 3 months, the sum total of his experience is represented
by the frequency of each occurrence in the joint space, as shown in Table 3.4.



Pr(FO) Pr(BP)
fo | 5(33,69) bp | 5(12,90)
fo | 5(69,33) bp | 5(90,12)
Pr(HB|DO) Pr(LOJFO)
do do fo fo
hb | 5(34,4) | 5(3,63) lo | 5(24,10) | 5(7,63)
hb | 5(4,34) | 5(63,3) lo | 5(10,24) | 5(63,7)
Pr(DO|FO,BP)
fo,bp fo,bp fo,bp fo, bp
do | B(6,1) | B(17,12) | B(4,4) | B(13,51)
do | B(1,6) | B(12,17) | B(4,4) | B(51,13)
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Table 3.5: Conditional Probability Tables Dog-Out Example
These tables are what would actually be stored, given the data as seen in Table 3.4.

In general, tables representing the joint probability or frequency space will not be avail-
able, because they are usually far too large to represent outright. That is the raison d’étre for
belief networks: to efficiently represent the information in the joint space with a set of conditional
probability tables, based on the independence assumptions characterized by the graphical layout
(the Network Assumption). What is shown in Table 3.5 is the set of conditional probability tables
that would be generated by BNI for the data. For example, the entry for Pr(hbldo) = 5(34,4)
comes from the prior distribution of 5(1,1) in each cell, plus 33 instances in which the dog was
barking while outside, and 3 instances in which the dog was outside but not barking.

For this example, we compute the Pr(fo|lo,hb), and watch how the inference distribution
is propagated throughout the transformation process. One possible set of transformations that
can be performed on Figure 3.6 to get the desired distribution is shown in Figure 3.7. This
transformation process proceeds as follows:

1. Arc Reversal: FO — LO. Following Theorem 3.3.2, the resulting distribution for Pr(FO= fo|
LO=lo) = (24,7). There are five other distributions (the rest of the table for Pr(FO|LO),
and the table for Pr(LO)) that could be specified at this point on the basis of Theorem 3.3.2,
but this is the only one of interest for this example.

2. Node Removal: BP. The distribution of Pr(DO=do| FO=fo) = (3(22,12).

3. Arc Reversal: DO — HB. The distribution of Pr(DO=do|FO=fo,HB=hb) = (5(20.25, 1.34).
This is the first time the Network Assumption has cost accuracy. If we look at Table 3.4, we
can see that the actual distribution based on the samples seen is 3(20,2). The joint table,
however, is not stored, so we must rely on the conditional probability tables for partial infor-
mation, and the Network Assumption for the rest. In this case, an independence assumption
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was made that was not 100% supported by the data, and so the discrepancy. This is not too
surprising, since it would be rare for a random sample of any size to completely support the
independence conditions. Larger samples would, however, tend to provide stronger support.

4. Arc Reversal: FO — HB. The distribution of Pr(FO=fo| LO=lo,HB=hb) = §(15.08,2.36).
This is the final result of the computation. Comparing this to the distribution we would get

if Table 3.4 were available, we can see that the results are reasonable (5(16,2)).

It is widely accepted that as the inference chain grows, the error in the distributions being
maintained will also grow. This statement is a bit too strong. As pointed out by Klieter [47], there

are two competing forces that will determine whether error or expertise is growing:

o As the inference chain grows, the error at each step is compounded, thus providing a force

for increasing error.
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e As the chain grows, certain types of inference (for example, marginalization) implicitly add
samples from other parts of the network to the information currently at hand. Since the
variance of the beta distribution is

var(fla,w)) = (a4+w)(at+w+1)
(a4 w)?
(a—|—w)2(04‘|‘w+ 1)
1

at+w+1,

A

the variance will tend to decrease linearly as samples are added to the system, thus providing
a force for increasing expertise.

The magnitude of the first force depends on how the distributions are propagated. The larger the
error in each step, the stronger this force. For the theory presented here, the source of the error is
in the violation of the Network Assumption, in particular due to the sampled data not conforming
to the independence claims made by the qualitative structure. As the size of the sampled data
grows, this source of error will drop off fairly rapidly. It seems more reasonable to say that there
exists a probabilistic boundary on the sample size [65]. Below this boundary the error will grow as
the inference chain grows, above it, expertise will grow instead.
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Car Insurance Example

SocioEcon
Age
GoodStudent
Mileage OtherCar
RiskAversion
VehicleYear
SeniorTrain
DrivingSkill MakeModel
"
DrivHist
Antilock
DrivQuality . ' -
Airbag CarValue HomeBase Anti Theft
RuggedAuto Accident
Theft
ThisCarDam
Cushioning -
’ ThisCarCost
OtherCarCost
MedCost
ILiCost PropCost

Figure 3.8: Car Insurance Database

This is a model of an insurance database, it includes binary, nominal, discrete and continuous variables.

An interesting question is whether or not the operations are order independent. In the car
insurance belief net shown in Figure 3.8, suppose the goal is to find the probability Pr(DrivingSkill
= expert | GoodStudent = false). There are many different ways to apply the four transformations
in order to come up with a network which can answer this question; it would be good if all the paths
produced the same distributions as outputs. We in fact claim that the transformations are order
independent. We back this up with an example based on an implementation of the transformation
theorems, and a simple argument that explains why this is as it should be.

Similar to the data in the dog-out example above, the CPTs in the car insurance network
were learned with the updating method discussed in Section 3.1.1, this time using 500 samples.
Again, as before, by looking at the actual data the “true” beta distribution given the data can
be determined for the probability at hand by counting the actual number of samples for which
DrivingSkill = expert and GoodStudent = false; and DrivingSkill != expert and GoodStudent =
false. We end up with a target of 5(54,426).

The Arc Reversal Theorem alone was applied to generate the two possible solutions shown
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Figure 3.9: Transformation #1 for Pr(DrivingSkill=expert | GoodStudent=false)
This shows the application of the Arc Reversal Theorem to the sequence of arcs Age — SocioEcon, Age — RiskAversion, Age
— SeniorTrain, Age — GoodStudent and Age — DrivingSkill. Transformations at steps 4 and 5 establish GoodStudent as a

parent of DrivingSkill, the rest are to make sure that no cycles get created.

in Figures 3.9 and 3.10. These figures are such that SE represents the node SocioEcon, AG Age, RA
RiskAversion, DS DrivingSkill, ST SeniorTraining and GS GoodStudent. The rest of the network
has not been shown as it is not directly affected by the transformations that were applied. The goal
is to apply a sequence of transformations that results in having GS as a parent of DS. This condition
insures that the CPT for DS would then have all of the information necessary to determine the
distribution for Pr(DS=expert | GS=false). The Arc Reversal Theorem works in this case because
it adds links such that the parents of the nodes that are being reversed are all shared. For example
in Figure 3.10 at step 4, reversing the link SE — DS adds the link GS — DS since GS is a parent
of SE.

The end result of applying these transformationsis that for both Figure 3.9 and Figure 3.10
we get the distribution ((57.81,425.19) (or without a prior, 3(56.81, 423.19)). In this case, the
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Figure 3.10: Transformation #2 for Pr(DrivingSkill=expert | GoodStudent=false)
This reverses the sequence of arcs SocioEcon — GoodStudent, SeniorTrain — DrivingSkill, RiskAversion — DrivingSkill, and

SocioFcon — DrivingSkill.

resulting distribution is the same for either path. The same tables can be used to provide, for
example, the distribution on an expert driver given that driver is a good student student; in this
case the transformations returned $(2.19,20.81) (or 5(1.19,18.81) without a prior), whereas the
data tells us it should be (4, 16).

The two transformations in this example reverse completely different sets of arcs, and end
up making modifications to the CPTs that are significantly different. For example, the CPT for
DrivingSkill under the first set of transformations has 192 entries in it, whereas under the second
set of transformations it has only 18. Yet, the end result is to provide the same distribution on the
question at hand.

The reason that different sets of transformations produce the same distributions is really
very simple. The transformations themselves are not inflicting any estimations on the system, they
are mathematically precise functions in the domain for which they are designed, in much the same
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way that multiplication and division are. The estimates and inaccuracies are from two sources,
the Network Assumption, and the fact that the data seen at any point is a random quantity and
thus can not be expected to conform exactly to the independencies inherent in the given structure
(even if the structure is correct). When asking for the distribution of some probability Pr(X|Y),
this depends only on the structure of the relationship between the variables X and Y, thus any
inaccuracies will stem from the improper modeling of that structure, or from the random nature
of the random sample. If the different processes used to derive the distribution accurately reflect
the structure given, then no matter which method or process is used, the results will be the same.
This is where other approaches to this problem fall short, as their error is dependent not only on
model error and random sample error, but also on process error.

One more point of interest is to notice that the distribution for the bad student is much
more accurate than that for the good student. The reason for this, as discussed in the previous
example, is that very few samples have been seen for the good student case (20, compared to 480
for the bad student) and so the data is not yet accurately reflecting the independency structure
assumed by the network.

3.4 Discussion

In systems that learn belief networks by induction, there is a need to produce inference
distributions rather than simple point probabilities in order to give some feeling for the degree
confidence that can be placed in the result. It is impossible, however, to produce distributions
that accurately reflect all of the data seen without retaining the equivalent of the joint probability
space for the network; there are too many unknowns, too few equations. It is necessary, then, to
make assumptions or approximations that allow us to propagate the distributions through infer-
ence. These assumptions have been strong in the past, compromising the integrity of the resulting
distributions.

What this chapter shows is that by using only the Network Assumption, the inference
distributions can be propagated for any inference possible in a belief network, by specifying how to
update the sufficient statistics on the beta distributions for four fundamental network transforma-
tions. This chapter has also argued that under some types of inference, error will tend to decrease
as the inference chain grows, as long as the belief network has been constructed from a sufficient
number of instances.

For future work, the manipulations must be written in terms of realistic “fast” inference
techniques like those explored in Lauritzen and Spiegelhalter [52, 51]. Furthermore, learning the
quantitative structure of a belief net does not end with the management of the beta distributions;
we need to examine the possibility of learning good conditional probability tables with few samples.
The quality of inference done in an induced network is dependent on the level to which the joint
probability space has been explored. The fact of the matter is that for many domains, resources
(the size of the database, the time available) will not be sufficient to adequately explore the joint
probability space for a belief network; the space is too large, and even in a small space there are
bound to be low-probability columns in CPTs that rarely see the light of data. The job is made just
that much harder when the assumption is made that every column in the CPTs is independent, as
is done in the method explored above. In Chapter 5 we examine in depth other methods of learning
this space that avoid the assumption of independence.
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Chapter 4

Decision Support

This chapter describes the theory behind predicting optimal sample sizes required to con-
struct models of the data that satisfy user requirements. The first section describes the motivation
behind this type of work. The second section presents the mathematics for producing maximum
utility sample sizes in the domain of decision tree induction. The same concepts are then applied
to the construction of belief networks.

4.1 Motivation

Real world databases are often established in order to answer a set of particular questions
about the environment described by the data, or to aid in making a choice between a set of possible
actions. Unfortunately, several problems of scale arise when using the standard algorithms on the
huge training sets offered by very large corporate and scientific databases. Extracting, handling,
and learning from a large training set can represent a very considerable effort (sometimes days or
more of both human and machine time). In some applications, the benefit of increased accuracy
obtained from the additional data justifies this expense, but often the economically rational decision
is to use only a subset of the available training instances. For example, if the information needed
is not extremely critical, a user might be just as happy with an answer of p & .1 as with p & .01,
thus she can take a smaller sample and get much quicker results. What sample size is expected
to be necessary to produce inferences that are within a specified expected error? Furthermore,
what sequence of subsamples will be the most economical way to proceed in order to produce this
sample?

As another example, in some critical areas one might find several different models being
constructed for the same domain, in hopes of reducing the chance of unsuitable or incorrect results.
If the models end up suggesting different courses of action, how should one determine which action
to take? Or more to the point of this dissertation, how accurate must the CPTs be in order to
distinguish the set of inferences to within a specifiable degree of confidence? How accurate must
they be to make the results practically indistinguishable, so that either action is as good as the
other? Ultimately, we wish to control the tradeoff between the cost of induction (space and time)
from larger training sets and the increased accuracy they provide. The current state of the art in
AT lacks a sound and principled way to do this. This chapter makes significant progress towards
that goal, providing both an analytical framework within which to consider these questions and an
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Figure 4.1: Action Success Rate Distributions

Probability distributions for the chance of success of 4 actions for small, medium and complete samples.

application of the concepts that is successful in empirical tests.

Figure 4.1 illustrates these concepts for four possible actions. The top figure shows a
typical situation with a small sample, where the distributions plotted represent the total knowledge
to date of the variables in question. The second shows the situation after more examples have been
examined, and the third shows the situation after an infinite number of samples. When trying to
pick the best action, it is clear that a choice made using the small sample is quite likely to be
wrong, whereas we probably don’t need to wait until the database is exhausted to be reasonably
sure of the right choice. This shows a strong analogy to the problem of picking the best move in
game-playing, when only the estimates of move values are available to work with. The techniques
used here are thus similar in concept to those in [82, 40].

4.2 Application to Decision Trees

This section concentrates on building the theory to control decision tree induction. The
main theme of this dissertation is the induction of models from data. Although most of the results
apply primarily to belief networks, we put these networks aside for this section and study the
induction of decision trees. This problem is very interesting in its own right, as decision trees are
one of the most successful induction techniques in industry. Section 4.2.5 contains some rather
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extensive empirical results that demonstrate the effectiveness of the approach. In Section 4.3 we
show that the results obtained for decision trees are directly applicable to belief networks.

The most immediate application of controlling the sample sizes is to speed up the basic
model induction algorithm. For example, in the domain of decision tree induction, an earlier
approach to this problem [13] shows that the algorithm can be reduced from roughly quadratic
to linear time (in the number of training examples) without significant loss of accuracy by using
sequential samples called peepholes. Two ad-hoc components of that method can now be placed on
a sound analytical basis: the choice of the sizes for the peepholes, and the determination of whether
an attribute should be discarded from consideration on larger peepholes. This second point brings
out another interesting result of being able to characterize the expected gains of samples of a given
size; the idea can be applied to the task of deciding whether an attribute should be discarded
completely from the induction process by monitoring how it compares to alternatives in situations
of interest. This allows comparatively ineffective or redundant attributes to be weeded out, thus
reducing learning time as training set sizes are scaled up. This can be done automatically, or
interactively with a human expert.

The following sections show how to calculate both the distributions and the expected
information loss associated with selecting an attribute on the basis of a subsample. Given this
information, we can calculate the expected increase in the quality of the selected attribute from
further sampling, compare it to the cost of sampling, and thus derive an optimal stopping point.

4.2.1 Overview

A top down decision tree learning algorithm [78] builds a decision tree classifier from
a data set S = {s1...s:} using attributes A = {A;...A,,}. It operates by first selecting an
attribute to form the root of the tree, then splitting the data set according to the attribute value
and applying itself recursively to each subset thus formed. For large training sets, the major costs
arise in selecting an attribute for the root of the current subtree, and in choosing appropriate
threshold values for numeric attributes.

Attributes are normally selected using information gain calculations. The information
gain of an attribute A; given a sample S of size |9] is

g(A) = I(p,n) — e

where p,n are the numbers of positive and negative examples in the sample; I(p,n) is the total
information (in bits, attribute independent) required to classify a random example, given by

P P
I(p,n)=— lo —
(p.m) P g2p+n ptn

10g2 P n n7

and e; is the expected amount of information needed to classify a random example (the information
content) given information about the value of A;. Note that over the set of attributes, I(p,n) is
constant; thus for a relative measure of the information gain of the attributes, we need only consider
e;. If we assume, for the sake of simplicity of exposition, that the attributes are binary with values
+ and —, then (with

|51 =pi +nf +p7 +n7)

+ o
PN 4 4

T4+ n.
= S ZI(pivni)‘FpZiZ

I(p;sm;)



51

+ + + +
b; b; ; n;
= _?ng(pj__l_nj-)_ g logZ(p;»I'—l—n;»l')_
p._ p._ n. n.
-1 —t ) L] —Lt ). 4.1

If examples are vectors that include a classification p or n, and +/- values for each attribute, then
p;»" is a example classified as p (positive) where attribute A; has the value +.

The method works by considering subsamples of the entire data set. Given a subsample,
we estimate the actual information content of each attribute with Equation 4.1. From this, we can
derive the conditional probability distribution for the true information content given the estimated

version. It turns out that the conditional probability distribution is in fact approximately normal.

4.2.2 Information Content Distributions

Let X7 be the true information content of A; if an infinite sample were given. This is
unknown, so let X; be the random variable that estimates this quantity based on some subsample
S, and let fZ»S(Xi) be the distribution of X; on that sample. Finally, let é; be the information
content given a sample S as per Equation 4.1. Like many sample statistics, X; is approximately
normally distributed around the information content e; on an infinite sample, which we estimate
with €; calculated from the subsample:!

FP(X0) ~ Né, o). (4.2)
The variance o; for the distribution on the sample can be determined exactly. Let Ry be the random

variable that represents the true fraction of positive instances that attribute A; classifies as + (so

+
% is the current best estimate of Ry). Also, let Ry, R3 and R4 be defined similarly, with estimates

+ —

D %, and né_ Then, from Equation 4.1, the variance is given as
R R
02 = war(Rylogy(———) + Rylogy(———) + 4.3
K3 ( 1 gz(Rl‘I’RQ) 2 gz(Rl‘l’RQ) ( )
R3 R4
Rslogy(————) + Rylogy(=———=)).
3 gQ(RS_I_ R4) 4 g2(R3‘|‘R4))

Note that for any attribute A;, each example in the sample has 4 possible outcomes, pj’,nj’,p;
and n; . This is analogous to sampling with replacement from an urn filled with balls of 4 different
colors. In this case the natural distribution to describe the process is a Dirichlet (see the Appendix
for more information on the Dirichlet). Therefore, the joint distribution f(Ry, Ra, R3, R4) is a
Dirichlet, and the marginal distribution of each variable is a beta (for example, Ry is distributed
as a beta with the parameters p;»" and 5 — pj’) We can solve for o? exactly with the use of the
digamma function (¥) and its derivative. Keep in mind that

var(7Z) = BE(7Z*) — BE(Z)%

!Empirical tests on the goodness of fit of the normal to the actual distribution show that though not exact, the
fit is reasonably good.
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Now, break up the variance expression in Equation 4.3 into six terms: 7 = Rllogg(Rl) Zy =
Ryloga(R2), ..., Zs = Reloga(Rg), where Rs is the random var representing (pZ + n; /S, and Rg
is (p; + n; )/S The expression for the variance of z given above is more descrlptlvely written as
var(2) = BE(Zy+ Zo+ 73+ Z4 — 75 — 76)*) — E(Z1 + Zo + Z3+ Z4 — Z5 — Zg)*. This has about 30
individual terms in it, terms that take the forms: E(R%loga(R1)?), F(R1Rslogz(R1)logs( R2)), and
E(R1Rs5loga(Ry)loga(Rs)).

The trick is to ﬁnd exact expressions for F(logy Rq) and E(R;log, Ry), then manipulate
these expressions to find o?. We will sketch the derivation of these quantities.

First, we know that logy R1 = In(Rq)/logs(e), and therefore by the definition of Expecta-
tion and the expanded form of the beta distribution (see the Appendix):

E(lnRy)  [In(RORY (1= Ry)IS-PE-1aR,

logoe Bl 18] = pl)logae '
The next critical piece of information (based on the chain rule of partial differentiation) is:
m In B(ax, az)aialﬂ(al, az)
R = R,

ﬁ(alv |S| - al)
JIn(R)RS (1= Ry)PI=m—1dR,
Blar, |S] = ar) '
The second step in the above derivation is a bit tricky. It is based on the fact that algj(ff = % for
x

any function f, and that aq;+ay = |5|. Also, the third step is based on the fact that aa—ax“ = In(z)z".
It follows that

E(10g2 Rl ) =

0
8—(11111 B(ay,az)

h—

1 0

E(logaR1) = logac OpTF

n B(pf, 11— pi).

Another form for 8 ln B(a1,az) that is very useful is in terms of the digamma function,

9 In Blar, az) = 9, [la)l(az)

day da;  T(ay + az)
= \Il(al) — \Il(al —|— ag),
giving
_ 1 +
E(logaRy) = 1o—(¥(p}) = W(S)) (4.4)

The main advantage of this formulation of E(logaR1) and ultimately of the variance is that the
digamma function and its derivative (which shows up for terms like E(r?(logyr)?)) has several quick
and accurate approximations [1], which lead to fast computation of variances that are as precise as
desired.

The derivation of E(Rqlog, Ry) follows in a similar manner, from the two pieces of infor-
mation:

+_
[ RyIn(Ry)RY 7 (1 = Ry)ISI-r 1R,
B(pF, |8 = pi ogze

E(Rl 10g2 Rl) =
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Figure 4.2: Expected Loss
The expected information of attribute A1 is é1, so it appears that A, is the better of the two choices. But, a loss may occur if
As is actually better. In this graph, that would happen if the actual information of A3 is on the right end of the distribution,

while the information for A1 is out on the left end.

0 J RiIn(R)RY (1 = Ry)SI=m=1dRy
—Ing(ar + 1,a9) =
Alar+1,az) B(ar + 1,15] — an)

8@1
= \Il(al + 1) — \Il(al + a9 + 1)

The result is constructed as

1 pf
BBy log 1) = - E (i +1) = W([S1 4 1) (15)

Blrf +1,15|-pf)
BT ISI-pF)

Simple extensions can made to Equations 4.4 and 4.5 to complete the solution for 2. We
do not show the full form of o2 since reproducing the 30-odd equations would be a bit tedious, and
furthermore the information given above makes them easily reproducible. What has been shown
then is how to compute the variance for the distribution of the information content of a sample
as shown in Equation 4.2. The next section shows how to use this distribution to compute the
expected sample sizes required to make decisions of specifiable qualities.

+
The % term comes from

4.2.3 Expected Loss

Consider choosing between just two attributes A; and A,, where we assume without loss
of generality that the estimated gain of A is currently higher than that of A, (Figure 4.2). What
is the expected loss in information gain associated with choosing A47

If Ay has true gain Xy, and Ay has true gain X3, then if X5 > Xy, the loss is X5 — X7.
Otherwise, there is no loss. Hence the expected loss is given by?

L(S):/1 /1 (X5 — X0)fS(X0) f5(X1)dX2d X1, (4.6)
X1=0J X=X,

2This assumes independence of the attribute gains; that is to say that knowledge of the gain of one attribute does
not affect the prediction of the gain of the second attribute.
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Inserting the normal approximations for f’(X;) and f;(X3) obtained above, and realizing that

Y = X3 — Xy is the normal N(é = é; — €1,0 = (/o] + 02), we get

is) = — " St (4.7)
B o\ 2T y:O v '
This use of Y is an approximation as well because it is possible for X; or X5 as normals to be

greater than 1 (which is not a valid information content), but for
Y = Xy — X €[0,1], and thus be counted in Equation 4.7. The integral is easy to solve, giving:

~ g 22 2 22 2

BS) = oo = U S el
Note that this equation provides the connection between the sample size (which is embedded in
o), the width of the distributions and the expected loss in information gain that can be attributed
to selecting the current best attribute. This approximation begins to degrade only when the
information content comes to within a standard deviation or two of 1, at which point ﬁ(S) provides
an upper bound on L(S). Because L(S) > L(S), the solution proposed here will tend to be
somewhat conservative, and thus tend to take larger samples than required. However, the empirical
results in Section 4.2.5 show that this effect is barely noticeable.

). (4.8)

4.2.4 Sampling Strategy

To find the optimal stopping point, we need information on the expected quality of the
tree, the cost of sampling, and a utility measure specifying what the user is willing to pay for
different quality trees. As a preliminary cut, we use the expected loss i(S) as the quality measure
(the smaller the loss, the higher the quality), and allow only the simplest form of a utility measure,
a single point, the loss tolerance. This measure is such that a decision made with a quality worse
than the loss tolerance has no value, and a decision made with quality greater than or equal to the
loss tolerance has full value.

Given this information, a simple approach to reach the optimal stopping point (the one-
shot approach) is to calculate the expected required sample size (ERSS) needed to reach the loss
tolerance, and then to take a sample of that size. This approach has drawbacks, but the calculation
of ERSS is useful both in itself, and for the next section.

The first step is to find the variance o7 required to satisfy the equation

L(S) — loss tolerance = 0. (4.9)

Then, any sample of sufficient size to produce a variance less than or equal to o7 is acceptable in
that it will be likely to produce an attribute choice with full utility. By building a tree in which each
attribute has been chosen to satisfy the loss tolerance equation, we are hoping to control both the
accuracy and utility of the overall learned result. The ERSS is the smallest such sample size. To
solve Equation 4.9, take a small initial sample of a few hundred instances, calculate the parameters
¢ and o2, then ignoring o for now , solve by iteration for the o = oy that satisfies Equation 4.9.
We only vary o in i(S) because it is the sole parameter that changes in a fairly predictable manner

ot -
as the sample size increases. The other parameter, €, is determined by the ratios %, 5K % and
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Tél' A reasonable choice that can be made here is to assume that as |.9]| increases, the ratios, and

therefore é will remain constant. In empirical trials, we used a bisection iteration to solve for oy,
which turned out to be efficient. To date, it has required no more than 12 iterations to reach a
solution.

The last step is to relate the sample size |.S] to the variance. Solving for |.S]in terms of the
variance from the equations derived in Section 4.2.2 is clearly out of the question. The approach
taken instead is to plot a curve for the sample size as a function of the variance. A family of
second order polynomials was chosen based on extensive empirical testing, and the knowledge that
as per Section 3.3.1, the variance is mainly a linearly decreasing function of the sample size. For a
particular problem, first the two points (o2, |.5]) and (¢'2,2|5]) are used to select the curve, then
the ERSS is the sample size along this curve that corresponds to . The empirical results show
that this calculation of the ERSS meets with good success.

However, the one-shot sampling approach is not adequate; what is needed is a sampling
strategy that determines an entire sequence of samples to take. ERSS is an estimate of I, the
optimal number of random samples required to reach the loss tolerance. The argument against the
one-shot strategy is that once an ERSS is produced, we have an estimate for I based on some
incomplete information (information that currently can not support a decision that meets the loss
tolerance). If the next sample size is simply the ERSS, the risk is run that ERSS > I* (in fact,
we occasionally saw ERSSs of up to 42 million instances, from initial sample sizes of 250). The
opposite approach is to increase each sample size by one instance, until the expected loss matches
the loss tolerance; but this approach is likely to be very expensive. Somewhere in the middle of
these two extremes lies a more rational strategy.

Size of the next sample

The goal is to find a large enough sample 5 so that Equation 4.9 is satisfied, but to do
this with minimal cost (in this case, time). The generic algorithm for this problem has the form:
On iteration &k, k € 1..n

1. Select a random sample S%.

2. Compute L(5)

3. If L(S) < loss tolerance then stop; else

4. Determine the size |Si41] for the next step, Goto 1.

The cost of this algorithm is dependent on the size |Si| of the sample®. The cost can
be modeled as a linear function of two factors: the overhead time required to process a sample of
any size, and the additional time required for each instance in the sample (¢ and 7, respectively).
Therefore the cost of one operation (one sample) is ¢ + |Sk|i, and the total cost of the algorithm
is nc+ 37—y |9k|i. Since the minimal cost is ¢ + I*i, we want to find the variables n and | S| (for

*Note that after computing the summary statistics of the sample, the costs of steps 2, 3, and 4 of the operation
are independent of the sample size. The computation of the summary statistics can be considered part of the cost of
selecting the sample.
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k € 1..n) that minimize*

n
nc + Z |Sk|i — (e + I7).

k=1
At this point we restrict the general form of the algorithm. What follows is a rather ad-hoc
approach to determining a sampling strategy, but the result seems reasonable. The restriction is
to force |.5;| = |Sk| = | 9| on each iteration, and furthermore to add each sample S} to the previous
samples S7...5,_1 when computing i(S) By combining subsequent samples like this, we are
essentially building up the final sample S one chunk at a time. The new form of the minimization

is to find the n and || that minimize

ne + n|S|i — (¢ + 7). (4.10)

With this restricted algorithm, the stopping condition tells us that the sample on the last
iteration will be at most || — 1 instances larger than I*. This means that 0 < n|S|—I* < |S|—1.
If we choose n|S| — I* = 0, then solving Equation 4.10 gives |S| = FRSS which conforms to the
one-shot approach. Instead, set n|S| — I = |9| = 1, giving n = W%I* Substitute this into
Equation 4.10, and minimize by setting the derivative to 0. Since I* is unknown, estimate it with
the ERSS.

The result is that the suggested size of the next sample to take is

15| = /(ERSS — 1)% (4.11)

which is much more conservative than the one-shot approach. Note that ¢ is a machine/algorithm
specific constant which can be estimated for any system.

The end result is to choose the next size of the sample as a function of the square root of
the ERSS, as opposed to immediately generating a sample of size ERSS. In the implementation,
we calculate the next sample size based on Equation 4.10, but allow ERSS to change with each
iteration (the additional information gives a better estimate of I*).

4.2.5 Evaluation

There are two hypotheses that could be tested in an empirical evaluation of these methods:

1. the algorithm’s answers (decision whether to defer the choice and if so, the estimated sample
size required to commit) are sensible on an appropriately wide range of inputs, and

2. when the algorithm is used in the construction of decision trees, the resulting speedup and
any loss of accuracy are appropriate to the parameters used.

In this chapter the first and more fundamental hypothesis is tested extensively. The fact
that faster choices of attribute (using similar but ad hoc techniques) can lead to speedups of at
least an order of magnitude on practical tasks has already been established in previous work [13],
and the last example shows the affect of the loss tolerance on the accuracy of the learned decision
trees. This section describes the evaluation method used to test the first hypothesis, and presents
and discusses the results.

*The trivial solution n = 1, |S1| = I* is not acceptable, it is the one-shot approach.
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Method of Evaluation

The evaluation uses synthetic data rather than data from real domains, because we need
to know the value of a parameter which is not obtainable on real data: the true difference in
information gain (DIG) between two attributes (similar to the §* parameter from Section 2.3). The
information gain (IG) for an attribute computed from some finite set of examples is only an estimate
of the “true” IG. As the sample size increases, the relative frequencies of each combination of class
and attribute value converge towards the true joint distribution, so the estimates for IG converge
towards the attribute’s “true” 1G. With synthetic data, we start with the occult knowledge of the
true distribution and use it to generate the counts for class and attribute values according to the
desired sample size. But it can also be used to calculate the attribute’s true IG, along with the
DIG between a pair of attributes following two possibly different distributions. The DIG provides
a measure of both the difficulty of choosing between the attributes and of the gravity of making
the wrong choice. Choosing between a pair of attributes with a large DIG such as 0.1 bits will
typically be easy even on a small sample of a hundred examples, but making the wrong choice is
likely to yield a less accurate tree.

As a concrete illustration of what could for practical purposes be considered a small
value for DIG, we duplicated Quinlan’s [78] 14-attribute weather data 512 times and compared the
original attribute “outlook” (gain of 0.24675 bits) with an almost identical copy where one of the
7168 examples had been corrupted so as to disadvantage it most (the first example’s value was
changed from “sunny” to “overcast”). The DIG between the original and the corrupted attribute
was 0.00163 bits. In consideration of this, we usually quote figures for DIGs in millibits.

Our experiments present the algorithm with millions of choices between attributes, fol-
lowing a wide variety of sample sizes, distributions (hence DIGs), and loss tolerances. For the
sake of anyone who wishes to reproduce the evaluation or to investigate the nature of the set of
the distributions used, this paragraph specifies the parameterized procedure that generates the
set. Taking the simplest case of two attributes (A and B) with two values each (at,a™,b%,07)
and two classes (p and n), a complete joint distribution on these three variables can be spec-
ified with the probabilities of eight mutually exclusive and exhaustive events. Fach joint dis-
tribution is computed from seven numbers representing the following conditional probabilities:
P(p), P(a™|p), P(bT|p,a™), P(bT|p,a™), P(a™|n), P(b¥|n,a™), and P(b*|n,a™). The specific val-
ues taken for probabilities were 1/2,1/4,...1/2"", where the positive integer ndv is the parameter
given to the procedure. These values are taken in every combination by the seven conditional
probabilities, so the number of distributions it produces is ndv”. These experiments used ndv = 4,
generating 16384 distributions. For each combination of 13 values for sample size and 3 for loss
tolerance, only a single set of class and attribute value counts was generated; ideally, many should
be used.

Choice of commit or defer

The two dependent variables measured in this experiment are the commit rate (the per-
centage of cases on which the algorithm committed to a choice between the two attributes), and
the average loss (the sum of the DIGS for those cases where the attribute with the smaller gain
was chosen, divided by the number of cases with a committed decision, whether right or wrong).
The distributions are separated into five “buckets,” each containing all those with the DIGS within
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a certain range, as indicated in the graphs of Figure 4.3. The upper number with one place after
the decimal point at the center right of each graph gives the upper limit on DIGs in millibits (mb)
appearing in the bucket; the lower limit is implicitly the upper limit of the next bucket. The integer
below it gives the number of distributions in each bucket. The lowest graph covers distributions
where the DIGs are so low that the attributes are identical or practically indistinguishable; its lower
limit is zero.

The graphs share the following format. The log scale x-axis shows the size of the samples
generated in units of thousands of examples. The linear scale y-axis on the right side of the graph
refers to the percentage of samples on which a decision was made (the commit rate). The log scale
y-axis on the left indicates the average loss on those samples where a decision was made, in millibits.
Values less than 0.01mb are are lumped together as zero. Curves for both commit rate (marked by
a “47) and average loss (marked by an “x”) are provided for three values of loss tolerance: 4mb
(solid), 0.4mb (dashed), and 0.04mb (dotted). Triangles mark the average losses that are sustained
by the “strawman” alternative of always committing to the attribute with the larger information
gain on the sample.

The broad trends in the graph are as one would expect. The strawman loss curves tend
steadily towards zero as sample size is increased. The steeper slope of these curves for the larger
DIGs is due to two factors. The average losses tend to be larger on small samples, because the
individual losses (DIGs) being averaged are larger, and because the decision is more often wrong on
the small sample than on a larger sample. Every commit curve has an S-shape; the “knee” where
it ramps up is pushed to the right as DIG decreases (lower buckets) and as loss tolerance decreases
(from solid to dashed to dotted curves). Intuitively, this means more examples are required as the
alternatives become more similar and as higher accuracy is requested.

The loss curve for a lower loss tolerance is generally lower; a few exceptions occur for very
small commit rates where the figure given as average loss may consist of a single case. The solid
curve (greatest tolerance, hence least conservative) sustains losses below the strawman’s only on
the upper three buckets. The dashed curve is more conservative: on the upper buckets, it maintains
losses that are roughly an order of magnitude below the strawman losses. Its knee consistently sits
around the point where the strawman losses drop below 0.04. The dotted loss curve is the most
conservative: its losses are so low on all buckets that they are only occasionally distinguishable
from zero. Giving the algorithm a loss tolerance of 40mb or more yielded a 100% commit rate
across the board.

It is unreasonable to expect the commit rate to jump to 100% as soon as the average loss
in one of the buckets drops below the loss tolerance. The algorithm has the task of keeping the
average loss below the loss tolerance over all the distributions given to it that could have produced
a given sample (weighted by the probability of that distribution given the sample), not just over
distributions with true DIGs within a certain specified range.

Results for the ERSS

The second experiment assesses the accuracy of the algorithm’s forecasts for the expected
required sample size (ERSS) to commit. To do this we create a new pair of cases from each case on
which the algorithm defers, generating more examples® from the same distribution as the original

®Both the new cases included all the counts from the original cases, as this is consistent with the algorithm’s
approach. The evaluation could also be done with the new cases generated from independent samples, which may
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Figure 4.3: Commit Rates and Average Loss

For legend, see text in this section.
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LT SS NC || Under | Hit | Over | Rev
mbits | 1000’s % % % | %
4 0.25 | 11857 36.9 | 24.5 | 34.5| 4.1
4 0.5 | 10153 33.0 | 30.0 | 32.8 | 4.2
4 1| 8351 27.6 | 37.7| 30.0 | 4.8
4 2| 6362 23.7 | 44.7 | 26.8 | 4.8
4
4
4

41 4270 19.0 | 52.5 | 23.2| 5.3
8| 2225 15.0 | 61.8 | 18.8 | 4.4
16 439 9.6 | 77.2 | 10.3 | 3.0

0.4 0.25 | 14427 419 | 17.2 | 381 | 2.8
0.4 0.5 ] 13141 39.9 1 200 376 | 2.6

0.4 11| 11706 3711242 358 2.9
0.4 2 | 10179 34.6 | 28.2 | 345 | 2.7
0.4 41 8375 3221346 | 309 | 24
0.4 8| 6894 29.2 1 39.7 | 284 | 2.7
0.4 16 | 5358 25.8 | 47.3 | 24.7 | 2.1
0.4 32| 4014 21.9 1 53.9 | 220 | 2.1
0.4 64 | 2880 18.0 | 63.3 | 16.8 | 1.9

0.4 128 | 1973 14.8 | 68.7 | 14.8 | 1.7
0.4 256 | 1303 12.6 | 74.0 | 11.4 | 2.0
0.4 512 854 8.0 | 814 8.7 2.0
0.4 1024 412 11.2 1 76.5| 10.9 | 1.5

Table 4.1: ERSS Accuracy

Accuracy of estimated required sample size for the algorithm to commit.

case: the number of examples in one of the pair is slightly larger (25%) than the size indicated by
the ERSS; in the other it is slightly smaller. Both of these enlarged samples are then given to the
algorithm to see whether it commits. We deem the ERSS accurate on the case if the algorithm
commits on the larger sample but defers on the smaller one. If it defers on both we deem the ERSS
underestimated. If it commits on both we deem it overestimated. The unhappy last combination,
where it commits on the smaller sample and defers on the larger one, can never be eradicated
because of the stochastic way the cases are generated; we call these results “reversed.” Table 4.1
shows the percentages for each of these four combinations, over a variety of loss tolerances and
sample sizes. The third column gives the number of cases on which the algorithm deferred.

Hit rates rise monotonically: the greater the sample size, the more accurate the figure
for ERSS. For a given sample size, greater accuracy is obtained where loss tolerance is greater.
This is very plausible because small loss tolerances require larger samples to commit on, so the
correct figure for ERSS becomes a more distant target. At all times the percentages for under- and
over-estimates are approximately equal, as we would want.

better suit other methods.
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For practical purposes, the important conclusion to be drawn from this table is that after
a few thousand examples, the majority of the estimates of the required sample size are fairly
accurate (+/-25%), and that the algorithm behaves sensibly and smoothly over the relevant range
of parameters. For a wider tolerance (+/-50%), the majority is reached at 500 examples for 4mbits
and 2000 for 0.4 mbits.

Utility of Trees

One thing that has been implicitly assumed in this chapter is that the utility or quality
of the tree will be positively correlated to the reduction of the loss of information gain at each
point in the tree construction. This section uses the knight-rook-vs-king data from Quinlan as the
database, and shows the learning curves of the decision trees produced as the loss tolerance is varied
from very small to very large. The purpose of this example is to show graphically that a strong
connection exists between the loss tolerance at an attribute and the overall prediction accuracy of
the learned tree.

Figure 4.4 shows several different learning curves for decision trees built using loss toler-
ances varying from .001 to .04. For the knight-rook-vs-king data set this range is broad enough to
show average sample sizes from about 10,000 instances (loss tolerance = .001), to about 10 (loss
tolerance = .04 - .015) being required before decisions can be made.

There are several ways to build a decision tree using the loss tolerance information based
on what happens at a node when it is determined that more samples are needed. Do these samples
get added to the current set of samples at that node? We have chosen not to do this in order to
make a point. What we have done is to take the recommended sample and use that to make a
judgement at that node, or decide that more samples are needed. When there is enough information
to make a judgement, we throw the additional samples away and proceed to the next decision. This
has the affect of limiting the size of the trees by the number of samples originally given to the tree.
The learning curves above represent trees built on 50, 100, 200, and 400 samples. What has turned
out to be interesting about this is that the effectiveness of the information gain measure is greater
on smaller trees than on larger. This is seen in the figure by noticing the decreasing slopes of the
curves as the original sample size grows. This makes sense, because the more complete the tree
gets, the less it matters (in terms of accuracy) whether or not correct decisions were made at the
top.

The learning curves show clearly that decreasing the loss tolerance tends to give higher
prediction rates for decision trees, as expected. In general, information gain is not a perfect measure
of the quality of a tree, but it has performed well in the past on a wide variety of domains. The
culmination of this work would be to derive a mathematical relationship between the loss tolerance
at a node, and the expected quality of a tree, but this quantity would be a very difficult one to
produce.

4.3 Application to Belief Networks

When constructing the decision tree, the possible actions in the two action decision prob-
lem are to select either attribute A; or A; for building the next node of the tree. The sample is to
be large enough either to be able to distinguish which attribute is the better choice, or to determine
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The prediction rate of decision trees learned using the loss tolerances shown. The curves represent different size trees being

learned.

that either attribute can be chosen since they are almost exactly the same. When constructing a
belief network, or more precisely when learning the CPTs of the belief network given the graphical

structure, the problem changes a little.

In fact, there are two types of situations under which one would want to control the
sample size when constructing belief networks. The first situation is when the inferences from the
network must be of a certain specified accuracy, so the sampling is controlled to provide at least
that required amount. The second case is more in line with the two-action decision problems of
the previous section. It is when there are multiple models for a given domain, each recommending
a course of action, and the task is to determine which of these actions should actually be taken.
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4.3.1 Inference Accuracy

For the first case, the problem is not a two-action decision problem; there is no decision to
make besides determining how much information to collect before accepting the results. Nonethe-
less, it is highly desirable in some cases to be able to determine on the fly the sample size likely
to be needed in order to reach a particular degree of accuracy for a particular inference. This
capability is useful in any situation in which there is time pressure, and in which new models must
be constructed on a fairly regular basis. This happens to be just about every situation that humans
deal with. Consider for example how one processes visual data when opening a door and walking
into a room; typically a person will open the door, scan the inside of the room for about a second
and see if there is anyone inside that is interesting, then go about his/her own business. It would
be silly to spend ten minutes examining every crack in the ceiling and every hair on the floor every
time we wanted to change our location.

Confidence intervals are common statistical tools for providing a degree of confidence in
results. The statement Pr(a < 2 < b) ~ .95 represents a 95% nominal confidence interval about z.
The correct interpretation of this statement is: the confidence interval procedure that generated
the interval [a,b] has probability .95 of generating an interval that contains x. The rest of this
section uses confidence intervals as the vehicle for specifying the desired accuracy of inferences.
The connection between the ERSS and a given confidence interval is defined below.

First the mathematics are presented, then we will go into an example in detail. Tt is known
from Chapter 3 that every inference made from belief nets induced by sampling with replacement
has some beta distribution §(«,w). By the mean limit theorem, we know that for @ and w > 1
then ﬁ is approximately normally distributed. Statistical theory then shows that the nominal
100(1 — #) confidence bound is found as:

Pr(ft — 21202 SE(1) < p < fi+ 21925 E(2)) = 1 -6, n>1 (4.12)

where z_g/, is the 1 — 0/2 quartile of the unit normal distribution N(0,1), pu is the desired
probability, i is the mean of the beta or a/(a 4 w), and SF(j) is the standard error of i, which

equals \/ﬁ Sy (pi — @)% Another form for the standard error is in terms of the sample

variance, which we can approximate with the variance of the beta distribution:

SEG) = /v~ Var(3(o,0))

- ¢(a +w)(a4w+1)?

B «Q w 1
- atwatw(atw+1)?

A7)
-, 4.13
a+t+w+1 ( )
Therefore, to achieve 95% nominal confidence interval of p £+ .03, set zg755FE(4) = 2.975%
equal to .03, then solve for
ntl=atwtl=— 220 (4.14)

03T = 1)’
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We will use the dog-out example from Chapter 3 to make the ideas clear. This example
is a bit poor in some ways though, for instance it does not have the element of time pressure, nor
is there a pre-existing large database of examples for Mr. Smith to draw from. Let the goal be to
sample enough to find the probability that the dog is out to within .03 with a confidence of 95%.

Consider the problem of finding the probability of Pr(do|fo,bp) (dog out given family out
and bowel problems). The first step has already been done, which is to build the model on the basis
of a sample large enough to provide some useful information. Next, we need to find the number
of additional samples required to produce a 95% nominal confidence interval of £.03 around the
target probability. We know from Table 3.5 that the current distribution on the basis of the 100
samples already taken is 3(6,1). The total number of relevant samples required is found as above
by solving Equation 4.14, thus giving an n of about 187. Since the first 100 samples for the entire
network gave only 6 + 1 — 2 = 5 relevant samples (subtract 2 for the prior of a,w = 1), then to get
an additional 182 relevant samples, one would expect to have to take about 3600 more samples.
Poor Mr. Smith will be working on this table for a long time, the main reason being that the
combination fo and bp is very rare. If a more common probability such as Pr(lo|fo) (outside lights
off, family not home) is desired, then as there are already 68 relevant samples for that distribution,
Mr. Smith needs only take 175 more samples.

The inference can also be spread across many tables, for example Pr(bp|fo) (the dog
mysteriously develops bowel problems whenever the family is out). It is almost as simple. The only
extra step is to use the information already available in the network and compute the inference
distribution fB(a,w) as per the transformations given in Chapter 3. Then just as done above,
compare the number of relevant samples already seen (a + 3) to the number of relevant samples
that must be taken and from this determine the total number of new samples to take.

There is another option which we have not explored at all. To date, the database has
been viewed as an entity for which sampling entails randomly picking a complete sample that
includes all the variables in the database. This process does not give one the ability to specify what
characteristics the sample will have. This is a bit unrealistic when you consider the capabilities that
any database manager from 20 years ago can supply. For example, assuming for a moment that
there is a large database in the background, then in SQL one could ask for all of the data, and only
the data, that pertains to the weak column fo,bp (a column with very little data). By sampling
like this, instead of creating a general sample of which only a small percent of the instances are
relevant to the probability in question, one can instead draw a fraction of the original sample, all
instances within which are relevant. This has not been explored yet for many reasons, not the
least of which is that the success of such sampling is highly dependent on the database manager
in question, the particular entity relationship structure of the database, and the way in which the
index tables are set up.

4.3.2 Multiple Models

Consider market prediction on Wall Street, a complex domain with heavy time pressure
and the need for correct answers. When modeling a complex domain, there are usually many ways
in which a model can be built, and it is often unclear which is superior. Furthermore, when the
likelihood of data entry error is high, or in an environment that is rife with competition, rivalry
and secrecy, it is common, or even necessary to have several sources for important information.
What this leads to is that a user might be faced with the situation where he has two belief network
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models of some task which are producing different results. Which model to believe? Let M; and
M, be two distinct models which are returning two distributions Dy and D, for the probability
of success X1 and Xy of two possible actions Ay and A,. The task is to determine the maximum
utility sample size to use in collecting enough information to distinguish these actions.

The mapping from the decision tree solutions into this problem is basically one to one,
so we provide only a quick, concise description of the process, and refer the reader to Section 4.2.
From Chapter 3 it is known that Dy and Dy will be two specifiable beta distributions, 8(aq,w;) and
B(ag,wq). With the decision tree, we estimate the goodness of the action (the attribute selection)
by the expected loss of the information gain of the attribute as in Equation 4.7. For belief networks,
there is no commonly accepted measure of goodness that matches the information gain measure
in decision tree theory. But, there is an obvious choice here, which is simply to use the inference
distributions themselves in the loss equation. The more information present, the narrower the
distributions. The loss itself is again the difference X5 — X times the probability of that difference
occurring, giving

L(S):/1 /1 (X5 = X1)f5(X2) £5(X1)dX2d X, (4.15)
X1=0J X=X,

Approximate the betas with normals and let y = X3 — Xy be the normal N(é = €3 — €;,0 =

0? 4 02) where €1, €; and 07, 03 are the means and standard deviations of B(ay,w) and B(ag,ws)

respectively. The loss equation again is
~ o 2 2 .2 2 é 1—¢ é

(s — (¢ ¢ [20% e—(l—e )/20 + Z(erf(—= &

(:5) T )+ 5lerf( 3o oo

Set ﬁ(S)— loss tolerance = 0, and as in Section 4.2.4 solve in terms of the statistics ay, ag,w; and

wsy, thus giving the desired sample sizes. The user must again be able or willing to specify a loss
tolerance.

)+ erf(—=))-

4.4 Summary

This chapter raised four questions important to large-scale induction: how to decide
whether the better action can be confidently chosen on a given subsample, how to estimate the size
of the subsample required to do so, how much this choice is likely to cost in terms quality, and how
to choose the sequence of subsamples to achieve this most efficiently. The results in this chapter
are useful for characterizing and controlling the sample sizes required to produce induced models
of specifiable accuracy. The theory and detailed methods to address these issues were presented,
along with an empirical evaluation of most of them.
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Chapter 5

Improving Learning

Section 3.2 examined an approach to learning CPTs called bookkeeping, where updating
a statistical summary of samples relevant to each cell is the basis of the learning. Chapter 3
further showed how this approach leads to the specification of sets of beta distributions that can
be used to provide inference distributions for any inference in the network. But, we also showed
in Section 1.3.2 that this simplistic approach is often not good enough, requiring too much data
to be very successful. The purpose of this chapter is to improve the learning process by attaching
user-specified learning elements to each CPT, then integrating the output from these algorithms
back into a general belief network. Results of an implementation of these ideas are shown. The
last section discusses learning with hidden nodes in the network.

5.1 Motivation

As discussed in Section 1.3.2, there is one particular commonly occurring situation that
requires us to supplement the statistical learning described in Chapter 3. This is when the CPT’s
are sparsely populated by samples. Recapping from the introduction, the combination of huge
CPTs and the propensity to have an uneven distribution of the probability mass over the unique
parent instantiations gives way to low-probability columns. FEven if the database is very large,
it will be relatively easy to find CPTs that have columns that have seen little data, and thus
the probabilities in that column are largely undetermined. If we think in terms of representing
and learning a function from the parents of a node to the conditional probabilities in a node, it
immediately becomes evident that the statistical induction approach is equivalent to the table-
learning methods of generalization [83]. Table learning methods were put to pasture decades ago
because they do not have any generalization power. The power to generalize is the power to learn,
without this ability a system will never be able to extend past what has already been explicitly
seen.

The solution is to apply stronger learning algorithms to the task. A neural network
(for example) will generalize from the data in the data-rich columns to supplement the sparse
information found in data-poor columns, often to great advantage.

The ability to apply general learning algorithms to the task of CPT learning not only
allows stronger generalization, but also provides the ability to take advantage of the domain specific
information that exists in every application. For example, there might be several tables in which a
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linear relationship between the node variable and the parents is expected, others where the tables
are narrow (few unique parent instantiations) and well behaved (equal probability distribution
across parent values), and yet other cases where many of the columns in the tables will be sparse.
What makes sense then is to allow the user to specify a different learning method for each table.
The tables that are expecting a linear relationship are learned with linear regression techniques.
The tables with a data overload can be learned with the bookkeeping approach and the tables that
have sparse data can be learned with a neural network or a decision tree. This ability to tailor
the choice of learning algorithm to the situation at hand can make a tremendous difference in the
effectiveness of the overall approach.

In fact, we take this one step further. In tables with a mixture of data-rich and data-poor
columns, what we do is first send the data off to a user-specified learning algorithm. When the
process is finished, a separate process fills out the CPT of the belief network using the bookkeeping
approach for columns with a statistically significant population, and the results from the selected
learning algorithm to fill out the sparse columns of the table. The advantage of combining the
two approaches within one table is that for the data-rich columns the beta distributions are still
available, while at the same time the data-poor columns have more accurate results.

The results have been quite excellent in the car insurance domain that has been used, but
not without a cost. The price that has been paid is that we are back to learning point probabilities
in the CPTs. The reason is that we are allowing any general learning algorithm to be applied to
the task of learning the CPTs; what is the output distribution of, for example, a neural network?
Without beta distributions in the CPTs, the distribution propagation theorems described in Section
3.4 no longer apply. If, however, we are willing to approximate the new cell distributions with betas,
then we would get the benefit of more accurate predictions along with the ability to return inference
distributions. This would introduce a major assumption into the works, but that assumption may
be more aesthetic than not given that the learning is providing on the order of 25% to 60% gains
in accuracy.

One might argue that doing any extra work to get better prediction out of data-poor
columns is silly. If the data in a column is sparse, then the odds of needing information about that
column are small, and so the improvement is not worth much. This not entirely correct. The real
situation might actually be the reverse of this line of thought, as the data that is hard to find, or
expensive to produce will be the sparse data, and sometimes it will be just that data which is the
most useful to the user. Consider, for example, a medical database that is being used in part to
predict the success rate of a new cancer drug. The cost of each test case might be a human life (or
if the drug is successful, then it might be the several people that could have taken the drug during
the testing phase). The cancer data will be sparse, but the results are of critical importance.

5.2 Applying Neural Nets

A neural network is an iterative supervised learning approach that minimizes an error
function by gradient descent. The training phase of the neural network is split up into n epochs or
iterations. Within each epoch, the data is applied one instance at a time to the inputs of network.
For each datum, the output of the output unit is compared to the true value that the unit takes in
the data, and a function of that difference is propagated back through the network in such a way
that on the next iteration, the difference will be smaller. The training phase is run until the network
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Output layer

Input layer

Figure 5.1: Divide and Conquer
The figure on the left is a neural network applied to the dog-out problem, with the task of predicting whether or not the dog is
out (do), based on the other four variables in the system. On the right is the belief network corresponding to the same problem.

The neural net corresponding to each CPT is shown next to the node.

converges to a stationary point, or until the time allotted for the training phase has run out. In
general, it is difficult to place good bounds on the convergence properties of neural networks.

Beyond the justifications given above, the integration of belief networks and neural net-
works has several attractive properties. Directly applying a single neural net to a real problem
has several shortcomings. The large size of the domain leads to large networks with very complex
modeling tasks, and the result is the ability to predict only one function over the entire system of
variables. The structure that the belief network lends to the integrated model imparts the ability
to explain inferences, and to produce any inference over the set of variables in the network. Fur-
thermore, the belief net reduces the task into many smaller, simpler, localized modeling problems.
The neural nets applied to these smaller problems are likely to be much smaller in size, and due to
the decreased complexity of the task, are likely to be more accurate. Figure 5.1 shows an example
of this showing the two approaches for predicting whether the dog is out. The neural network on
the left has a total of 13 units and 40 arcs. In the belief network the top two nodes have no parents
so they are learned by bookkeeping. The neural networks for the other three nodes are shown
next to the nodes, the largest of them having 7 units and 12 arcs. The reduction in complexity
becomes much more significant as the problems grow more realistic. This section will discuss the
more interesting of the research and implementation details.

The job of the neural network is to produce a density function for each column of the
CPTs that it is learning, without any predetermined requirements on the family of functions that
could be discovered. Let T; be the CPT for node X;, and 7;; be a unique parent instantiation for
the node. The general process is as follows:
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for each T; that is being learned with neural nets,
1. Retrieve from the database the instances that are relevant to T;.
2. Construct a neural network N Nt, and initialize it.

3. Train NNz, on the samples, where the value of the node X; serves as the classification of
each datum.

4. Apply an input combination (7;1) to the network and read off the distribution for the column
Pr(X;|Iy) from the output units.

5. Normalize the output and write the values into the CPT for the belief network.
6. Repeat steps 4 and 5 for all input combinations m;5 through 7;,,.

Note there is a substantial difference in the neural network output and the output from
bookkeeping. Bookkeeping provides a distribution for each cell in the CPT. The neural net gives a
probability function for each column, which is quite a bit less information.

The network being used is a 3-layer feed forward network that is set up to learn density
functions (Figure 5.1 shows an example for the dog-out domain). The range of input values to
the network is from -1 to 1. The network incorporates ideas of momentum, adaptive parameters,
and a few other tricks that are explained below. We can build a network for any combination of
input/output variables, including nodes with binary, discrete, continuous, and nominal values.

5.2.1 Constructing the Neural Net

There are four cases for mapping the belief network variables into neural network units,
corresponding to whether the variables have binary, continuous, discrete or nominal values. We go
over each case below.

Input Units

The input units on the NN (neural net) can have values ranging from -1 to 1. They
represent the parents II; of X; in the belief net. The four cases are:

¢ Binary: A belief network with binary variables is mapped such that 0 becomes -1, and 1
remains unchanged.

¢ Continuous: If the continuous range is from a to b, then that range is mapped into -1 to 1
2xvalue
Sxvaue

by taking the new value to be: =52

¢ Discrete: The discrete case is a bit more interesting. Assume that the BN node being
mapped has three values; 0, 1 and 2. There are two different mappings that one could make a
case for, namely the mid-range mapping and the maz-distance mapping. The goal in the max-
distance scheme is to assign values in the range [-1,1] so as to maximize the distance between
the discrete cases. The principle behind this scheme is to try to maximize the separation of
cases in the network to allow maximum discrimination. The mid-range method, on the other
hand, visualizes the NN range [-1,1] as being split into n buckets, n equal to the number or
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discrete values. According to this, the midpoint of that bucket should be returned as the
value for the corresponding discrete case. For example, the discrete values [0,1,2] map to
[-2/3, 0, 2/3] with the mid-range approach, while the max-distance mapping gives [-1, 0, 1].
We have chosen to use the mid-range mapping.

e Nominal: The difficulty with nominal values is that there is no sensible way to order them.
If 0 represented “bird” and 1 represented “skunk” then what would .5 be? The only recourse
here is to split up the nominal valued nodes into a set of binary nodes, one binary node for
each nominal value. The binary nodes can be directly mapped to input units as discussed
above.

Output Units

The situation changes when mapping X;, the node for which the neural net is being
built. Each output unit on the NN will output a value between [-1,1] that must be mapped into
the probability of that proposition. Thus, we need an output unit for each of the values of X;,
representing the proposition that that value is true. There are two exceptions here, binary and
continuous nodes. The binary node can be mapped directly into one output unit. For continuous
variables, if X; was originally continuous, it has already been discretized for the belief network, so
we treat it here as being discrete. Thus, for any node X;, the number of output units will be the
number of instantiations of X;, or |Dx,].

Size

Lets compare the size of the neural net versus the size of the CPT itself. If | Dx,| represents
the number of possible instantiations of X;, then a CPT has |Dx,||Dm,| cells, or |Dp,| columns
to be learned. Following our construction, a NN has #input-units x #hidden-units + #hidden-
units X Foutput-units weights, along with the hidden and output units, all of which must be
learned. Let |II;| represent the number of parents. There are |II;| input units, 2|II;| hidden units
and |Dx,| — 1 output units. Given this, there will be a total of 2|TI;|? 4+ 2|II;|(| Dx,| — 1) weights
and 2|11;| + | Dx,| — 1 units to learn. To put this in more understandable terms, if all variables have
5 values, and X; has four parents, then the CPT has 3125 cells or 625 columns to learn. The NN,
on the other hand, need only learn 76 parameters.

Note that this particular construction uses a relatively small hidden layer. This is the
size of the hidden layer that we have used consistently for generating the results, and although it
is small, the results from this network have been quite acceptable. One thing that should be made
clear is that we are not trying to promote this particular network construction as the best for the
problem of CPT learning. In fact, we will not be making that claim for any of the algorithms
proposed here. Our claim is that the application of more sophisticated learning techniques to this
problem is worthwhile.

5.2.2 Update Equations

Let O represent the actual output of the NN, and let O} represent the actual output of
unit ¢ on a specific input pattern w. Also, let { represent the target output pattern.
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The error measure, or cost function F is the quantity being minimized by gradient descent
with every training epoch. We selected the following error function with the goal of learning
probabilities:

1+¢¢ 1 1-¢

= Y501+ iog

T

Using this error function, the probability that the hypothesis represented by unit 7 is trueis 1/2(1+
OY), (the straightforward mapping of the [-1,1] output into a 0/1 probability).

This choice of error function affects the weight updating procedure a bit. The typical
change in the weight between two units ¢ and j is

VWi =n> 6V (5.2)

where V' is the intermediate output of the hidden unit j, and delta is a function of the difference
between the desired output pattern ¢ and the actual output pattern O. The modification of the
error function has lead to a new 6} term:

8 = (¢ = Of). (5.3)

The rest of the update equations remain the same standard equations used for updating
multilayer feed forward networks. They can be found in Hertz et. al. [44], or just about any
introductory neural network book that describes feed forward networks.

5.2.3 Extensions

We applied three rather standard tricks to speed up the learning process: momentum,
adaptive parameters, and memorization.

The idea behind momentum is that gradient descent methods tend to behave poorly when
the cost surface of the error function has steep valleys with shallow valley floors that lead to the
minimum. In this situation, the gradient descent will tend to zig-zag back and forth across the
valley like a ball bearing dropped into a teacup. If the learning parameter n is too small, then the
descent will be a very gradual process; if too large, then there will be wild swings in the approach.
By giving each weight some momentum, it will be more likely to change in the direction of the
average downhill force. This is done by adding a fraction of the previous change in weight to the
current change in weight:

VWit +1) =) 68V + aVIW(1). (5.4)

We have set a to .5, substantially less than the .9 that is normally recommended.

When running the network, there was a tendency for very slow convergence. We decided
to use adaptive parameters to combat this problem, with some moderate success. The idea is that
when the energy function has been decreasing for the past 30 epochs, say, the indication is that
we are on a relatively easy portion of the cost surface. If the learning parameter 7 is increased
during this downward trend, we would expect to converge that much faster. Likewise, if the energy
function is increasing, then the process might have overshot the valley and thus it would make
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sense to decrease 1. We chose n = .04 to start with, and set each upward increment at .01. When
the energy function increases continuously for 30 epochs, we cut the current » in half.

The last trick we applied to the network actually showed the largest improvements. While
training the network, at the end of every epoch the energy is computed. The network that generated
the smallest energy was saved, and replaced any time a later epoch provides a network with an
even lower energy function. At the end of the allotted time, if convergence was not achieved then
the minimum energy network over the entire run is returned.

5.2.4 Network Output

The last question to address in applying the neural networks is: once the network has
been trained, what should be done with it? As explained above, the neural net has |Dx,| output
nodes. To fill in the CPT for X;, we apply a unique parent instantiation of II; to the neural network
inputs, compute the network outputs, compute the probability that each output unit represents,
normalize, then fill in that column of the table.

5.3 Applying Other Learning Algorithms

We have also integrated nonlinear regression and decision tree learning techniques into
the belief network to show a proof of concept. A brief description of each implementation follows
below.

5.8.1 Decision trees

A decision tree algorithm [12, 78, 79] was implemented and tested. The construction is
fairly simple. The variables in II; become the attributes that the tree is built from. The values of
the node X; are the classes that are being determined. Each column of the conditional probability
table is determined by finding the leaf indicated by ;;, counting the samples in that leaf that
belong to each value of X;, then normalizing.

One of the major benefits, normally, of a decision tree is its ability to ignore irrelevant
attributes when splitting the data. This benefit is toned down in a belief network, as the graphical
structure has already provided much of the relevancy information. But, there are many cases where
certain values of the node variable X; will be dependent on a particular parent A € II;, but the rest
of the values in X; will be independent of the parent. The decision tree can take advantage of this
by pruning the tree according to the chi-square test of stochastic independence. The purpose of
this test is to measure the likelyhood that an attribute splits a set of examples in some non-random
fashion. If the chi-square measure indicates that the attribute is not relevant to the set of examples,
that attribute is pruned.

The principle behind the test is that for a random distribution over a set of m = |Dx,|
_ 2
values, the expression 3 7, % will have a chi-squared distribution, where n; is the number

of samples in the current leaf of the tree such that X; = 2;; and E(n;) is the expected number of
those samples. Since this term is easily computable, we can generate the value of this term for every
association of attribute and examples in the current leaf of the tree. Given this number, we can
determine a confidence level in the belief that this number comes from a chi-squared distribution.
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If we believe it, then we believe the attribute is irrelevant to the set of examples, and prune it.
We require a confidence of 99% to prune an attribute. Since the 99th quantile of the chi-squared
distribution is at about 6.64, we prune any pair whose chi-square measure is less than 6.64.

The DT proved to be a fast approach with results generally on par with the neural network.
The algorithm used in the implementation can only deal with binary network variables.

5.3.2 Nonlinear Regression

The non-linear regression algorithm that we used is Breiman’s PIMPLE [9], which tries to
find clusters of spline functions that describe the input. This method combines forward selection and
backward elimination techniques in model selection. Forward selection is a process of determining
(or limiting) the maximum degree polynomial that will be used by the regression. Backward
elimination is the process of eliminating the highest degree predictors used in the regression during
the regression (a predictor is a function of variables used in the prediction of the node variable).
Typically the combination works well when the underlying function can be approximated by a few
terms with a large number of factors (normally, smooth functions without sharp local structures).

The application, in theory, is trivial. The data is directly fed into PIMPLE, and the
results are produced in a form that, after some reorganizing, can be written into a CPT. The
main problem with applying this particular algorithm to these databases is that it requires that its
predictors have at least 4 distinct values. The principle is that the prediction problem is “easy”
if there are fewer unique values and thus linear regression or some other such technique should
be applied. But this fails to take into account cases where there are several predictors, some of
which are very complex, but one or two happen to be binary. By maintaining that none of the
parent variables can binary or low-arity discrete variables, the potential range of application of this
particular technique is limited. PIMPLE did work well when the input variables and data where
diverse enough to allow the algorithm to function.

Though this particular application has a rather limited range of application in general,
any linear [85, 84] or nonlinear regression algorithm can be fit into the belief network structure
with minimal effort.

5.4 Results and Comparisons

The goal in this section is to demonstrate the effectiveness of applying a variety of learning
algorithms to the task of learning the CPTs. We also want to show where these algorithms tend
to be most effective, and how best to use them in an integrated system.

Extensive comparative testing between the neural network, the decision tree, and PIMPLE
was not done; it is a sensible boundary on this dissertation, which is simply not about optimiz-
ing neural network learning, or comparing neural networks to decision trees. The thrust of this
chapter is to make the point that other learning algorithms besides statistical bookkeeping have an
important place in belief network induction, and to emphasize that point with practical successes.

Five approaches were implemented, the bookkeeping or STAT approach, the neural net-
work NN, the decision tree DT, PIMPLE NLR, and a combination COM B of STAT and NN.
Examples of the learning performance are given for each of these methods, then a closer compari-
son is made between the NN and STAT approaches. It is important to note that these algorithms
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are not meant to be the only or the best possible algorithms of this class that can be applied to
the task, each is simply representative of a class of general approaches to learning.

COMB is probably the most interesting approach tested. We talked before about the
ability to combine within one CPT both STAT and NN learning. The combination is done by
choosing to fill some columns in with the STAT results and the others with the NN results. Specif-
ically, columns with 20 samples or less are learned with NN, columns with more are learned with
STAT. The reason we combine the results on a column by column basis instead of cell by cell is clear
when we recall that with the STAT approach, any one sample is relevant to exactly one column
(see Section 1.3.2), meaning that we have data-poor columns as opposed to just having data-poor
cells. The results are quite impressive, but the visible results here are not the only benefit. The
major attraction of this approach is that the accuracy of the data-poor columns is substantially
improved, but the data-rich columns still have access to their beta distribution representations,
which are much more useful for inference.

There have been three databases used in the testing phase; the alarm database from Pearl
[73], the dog-out database shown in Chapter 3, and a realistic, moderately sized car insurance
database. A small description of each follows in the relevant sections below. The usage of the
databases is atypical. Since we wish to compare the accuracy of each of the three learning techniques
to STAT, an objective way to determine model error rates is needed. The most straightforward
way to do this is to know the model that we are trying to learn. Each database then is actually
generated in a way that is very similar to the Monte Carlo simulation techniques. We create “The”
belief network Bg that represents the actual process occurring in the real world. This network is
then used to generate a large database (typically on the order of one hundred thousand samples for
each) which are used as the database that is seen by STAT, NN, DT, and NLR. A belief network
Bp is built for each approach using a random sample from the big database. This learned belief
net Bp is then compared to “The” belief net Bg, and from this point a model evaluation can be
made on the basis of hard evidence.

The next issue that must be addressed is: how are the models to be compared? There is
a wide range of standard model selection techniques, including Cp, Sp, MSE, AIC, log scoring and
so on (see Lauritzen et. al. [53]), but none of these need be used. We have a big advantage— we
know the right answer. To score our models, we simply take the absolute value of the difference
between the predicted probability and the correct probability, and average that over all the cells in
all of the CPTs that are being learned. This is the mean error. The method with the lowest mean
error is the method that wins. We have other ways of analyzing exactly where the improvements
have come from; these will become clear in later sections. Note that one implication of the mean
error scoring system is that a data-rich column counts the same as a data-poor column. This is
intentional, as it is often the case that a good description of the data that is easy to get (data-rich
columns) is not worth as much as a good description of the data that is hard to get (data-poor
columns). This approach is incorrect in that utility theory is not being used (as is any approach
that does not tie utility theory into the evaluation). For example, in some domains it would make
more sense to weight the error in the columns by the probability of that column occurring (meaning
the data-heavy columns would count more). We show an example with this metric in Section 5.4.3.
The point is that without access to domain knowledge that tells us which columns are the important
ones, then it is not clear which approach is better.

The experiments done over the three databases mentioned above are shown next.
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5.4.1 Burglar Alarm Database

This is a binary belief network, where the nodes represent an earthquake, a burglary, an alarm going off, John calling and Mary

Figure 5.2: Burglar Alarm Belief Net
calling.

This section gives results from the burglar alarm database. The belief network that
generated this database comes from the graphical structure depicted by Figure 5.2. We show the
CPTs for this and the other networks in the Appendix. This is a common example that we used
as reference point due to its popularity in the literature. This database is also a good example of
how rare data can often be the most valuable in the database, as in this case what we are likely
to care the most about are the probabilities concerning earthquakes and burglaries, both of which
are pretty rare events.

All of the data in this chapter is the result of running the following process 10 times:
generate a random sample of the given size, pass the sample to three separate processes STAT, NN
and DT and have them learn the CPTs, then generate the error measurements.

The first set of results shows a comparison between STAT, NN and DT on sample sizes
of 100 and 500. NN was run for 20 epochs (NN was essentially converging at this point, as this
network is very simple). Table 5.1 shows the mean error comparisons for the algorithms on the 100
sample and 500 sample data sets. Note that for this simple database, NN consistently produces
networks with a lower mean error. For the 100 sample case, it beats STAT by over 50%, and DT by
over 20%. In the 500 sample case, it displays even better results, outpredicting STAT by more than
60%. This is odd in that we expect STAT to do better on larger data sets. The better performance
of NN here is probably due to the simplistic nature of the problem. The standard deviation of the
results is given as well; note that STAT generally has the least deviation in its error, indicating
a more consistent approach in general. The other two are more often correct, but when they are
wrong, they will tend to be more wrong than STAT.

To get a better feeling for where and how the improvements are taking place, we charac-
terize the mean error of classes of columns in the learned CPTs, where the classes are determined
by the relative sparseness of the data in the columns. The two graphs below should be interpreted
as follows: The X axis represents the columns in the CPTs that have seen < 10 samples, 10 to 20
samples, and so on, up to the last point on the axis which represents all of the rest of the columns,
all of which are data-rich. The Y axis is the mean error over those groupings. Note that the general



100 Samples
Approach | Mean | Standard Dev.
NN .0788 .038
DT 101 .05
STAT 161 .021
500 Samples
NN .0344 015
DT .0445 .032
STAT .0948 .018

Table 5.1: Burglar Alarm Database Mean Errors
This shows the mean errors achiegﬁ%r‘tky]_%@AT, DT, and NN on the burglar alarm database.
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Figure 5.3: Burglar Alarm Database Results, 100 samples
STAT, NN and DT on the alarm database for 100 samples. The NN was trained for 20 epochs.
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Colsw/ <= N samps

trend is for high error on the data-poor columns to the left, and low error on the data-rich columns
to the right. This makes perfect sense. Consider STAT. The more data that STAT sees for one
column, the more accurate its assessment of that column will be.

For the 100-sample graph, there are a couple of strange glitches in the data around the 15
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Figure 5.4: Burglar Alarm Database Results, 500 samples
STAT, NN and DT on the alarm database for 500 samples. The NN was trained for 50 epochs.

and 20 sample points. This is because there were actually only 2 and 1 data point(s) respectively
for these cases. The 500 sample graph has the same problem at the 10 sample point. This is also
attributable to the small size of this problem. The car insurance database in Section 5.4.3 has a
large number of cases per bucket, giving a clearer picture in general of the error curves.

There are several basic trends to notice here. The most obvious is that DT is consistently
performing better than STAT, at all points on both curves.

Second, for data-rich columns, all techniques perform very well. We would expect this for
STAT, as we know from Chapter 3 that the variance of the beta distributions that STAT uses to
learn the CPTs is a linearly decreasing function of the number of relevant samples. It is comforting
to see both NN and DT approaching or outperforming STAT on these data-rich columns. This
indicates the correctness of the implementation and the overall accuracy of the approaches.

Third, on the data-poor columns, NN and DT performed consistently better than STAT.
In general, STAT doesn’t seem to surpass NN in accuracy until columns with about 20-30 samples
are reached.

Finally, for very data-poor columns, NN is by far the best of the three methods, and has
been consistently throughout these trials.

Figure 5.5 (the last for this database) shows the learning behavior as the total number of
samples ranges from 10 to 500. The neural network was run for 30 epochs on this data set.

This graph makes a very important point. NN (and DT) is achieving higher accuracy on
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Figure 5.5: Burglar Alarm Database, Increasing Sample Size
NN STAT and COMB on the alarm database. NN was trained for 30 epochs. This shows the relative gains in accuracy for

both techniques as the overall number of samples is increased.

data-poor columns by using information from data-rich columns. When that information is not
there, then the performance is similar to that of STAT at about 20 to 25% error rates. This is
especially the case with the data-poor columns — on these columns mean errors were commonly on
the order of .3 or .4. There seems to be a big gain in NN accuracy at about 50. This is mainly
because there are several low probability columns in the database, and at this point those columns
start to see a couple of examples. NN takes much greater advantage of this information than STAT.
Finally, note that as the sample size increases, COMB is outperforming both NN and STAT.
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Approach | 50 Samp | 100 Samp | 500 Samp
NLR .081 .058 .030
DT .084 061 .029
NN .088 071 .041

STAT .094 .070 .034
COMB .087 .062 .035

Table 5.2: Dog-Out Database Mean Errors

This shows the mean errors on the dog-out database for all five approaches tested. NN was run for 30 epochs.

5.4.2 Dog-Out Database

Repeated from Chapter 3. All variables are binary. FO = fo when the family is out, fo when not. Similarly, BP = bp when

Figure 5.6: Dog-Out Database

the dog has bowel problems, LO = lo when the outside lights are on, DO = do when the dog is out, and HB = hb when you
can hear the dog barking.

The belief net and database are the same as described in Chapter 4. For convenience, the
graphical structure is repeated here in Figure 5.6. The results for learning this problem are shown
in Figure 5.7 and Table 5.2.

There are a couple of points that are readily noticed. Looking at the DT curve, it is clear
that the DT approach is prone to wild swings in accuracy compared to either NN or STAT. But,
from the table it is also clear that again, it has an excellent mean error performance. The lesson
to take from that seems to be that DT is making fairly large inductive leaps that more often than
not correct. But when it is wrong, it tends to miss by quite a bit.

Also, notice that it is very difficult to predict where DT will outperform STAT. From the
graphs we have shown, it appears that DT is consistently outperforming STAT on the data-rich
columns, but this is not the case with other runs that we have not presented, where DT performed
worse by about 3-4%.

NN, however, for the most part is better than STAT on the data-poor columns. It is very
interesting to note that on the 50-sample and 100-sample cases, the mean error for NN showed
a modest 6.4% gain and a -1.4% loss over the STAT mean errors, but COMB produced 7.4%
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Figure 5.7: Dog-Out Database, Results
This shows the 50 sample case for DT, NN, STAT. NN was run with 30 epochs.

and 11.4% gains over STAT. The datum in Table 5.2 that is the most interesting is the 100-
sample COMB point. Even though STAT and NN mean errors are both hovering around .07, the
combination of the two produces a mean error of about .06. On the 500-sample case there were
few data-poor columns and thus STAT shows strong results.

The final comment we make in this section is in regards to NLR, the nonlinear regression
method. The problem again is that PIMPLE (our NLR technique) expects predictors with several
different values, implying that it can not be applied to a binary node, or to a node with binary
parents. In order to test our ideas, what we did was to add some random white noise to every
value of our binary database, with a signal-to-noise ratio of 15:1. The result of this is shown in the
table. PIMPLE generated predictions that were about 15% better than STAT, even though STAT
was running off the clean data.
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5.4.3 Car Insurance Database

SocioEcon
Age
GoodStudent
Mileage OtherCar
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’ ThisCarCost
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Figure 5.8: Car Insurance Database
Repeated from Chapter 3, this is the model of an insurance database, it includes binary, nominal, discrete and continuous

variables.

This is our most significant network (courtesy of Stuart Russell), with 27 binary, discrete,
nominal, and continuous nodes, 52 arcs and over 1400 conditional probabilities. It is the car
insurance database shown in Figure 5.8, where the goal is to help predict how much financial risk
is run from various policy holders, given data about age, good student, socio-economic class, and
so on. Keep in mind that in high volume domains like this, a 1% improvement in risk assessment
could be worth millions or even billions of dollars.

The difficult to understand variables in the network are: MedCost (medical cost), PropCost
(property cost), [liCost (intangible liability cost), and SeniorTrain (senior training, such as drivers
ed. for seniors). The rest of the variables are self-explanatory.

Figure 5.9 shows the learning results for this database on 100 samples, running the neural
net for 30 epochs. Note the excellent performance of NN in this complex case, well outperforming
STAT over most points, and doing essentially the same for columns with more than 50 samples.

Figures 5.10 and 5.11 show the performance of the learning as the total number of samples
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Figure 5.9: Car Insurance Database Results
The results of applying NN and STAT to the car insurance database on 100 samples, 30 epochs.

is varied from 50 to 1000. The learning curves in Figure 5.10 were built using the mean error
metric, the curves in Figure 5.11 using the weighted probability metric as discussed in beginning
of Section 5.4.

The comparison of the two figures provides some interesting insights. Figure 5.11 shows
the STAT curve outperforming the NN curve at about 350 samples and more. This is because
the high probability columns are the data-rich columns, and the data-rich columns are counted
the most heavily in the probability-weighted metric. Since we expect STAT to do well estimating
data-rich columns, it is no surprise to see the NN and STAT curves cross. What is interesting is to
see that COMB, under both metrics, is significantly outperforming NN and STAT. Even with the
probability-weighted metric on the largest sample (1000 instances), the contribution from NN on
the data-poor columns in COMB leads to a 10% improvement over STAT.

It seems evident from Figure 5.11 that if we continue increasing the number of samples
supplied to the system, STAT will eventually converge to COMB. This is again as we would expect.

5.4.4 Summary

The DT code we used in this testing is fairly simple in terms of implementation and ability.
Since it only handles binary variables, we were not able to test it on the car insurance database.
It is fast. Where as NN was taking an hour to complete ten sets of 20-epoch 100-sample runs on a
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Figure 5.10: Car Insurance Database, Mean Error Metric
The results of applying NN and STAT to the car insurance database as the sample size is increased to 1000 samples. This

graph uses the mean error metric.

Decb100, the decision tree code was completing in just a few minutes. But the results were mixed
in that on some problems the performance is stellar, substantially outperforming STAT at every
point. In other cases, it could barely keep up.

NN worked very well in general. One major criticism of the implementation is that
the data-poor columns tended to get pushed towards 0 or 1 in many cases. It seems that what
is happening is largely due to the momentum term. Whichever way the weights change first
(equivalently whichever way the output unit is pushed first) will be the way that it keeps moving,
in general. This is because the data is often not available to overcome that initial push. In general
though this problem seems to be fairly limited, and the results speak for themselves.

A whole slew of other (similar) databases were used in testing these ideas, but it is not
useful to include them here. The main point to be made in this section is that the experimental
results have supported the thesis, that the results from bookkeeping techniques can be significantly
improved. We have shown that both the DT and the NN implementations commonly achieved
mean errors that were 25% to 60% better than STAT, and NN consistently outperformed STAT in
predicting data-poor columns. We have shown that a combination of STAT and NN proves even
more fruitful in terms of mean error gains, and has the additional benefit of leaving the data-rich
columns with beta distributions to be used in inference.

Another possible advantage of improving the learning of low-probability statements is that
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Figure 5.11: Car Insurance Database, Weighted Probability Metric
The results of applying NN and STAT to the car insurance database as the sample size is increased to 1000 samples. This
graph uses the probabilistic weighting metric.

it allows us to add extra parents to nodes. Adding parents to the nodes complicates the learning
task for that node, multiplies the amount of data needed to cover the node by the number of
instantiations of the new variable, but adds another degree of discrimination that might be very
useful. If the data exists and can be taken advantage of appropriately, then adding this extra
predictor will be worth it in some cases.



85

5.5 Learning Hidden Nodes

e F
Figure 5.12: Addition of a Hidden Node

The hidden node H is added to the network, resulting in significant reduction of the space required to represent the CPTs.

A very exciting idea in belief network induction is the introduction of hidden nodes to
simplify the learning problem. The idea is that if we can take a cluster of related nodes in a network,
and add a new node in such a way as to reduce the total number of conditional probabilities in
that cluster, then that new network will have fewer parameters to learn, and thus we should be
able to learn it better. Another benefit is that this node helps to explain the causal processes that
exist in the domain in the same way that a typical node in a belief network does.

Consider the following example in Figure 5.12. Assume that each node has 5 values. Then
the belief net on the left has a total of 1270 conditional probabilities, whereas the belief net on the
right has only 395. With larger networks the reductions can be even more dramatic.

The basic problem with adding hidden nodes is that there is no data that describes H, our
hidden node. How should we fill out the values of the CPTs for the nodes E and F above if we have
no information on H? There is some information that can help in determining these values, this
information consists of a set of constraints that come from the CPTs for E and F in the original
belief network. Note that this problem is identical to having a pre-existing unmeasurable variable
in a network.

The majority of this section concerns a method that trys to exploit those constraints in
order to come up with a set of values for H and the new E and F. We have met with only limited
success with this approach, and have run into some seemingly very hard and thick walls. We
explain the approach below, and examine its limits, showing that this method probably can not be
extended to handle more complicated hidden node problems. Then, in Section 5.5.3, we talk about
an alternative to learning hidden nodes that does not provide knowledge of the causal processes in
the belief network, but does significantly reduce the number of parameters being learned.

5.5.1 The simplest case

We will use a simpler cluster of nodes to explore the approach taken, depicted in Fig-
ures 5.13, and 5.14.
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Figure 5.13: Network without Hidden Node
The original structure shown before the addition of the hidden node. The CPT for node C is shown as well; these values are

all known. All nodes have 4 values.
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Figure 5.14: Network with Hidden Node
The structure after the addition of the hidden node. The CPTs for nodes C, D, and H are shown as well; these are unknown.
A, B, C, and D all have 4 values, and H is binary.

All of the variables except H have 4 values; H has 2. For the network without the hidden
node, there are a total of 102 independent conditional probabilities to be learned whereas the
network with the hidden node has 34 independent probabilities. The idea is that we start with
the network shown in Figure 5.13 and learn the CPTs. These values will be used to constrain the
CPTs in the network with the hidden node. Then, insert a binary hidden node as in Figure 5.14,
and determine the CPTs for the new C, D and H nodes from the information from the network
without the hidden node. How can this be determined? We know that

Pr(C|A,B)=>_ Pr(C|H)Pr(H|A,B)
H

Pr(D|A,B) =" Pr(D|H)Pr(H|A,B). (5.5)
H
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That implies that if we can solve the equations

Cij = qivj + 1iy;
D;; = six; + iy (5.6)

for the unknowns ¢;,7;,s;,t;,2; and y;, then we have solved for the hidden node. In fact, if the
original network was a MAP (maximum aposteriori probability) assignment of probabilities given
the structure and the data, then this transformation to the network with the hidden node will also
be a MAP assignment of probabilities. The bookkeeping (STAT) procedure is fairly easily proven
to be the MAP assignment of probabilities, given the equations derived by Cooper and Herskovits
[22].

The rest of this section outlines the method of solving Equations 5.6. The results of this
approach gave 10-15% gains on the mean errors of the simple tables learned.

The equations in 5.6 are nonlinear, and in the current form they are rather difficult to
solve directly. The nonlinearity can be removed after some extensive algebraic manipulation, ending
up with equations of the form:

r1 = a1+ birg
re = ax+ barg
rs = as+ barg, (5.7)

where the a; and b; terms are constants composed of the C;; and D;; probabilities from the CPTs
in the open networks. Similar equations can be written for ¢;,s; and ?; as well. These equations
do not in general have unique solutions. This is problematic since we need to make sure that the
solution picked for node C (r; and ¢;) “corresponds” to the solution picked for node D (s; and
t;). To visualize this better, imagine two intersecting planes (representing all possible solutions
for C and D), and the line of their intersection (which represents the fact that in the hidden node
network the nodes C and D are linked together by H, and the probabilities in H are constrained to
be between 0 and 1, and to sum to 1). We need solutions that fall on this line.

This additional constraint is derived from relationship between the hidden node H and
the two tables Pr(C|H) and Pr(D|H). From this relationship we can produce equations relating
the quantities ¢;,s; and t; to ro, and in doing so in theory we provide enough constraints to allow
a complete solution. After solving for r;,¢;, s; and t;, we go back to the equations in 5.6, plug in
the values, and solve the now linear equations for the CPT for H.

The problem with the current analysis as it stands is that we don’t have the actual values
for Cj;, D;;, just their approximations. The approximations are not good enough, so the linear
equations commonly have no solution.

What we do then is to solve for the minimum squared error MAP probabilities for the
new network. This is done by solving the same equations for r; detailed above, with a twist. Using
the simplex method, we have a set of linear constraints on r;, and we add an objective function to
be minimized. Simplex then finds the r;s that satisfy the linear constraints, and minimize

> (7 —a; = biro)?. (5.8)

7
This minimization term comes directly from Equations 5.7. The Simplex method normally requires
linear objective functions, which is not consistent with Equation 5.8. There is a trick that can be
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applied here to overcome this problem, it is called the cutting plane method. What this does is to
approximate the nonlinear objective function with a set of linear tangents. After each tangent is
added, the normal Simplex is run, and the result of that run is used to compute the new tangent.
This iterative approach converges to the actual solution in the long run.

This approach was implemented, the result being a 10-15% improvement in the mean
error of the tables for C and D.

5.5.2 Problems with extension

Problems arose when extending the ideas to more complex cases, for example the structure
in Figure 5.12, where the children F and F have a mixture of parents including the hidden node
H. There were several significant obstacles to overcome in making this extension, but they are not
described here as they are irrelevant to the end result. The results were very disappointing, with
the hidden node network giving on average 30% higher mean error rate on the children nodes E
and F.

There are two major difficulties in extending this “equational” approach to determining
the CPTs. Perhaps the largest is that in the extension, a very important constraint gets lost.

In the simple case, the hidden node is the only parent of both node C and D. Because of
this, the 2; and y; variables in Equations 5.6 are identical (in other words, 2 in the top equation
equals zq in the bottom equation). Removing z; and y; by solving for them is the step that links
the new CPT for node C with the new CPT for D. This link is in the form of the constraints on ¢;, s;
and t; that depend on the solution of r;. As mentioned in the section above, this link is extremely
important because there are many solutions to minimizations of the form of Equation 5.8. What
it does is to assure that the solution picked for C corresponds to the solution picked for D.

The extended case no longer has this constraint, because the introduction of the extraneous
parents. The new form of Equation 5.6 is:

Pr(E|A,B,C) = > Pr(E|H,C)Pr(H|A,B)
H

Pr(F|A,B,D) = Y Pr(F|H,D)Pr(H|A,B).
H

The problem is that fixing the parents of E to a particular value, say A=0, B=0, and C=0 does
not fix the parents of F' to any value, since nothing has been said about the instantiation of D.
This effectively cuts the link between E and F. Losing this constraint gives the Simplex method
a free hand in picking any solution on two planes representing the probabilities Pr(E|H,C) and
Pr(F|H, D), and more likely than not the these solution points do not both fall on the same point
of the “line” defined by the hidden node. To simplify this argument, it is sufficient to say that we
no longer have the option to use a vital constraint.

The second problem that exists may not be as critical as the above problem, but it is
still serious in nature. The information we are using for this equational approach is all from sparse
tables. We are basically taking several very wide underdetermined distributions, and trying to
combine them in some way that makes sense. But the algebraic process of combination is sensitive
to the errors in prediction (it is ill conditioned), and therefore tends to increase the uncertainty in
the result.
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It seems that the equational approach for complex hidden nodes (or, real life hidden nodes)
simply does not work, as important constraints disappear and extended algebraic manipulations
degrade the quality of the information available. It is more likely that an approach based on a
gradient descent method will have a better chance.

5.5.3 Neural Nets vs. Hidden Nodes

One reason for inserting the hidden node in the first place is to reduce the number of
parameters that need to be learned, thereby increasing the sample density over the new domain.

An alternative to inserting a hidden node is to instead learn the child nodes in question
with a neural network. This approach will say nothing about the causal process underlying the
network, but it will help reduce the number of parameters being learned. The number of weights
and hidden nodes in the neural networks that we have used for CPT learning is a much smaller
quantity than the number of cells or columns in a large table. Take for example Figure 5.12. There
are 1270 conditional probabilities. Inserting a hidden node reduces the probabilities needed to
395. If we instead apply the neural network construction we have used in the implementation,
then the learning is done over 20 conditional probabilities external to the neural network, plus 104
parameters internal to the neural net.

The reduction is not significant for nominal nodes, but tremendous for other nodes. The
reason there is such a huge reduction in the number of parameters required to represent the system
is due to the input space compression. Each parent node of X;, no matter whether binary, discrete
or continuous is turned into one input unit for the network; all the distinct values for that node are
compressed to fall between -1 and 1. Of course, with more complex neural network constructions
than those found in this dissertation the reduction may not be so dramatic. Also, the effectiveness
of the neural network applied in this way will ultimately depend on the types of generalizations
that the neural network can make compared to the types that must be made.
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Chapter 6

Conclusion

To conclude, this chapter reviews the contributions of this research program and points
to current limitations and possible further work.

6.1 Contributions

The area of database mining is very young, but the basic task of making more sense out of
the data at hand has been one that humans have faced since the beginnings of time. Only recently
has the problem grown from being one of making good decisions based on limited data to one of
making sense of huge amounts of data. The driving force behind this change has been the advent
of database technology which has lead to huge collections of data that will only get larger as time
goes on. Database mining is the science of how to manage this flood of information. The goal of
this dissertation has been to provide a coherent and effective approach to database mining based
on probabilistic modeling and reasoning technologies.

Specific areas of contribution are

¢ Inference distributions in belief networks. Any system that induces models from data,
or constructs models from domain experts must be able to attach a measure of belief to any
answer that the model produces. Without a measure of how much data is supporting a result
it is difficult to have any faith in the answers. We have shown theorems demonstrating how
to maintain beta distributions when computing inferences in the network. These results are
applicable any time the CPTs store beta distributions, which will always be the case when
doing statistical induction. When other learning approaches are used, beta distributions for
the CPTs can be estimated.

¢ A decision theoretic sampling theory for scalability. There are two related issues in
scaling database mining techniques to real problems. One is that databases are large and
growing larger, so these approaches must be able to handle enormous amounts of data. The
second issue is that we exist in a time-critical domain. We often do not want answers that
are as accurate as possible. Instead we need answers of specifiable qualities as fast as they
can be churned out. BNI has shown a decision theoretic sampling theory that calculates
the likely sample size required to induce models that are “good enough” for current user
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purposes. These ideas are not limited to belief network induction, in fact they were originally
demonstrated for the problem of constructing decision trees.

¢ New approaches to belief network induction. Statistical induction is the standard
approach for updating beliefs both in databases and belief networks alike. This requires
too much data to get reasonable results. BNI instead integrates other learning approaches
such as neural networks, nonlinear regression and decision tree algorithms into the belief
network induction task, and shows results that demonstrate dramatic improvements in model
accuracy.

¢ Divide and conquer approach to modeling. TLearning a belief network model tends
to reformulate the learning task into many small, localized CPT learning subtasks. The
significant reduction in complexity of these smaller learning problems leads to an overall
approach that needs much less space to run, is faster, and will often be more accurate than a
straightforward application of (for example) a neural net to the modeling problem. There is
even more potential for speedup since the CPTs can be learned independently of each other,
implying that the approach is highly parallelizable.

¢ Implementation that demonstrates goals. The theories put forth in this dissertation
have been implemented, and these implementations have demonstrated the feasibility and
effectiveness of the ideas.

6.2 Limitations and Further Work

This research project has pointed out several potential areas for further exploration and
research.

o Inference. In order to get the full benefit from the theorems that show how to maintain
the beta distributions, two additional problems must be solved. First, the inference approach
based on the four transformations node splitting, node merging, arc reversal and node removal
must be mapped into a speedier exact inference technique like the junction tree approach.
Second, methods for approximating beta distributions need to be explored for the other
learning techniques (neural networks, decision trees, regression) that are attached to the
belief network. Solutions to these two problems will permit relatively fast production of
inference distributions no matter which technique has been used to learn the CPTs.

¢ Sequential sampling. More work needs to be done on the sampling theory in order to step
away from the one-shot sampling approach to move to a theoretically justifiable sequence
of samples. We have provided a push in this direction, but more must be done in order to
remove the ad-hoc flavor of the solution we provided.

¢ Utility theory. The concept of utility is central to inducing “interesting” models of the
data, producing answers that are “good enough”, extracting new interesting results from
data, and evaluating the usefulness of the learned models. We have introduced and explained
the need for utility theory in several places in the dissertation, but have not gone beyond
applying the simplest concepts of utility theory to any of the problems examined. None of
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these questions can truly be answered in a normative sense without the concept of utility
theory firmly enmeshed in the results.

Hidden nodes. The problem of learning with hidden nodes is one of the most difficult
problems facing belief network induction. The need for solving the problem is apparent, for
there will always be domains with variables that are not directly measurable. To date, there is
still no completely satisfactory answer, nor even an approach that seems to have the potential
to solve it adequately.

Ethics. Great care must be taken in restricting the types of information that can be learned
and output with these techniques; the potential for invasion of the privacy of the individual is
far too great to be ignored. The ethical boundaries of database mining need to be established
and enforced internally to avoid the public backlash that will occur if these techniques are
abused.

The difficulties left to the fields of database mining and machine learning are significant

and will grow ever more demanding as our databases expand. In solving these problems we can
not help but to further our understanding of the methodologies behind problem solving, decision
making, and rational intelligence. It is this constant challenge of new and interesting problems
that insures the continued advancement of machine intelligence that goes hand in hand with the
unstoppable progression of human knowledge and knowhow.

May our wisdom grow with our abilities.
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Appendix A

Beta Distribution Preliminary

The beta distribution is mainly used to characterize random phenomenon whose set of
possible values is in some interval [e,d]. This dissertation deals mainly with probabilities as the
random variables, thus insuring the intervals to be [0, 1]. A random variable # has a beta distribution
if its density function is:

f(e)—{ Bt (1= 0<a<

0 otherwise

where B(a,b) is a constant equal to

1
B(a,b) = 9°~1(1—6)"1de
0
I(a)I'(b)
= =—-"7 Al
I'(a+b) (A1)
Mean p and variance o2 for § = 3(a,b) is found as:
a

po= a+b
2 ab
T trbatb+)
Note that the statistics a and b are sufficient to completely describe the beta distribution;
these are called the sufficient statistics of the beta distribution.
As can be seen in Figure A.1, the shape of the beta is very similar to the normal distri-
bution when the mean is at .5. As the mean moves towards 0 or 1, the distribution looks like a
normal that has been somewhat pushed on near the top. Conceptually, this makes sense because
the beta is restricted to be within the interval [0, 1], whereas the normal extends to infinity. If the
mean is near the boundary, then much of the probability mass must also be near the boundary,

but none of it may extend past it.

The beta distribution is closely related to the Dirichlet distribution, in fact the Dirichlet
is a n-dimensional beta distribution. The Dirichlet D(aq,as, ..., a,; ayny1) has the following density
function:

r et oay
O, .0,) = (@14 4 any1)

F(al) .. .F(an+1)
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Figure A.1: Some Beta Distributions

Four beta distributions.
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Appendix B

Conditional Probability Tables

In the following sections, “t” is used for “true” and “f” for “false”.
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B.1

Burglar Alarm Database

These are the conditional probability tables for Figure 5.5.

Pr(Theft)

Theft

.1
f

Pr(Quake)

Quake

t (.01

f .99

Pr(Alarm | Quake, Theft)

Theft,Quake
tb | tf | £t ] ff
Alarm |t | .99 | .95 | .8 | .01
01].05].21.99
Pr(J calls | Alarm)
Alarm
t | f
JCalls [ t|.8] 0
fl1.2]1.0
Pr(M calls | Alarm)
Alarm
to]f
M Calls |t | 1.0 | .2
fl10/.8
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B.2 Dog-Out Database

These tables correspond to the dog-out database, the belief network can be found in
Figure 5.6.

Pr(FO)
FO | f ] .68
t | .32

Pr(BP)
BP [ .88

Pr(LO | FO)
FO
f t
LO | f].10] .29
t .90 | .71

Pr(DO | FO, BP)
FO.BP

T (66 ] tF | 6.8

DO [ f| .80 | 5| 41 .14

20| 5 | .59 | 86

Pr(HB | DO)
DO
] 1
HB || .89 | .05
.11 .95
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B.3 Car Insurance Database

Some of these tables are rather large. The path “http://http.cs.berkeley.edu/ musick/”
on the world wide web will show the hugin input file for these tables, which can be viewed in plain
text via Mosaic or some similar program, or in Hugin if it is available.
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