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Abstract

The vast majority of today’s Internet traffic uses TCP connections whose lengths
range from a few packets to many orders of magnitude more. Even though short
flows are prevalent in web traffic and their completion time can directly impact
user experience, these flows are generally not prioritized and can experience drops
because of the load caused by longer TCP flows on routers. In this paper, we
describe a novel way to improve the latency of these flows.

One possible solution to lower latency is to increase the Maximum Segment
Size (MSS), which would allow transmitting as much information using fewer
packets. However, this impairs efficient packet multiplexing by routers. Another
approach to reduce latency is to increase TCP’s initial window size, which also
allows sending more data at once. However, the benefits of this for short flows can
be wiped out if the flow experiences even a single packet drop as this will cause re-
transmissions and in some cases timeouts. In this paper, we propose the concept of
super-packets to deal with this “all-or-nothing” property of flows. Super-packets
are a collection of packets whose collective performance is critical for applica-
tions. End-hosts explicitly request reservation of buffer space for super-packets
in routers who in turn look at their buffer utilization and guarantee forwarding of
all packets in the given super-packet. This paper proposes a simple and efficient
algorithm for such reservations in routers.

We use simulations to demonstrate how the use of super-packets has the same
effect as increasing the MSS without the downsides. Extensive evaluation of an
implementation on the Click Modular Router shows that super-packets can im-
prove average latency of flows and also effectively solve the problem of incast.
Additionally, our results demonstrate that super-packets can prioritize short flows
without the need for explicit priorities.



1 Introduction

Many applications running over the Internet today rely on TCP. Most user requests
or actions are conveyed through short TCP flows. Ensuring low latency for these
flows is essential to a good user experience. However, in practice routers can
be overloaded by traffic from longer flows and resort to dropping packets from
short flows, significantly increasing latency. One way of optimizing latency is
to modify the Maximum Transfer Unit (MTU), a fundamental artifact of packet
switched networks. On the one hand a low MTU is good for packet multiplexing
in routers since it enables a more efficient management and usage of memory. On
the other hand, it limits the efficiency of the network, as many protocols directly
depend on it. TCP is directly dependent on the MTU, as the Maximum Segment
Size (MSS) must be set to be smaller than the MTU. This directly affects the
achievable throughput, since it has long been known that the throughput of TCP
is roughly proportional to the MSS (see Section 2). Throughput depends on the
MSS mainly because drops occur at the granularity of TCP segments. Drops have
a significant impact on the throughput, and by extension, on the end-to-end latency
of flows [1].

In this paper, we propose a mechanism, called super-packets, by which we
can decouple the throughput of TCP from the MSS and the MTU, allowing us to
lower TCP latency while maintaining efficient packet processing. A super-packet
is an abstract concept which consists of multiple IP packets that travel separately
on the wire but are dropped at the granularity of a super-packet. Upon reception of
the first packet in a super-packet, a router makes an admission decision based on
its queue occupancy and then applies this decision to all subsequent packets in the
same super-packet, ensuring that it will drop all of them or commit to attempting
to deliver all of them. This leads to an all-or-nothing drop property with respect
to super-packets.

Applying drop rates to entire super-packets has two advantages. First, through-
put can be adjusted by changing the size of the super-packet, regardless of the un-
derlying MTU. Second, latency-sensitive flows can benefit from the all-or-nothing
drop property of super-packets, as many applications have a cliff effect with re-
spect to drops. That is, the first dropped packet can often severely impact the
latency of the application, but the subsequent drops do not impact the latency as
much, until again a later packet again causes a cliff effect. This applies to the ini-
tial packets sent in a video stream, or live video/audio streaming. By having the
size of a super-packet match the application-dependent performance characteris-
tic, we can concentrate drops to entire super-packets, clearing queue space and



avoiding the cliff effect in many other flows. Put differently, rather than dropping
few packets from many different latency-sensitive flows, we restrict drops to a
few flows, which would anyway see a performance drop from their first dropped
packet. Super-packets also allow us to protect vulnerable sequences of packets,
such as small TCP windows or MPEG-1 frames.

In this paper, we demonstrate how super-packets can decouple MSS and MTU
through the use of simulations. We also evaluate our implementation of super-
packets using the Click Modular Router [2]. Our experiments show that super-
packets improve the flow completion times in the case of incast (many flows con-
verging on one bottleneck link). Interestingly enough, in some conditions even
the flows that had their super-packets denied still perform better than the last flows
when using regular packets. Also, in a very common case of short flows sharing
the wire with long flows, super-packets can seriously reduce the completion time
of short flows while barely affecting the bandwidth of long flows.

2 Background

The ever-increasing availability of always-on Internet connections has allowed the
proliferation of applications running over the Internet. The usability of many of
these applications is dependent on low latency, as higher latency makes for very
bad user experience and can significantly impact revenue [3]. Today the main
use of the Internet, measured in number of bytes transferred, is video streaming
(e.g., YouTube, Netflix, Hulu) [4]. Most of these bytes are not latency-sensitive
since these applications buffer data in advance. However, the start of these flows
is latency-sensitive since the loading time of a video has been shown to have
significant impact on user engagement [5].

In packet-switched networks such as IP, the Maximum Transfer Unit (MTU)
determines how large an individual packet can be. Choosing a set value for MTU
is a tradeoff. The higher the MTU, the more data can be sent at once with a
fixed header length, increasing efficiency. However, a lower MTU allows better
multiplexing to be achieved in routers, allowing both fast packet processing and
interleaving of different flows. A larger MTU can also increase corruption rates
and cause packets to be dropped when the checksum verification fails. For these
reasons, the MTU across most of the IPv4 Internet today has been set to 1500
bytes. TCP relies on the notion of a Maximum Segment Size (MSS), which rep-
resents how much payload can be sent in one TCP packet or segment. It is equal
to the MTU minus the header length.



Visualizing a network link as a pipe of given bandwidth, we could intuitively
imagine that the throughput of a transport protocol only relies on the given capac-
ity of these pipes and the drop rate of the transferred data. However, prior work

using modeling, simulation and traffic observation has shown that the throughput

of TCP is proportional to Rl\f[%\s/ﬁ, where p is the drop rate [6]. The appearance of

the Round-Trip Time (RTT) in this equation is unexpected since one might imag-
ine it influences latency but not throughput in the steady state. However, to avoid
congestion, TCP increases its sending window until it detects congestion then
backs off by halving this window. The RTT influences how often this window
reduction can take place. Each drop will reduce throughput and all drops happen
at the granularity of a MSS — each time a packet is dropped, MSS bytes of data
must be retransmitted. Hence both the MSS and the drop rate appear in the equa-
tion. For this reason, the granularity of drops directly influences the throughput of
a transport protocol like TCP. Our proposed mechanism, super-packets, changes
the granularity of drops from individual packets to a super-packet, i.e., a collection
of packets.

When considering short flows — i.e., TCP flows that span a very small num-
ber of TCP windows — the common metric is Flow Completion Time (FCT),
represented by the time between the transmission of the first (SYN) packet and
the reception of the last packet carrying useful data. One approach to reducing
FCT is to increase the TCP initial congestion window size (CWND) to ten pack-
ets [7]. If we consider flows shorter than 10 x MSS, we can hope for an optimal
FCT of 2 x RTT that can be achieved if no packets are dropped. However, a single
drop from the initial CWND can cause a retransmission timeout (RTO), which is
orders of magnitude greater than a RTT. Mechanisms such as TCP fast-retransmit
and TCP Selective Acknowledgments have been designed to avoid this and reduce
damage caused by a drop. However, if the dropped packet is one of the last ones
in the flow, there may not be enough subsequent packets to trigger a triple dupli-
cate acknowledgment [8]. Even if these mechanisms do trigger, the TCP CWND
would still be halved and we would experience at least one RTT of delay in order
to inform the sender of which packet has been dropped.

3 Super-Packets

A super-packet is a logical grouping of multiple packets. These packets travel
separately on the wire but are considered to be part of a larger entity, a super-
packet. Routers treat super-packets differently: instead of dropping data at the
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granularity of a packet, routers either drop all packets in a super-packet or commit
to forwarding all of them. End hosts mark packets they send as super-packets to
indicate to routers that these packets are correlated and should be all forwarded or
all dropped.

3.1 Goals

Super-packets must ensure that if a super-packet is denied, all subsequent packets
from this super-packet are dropped. However, if the super-packet is accepted, the
router must make sure that it keeps enough buffer space to ensure forwarding of
the subsequent packets in the super-packet. Our algorithm also needs to maintain
the same drop rate for regular packets and super-packets to allow decoupling of
TCP throughput from the MTU. Its implementation must be efficient: packet pro-
cessing time must be small and constant to allow packet processing at line speed.
This implies some subtleties regarding how super-packet related state is stored on
the router to allow super-packets to have a given lifespan without using timers.

Super-packets were designed to function in the wide area or the multi-tenant
datacenter, meaning that end-hosts can use any networking stack and are free to
choose to use super-packets or not. For this reason, super-packets must be able to
properly share the wire with regular packets and any standard TCP implementa-
tion. We must also ensure that the super-packet admission algorithm is strategy-
proof and does not open up new vectors of attacks. Finally super-packets must be
incrementally deployable.

3.2 Super-packets on the wire

Since super-packets appear on the wire as separate IP! packets, we must add some
information in each of these packets to allow routers to distinguish different super-
packets. This is achieved by using the IP Fragment ID and Terms of Service
fields?. The fields required for super-packets are the following:

o Super-Packet Identifier, a unique identifier chosen by the sender to allow
routers to distinguish super-packets. A super-packet identifier must be unique
per IP source and destination address pair.

'We currently only support IPv4, in this paper IP denotes IPv4. An IPv6 implementation would
be designed similarly.

2We make the assumption that packets are not fragmented and that these fields are unused.
This may not be a safe assumption in an uncontrolled environment.



e Super-Packet Length, the length of the super-packet, in packets.

e A first flag, notifying routers that this packet is the first one of an incoming
super-packet. This flag triggers an admission decision in routers, whereas
subsequent packets without it abide by the decision made for the first one.

o A last flag, notifying routers that this packet is the last one of a given super-
packet. This is meant to be used when a sender realizes that it will send
less packets than initially agreed upon, and allows the router to free the
corresponding reservation.

IP Terms of Service field
0 [ 1 [2]3]4]5]6]7
first | last SP Length

IP Fragment ID field
0[1]2]3]4[5]6[7]8[9]10[11]12]13]14[15
reserved SP Identifier

3.3 Super-Packet Admission Algorithm

Super-packets require changes in how routers decide when to drop a packet or not.
For this reason, we developed the following algorithm that dictates what decision
a router must make when it receives any kind of packet. Simply put, instead of
only basing the admission decision on queue occupancy, routers now keep state
of which super-packets it accepted and will only use this state information when
subsequent packets from a super-packet are received. This state is stored in a hash
table and keyed on the source and destination IP addresses and the super-packet
identifier. Algorithm 1 is run each time a packet is received, and determines if the
packet is dropped or enqueued. Regular packets are treated as super-packets of
length 1. To ensure we can uphold our promise to deliver all subsequent packets
from an accepted super-packet, we keep a counter of how many packets we must
be able to forward, and use this counter to decide on new super-packet acceptance.
This can be seen as reserving 70% of the super-packet length in the queue for that
purpose. We determined experimentally that a value of 70% is the best trade-off
between ensuring promises made to previous super-packets and accepting new
ones. Because of this 70% factor, these promises are not absolute guarantees.
Super-packet routers can only ensure that they will do their best.



key < srcl P,dstI P, spldentifier
if regular packet or first packet of SP then
queueSpace < queueSize — queuelLength
weightedSpReserved < spReserved x 0.7
if queueSpace — weightedSpReserved > maxSpLength then
packetsLeft < spLength — 1
spReserved < spReserved + packetsLe ft
hashTable.add(key, packetsLe ft)
accept Packet()
else
dropPacket()

else
if hashTable.contains(key) then
packetsLeft < hashTable.get(key)
packetsLeft < packetsLeft — 1
spReserved < spReserved — 1
if packetsLe ft = 0 then
hashTable.remove(key)

if last then > This is only useful when the sender knows they will not
be sending the entire SP length, they signal this by setting the last flag.
spReserved < spReserved — packetsLe ft
hashTable.remove(key)
accept Packet ()
else
dropPacket()

Algorithm 1: Super-Packet Admission Algorithm




To allow super-packet state to timeout in an efficient manner, the hash table
is implemented using two tables, and every epoch the contents of the first are
copied onto the second and the first is destroyed, guaranteeing all stored state to
be at most two epochs old, and any state deleted this way to be at least one epoch
old. This allows us to remove reservations for incomplete super-packets that will
never be completed — e.g., when the sender shuts down mid-transmission or if
there are drops before the super-packet router. In practice, an epoch is set as twice
the largest RTT observed for flows on the router. Since the admission decision in
this algorithm does not depend on the length of the super-packet, the drop rate is
ensured to be the same between regular packets and super-packets. This algorithm
therefore changes the granularity of drops to the super-packet level, efficiently
decoupling the throughput of TCP from the size of an individual packet. Super-
packets can be incrementally deployed, since routers not aware of super-packets
will still route packets normally, and both end hosts do not need to support super-
packets to allow gains. Performance improvements will be noticed as soon as the
sender and a router responsible for drops are aware of super-packets. Gains will
be optimal if all senders and routers responsible for drops are aware of super-
packets. If a router responsible for drops does not support super-packets, super-
packet properties are not guaranteed and can be detrimental if the first packet of a
super-packet is dropped, for example. Super-packets are strategy-proof, since we
keep state of how many packets each super-packet is still allowed to send. Users
sending less packets than agreed upon will simply waste resources given to them.

4 Implementation

Super-packets were implemented using the Click Modular Router [2]. Click is a
software architecture for building customizable routers. It runs inside the Linux
kernel and can replace Linux packet forwarding logic. A Click router is a graph of
routing elements that each performs a distinct task (packet filtering, route lookup,
ARP queries, ICMP error reporting, queuing, etc.). Our super-packet forwarding
logic is constructed as a Click element that is positioned before every outgoing
interface queue. This element can access the current state of the queue, store
state and then is charged with making a decision for each packet it sees: either
forward it by sending it to the queue or dropping it. For our implementation of
super-packets, we used the latest stable version of Click (version 2.0.1).

Once the Click router has determined an IP packet should be sent out on a
given output device (using multiple elements represented here as Click Routing



Click Routing Logic —
ARPQuerier(10.1.2.2,00:11:22:33:44:55) —
SPManager(out2, ...) —

out2 :: Queue(100) —

ToDevice(eth4)

Partial forwarding path of one output device in the Click configuration file.

Logic), the packet will go through an ARPQuerier element to receive an appro-
priate ethernet header, will then be buffered in a Queue element and finally trans-
mitted when it reaches the T'oDevice element. Adding super-packet functionality
to a Click router only requires adding one custom element, the S P M anager, and
placing one instance of it right before the Queue corresponding to each output de-
vice. The SPManager element needs a reference to the queue it is monitoring,
since the admission algorithm needs to know the current occupancy of the queue.
This element mostly implements Algorithm 1. When it accepts a packet, it simply
outputs it into the queue, otherwise the packet is dropped by the SPManager
and never reaches the queue. One of the downsides of this implementation is that
routers must keep per-super-packet state — in practice a hash table of how many
packets are left per super-packet. There is no way around keeping per-super-
packet state, since we must be able to know which super-packets were accepted.
However, we can avoid keeping track of the number of packets remaining in a
given super-packet and only save the number of remaining packets per end host,
and then keep a Bloom filter of accepted super-packets. A Bloom filter is an
acceptable replacement for a hash table since false-positives in the Bloom filter
could only cause more packets to be allowed than agreed upon, which is accept-
able if the false-positive rate remains low. Keeping track of remaining packets per
host in a separate hash table prevents malicious senders. This reduces the amount
of state kept, but at the cost of added complexity.

In order to use super-packets, we needed not only to change how routers buffer
packets but also give hosts a way to create super-packets, i.e., to select packets
they group together as a super-packet. We have seen that Algorithm 1 requires the
router to reserve space when super-packets are accepted, and release this reser-
vation as the subsequent packets of the super-packet are received. Reducing the
delay between packets of a super-packet is crucial to the performance of the router,
since an outstanding reservation belonging to one flow can harm other simultane-
ous flows. For this reason, the optimal way of creating super-packets in the context
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of a TCP stream is to send each window as a super-packet, since in practice TCP
sends bursts of traffic when drops are rare. However, since we must send the
super-packet length along with the first packet, we must have an a priori notion
of how long it will be. This is not achievable in practice, because the length of a
outgoing window will depend on the number of TCP acknowledgments received
regarding the previous window, and the first packet of the new window will be
sent before all acknowledgments have been received, causing us to have no cer-
tain way of knowing the length of the window as the first packet is transmitted.
To circumvent this, we chose to buffer outgoing TCP packets at the sender and,
once we know how long the window will be, it is sent as a super-packet. This is
achieved by buffering packets on a per-flow basis and, anytime we experience a
given time 7T}, ¢ ¢ during which no packets from this flow are received, we trans-
mit all buffered packets from this flow as a super-packet. We set T, s, to be
the time required to transmit five packets; for a 1Gbps link with an MTU of 1500
bytes, this is 60us. Our experiments have shown that this value is large enough to
avoid interleaved flows cutting windows in half and small enough to not signifi-
cantly harm TCP performance. It may seem contradictory to buffer packets in a
latency-reducing scheme, however in our case latency is caused by drops which
amount to delays in the order of a RTT or even a retransmission timeout — both
of which are orders of magnitude greater than our buffering delay.

5 Evaluation

In this section we evaluate super-packets through experiments between real end-
hosts using Linux machines running a standard TCP implementation and other
machines running the Click Modular Router as routers. We also demonstrate
super-packet properties via simulation using Network Simulator 2.

5.1 Simulation separating throughput from MSS

We described in Section 2 that super-packets can remove the direct correlation
between MSS and TCP throughput. Our simulations show that performance gains
are visible in practice. In this simulation, we stage multiple concurrent TCP flows
and single out one of these flows. In one case (Figure 1) the chosen flow will have
an increased MSS, which would correspond in practice to Jumbo Frames. In the
other case (Figure 2) the chosen flow will be using super-packets.
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We observe that not only in both cases the chosen flow receives significant
throughput improvements, gains are also comparable between the super-packet
flow and the jumbo-frame flow, demonstrating how super-packets have the same
effect as increasing the MSS without modifying the MTU.

2500

2000

Throughput 1500
(kBps) 1000

500

0 i

H Regular flows ® Jumbo Frame flow

Figure 1: Throughput of 49 regular TCP flows and one TCP flow using Jumbo
Frames

2000

1500

Throughput
(kBps)

1000

500

O i

W Regular flows M Super-Packet flow

Figure 2: Throughput of 49 regular TCP flows and one TCP flow using Super-
Packets

5.2 Hardware and Performance

Our experiments are constructed on three nodes: A, B and C with links A — B
and B — C. Node A sends traffic to node C through node B; node B is a super-
packet router. Every node has the following characteristics: a Dell PowerEdge
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1850 chassis, dual 3GHz Intel Xeon processors, 2 GB of RAM, one 36Gb 15k
RPM SCSI drive and multiple Intel Gigabit experimental network ports. Since
Click intercepts packets before they reach processing by the Linux kernel and
also allow polling of packets from the Network Interface Controller (NIC), we
must run a patched kernel and NIC drivers. Machine B runs Ubuntu 8.04 with
a patched 2.6.24.7 Linux kernel and patched NIC drivers e1000-7.6.15.5-NAPI.
Machines A and C run a vanilla Ubuntu 12.04 LTS with an unmodified 3.2 Linux
kernel.

The Click router causes a very slightly heavier load on the machine than the
regular Linux kernel forwarding logic. According to [2], Click suffers a 10% per-
formance penalty in packet forwarding. We performed stress-testing on our router
on node B. When using packets of size 1500 bytes, we were able to forward 90000
packets per second without difficulty using Click and our super-packet logic —
this corresponds roughly to 1Gbps, the throughput of our network controllers.
However, when using packets of length 64 bytes, the bottleneck becomes the
computation speed of our router, since we do not fully exploit Click parallelism.
At this packet length, the Linux kernel can forward 400000 packets per second
(approx. 200 Mbps), a regular Click router can only handle 350000 packets per
second (approx. 175 Mbps) and a Click router with super-packet logic can reach
a rate of 200000 packets per second (approx. 100 Mbps). These rates are lower
than the exact maximum rate of packets we can handle since we only tried to ob-
serve the order of magnitude we could handle, not the exact rate before failure.
In practice our super-packet logic could be implemented in hardware to avoid the
overhead of using a modular system such as Click.

5.3 Throughput during incast

Incast is a phenomenon where a great number of simultaneous TCP flows send
data through a bottleneck link and start experiencing congestion collapse due to
high drop rates. To achieve this scenario, we use three nodes A — B — C and
create artificial congestion on link B — C to induce drops at router B. We then
send 50 simultaneous flows from A to C and measure their completion times, this
was tested using flow lengths of both 10 (Figure 3) and 100 packets (Figure 4).
In Figures 3 and 4, flows are sorted by ascending completion time to allow
easier comparisons. The results indicate that super-packets allow a reduction
of average flow completion time. Cliff effects are clearly visible in the curves,
most likely indicating the presence of retransmission timeouts that are consider-
ably higher than the RTT of flows. The fact that in the experiment with flows of
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Figure 3: FCT of 50 simultaneous 10-packet-long TCP flows

length 10, the tail still sees improvements thanks to super-packets is interesting,
since it seems that these “martyr flows” who had their super-packets denied still
seem to do better than without super-packets. This is most likely due to the fact
that these flows experienced timeouts, and once they retransmit, the flows in the
super-packet case will experience emptier buffers since the other flows completed
earlier. This proves that even though we attempted to sacrifice some flows for the
greater good, these flows still ended up better off.

We considered avoiding packet buffering and using a fixed super-packet length
for all data sent but that performed poorly since the router would reserve space for
packets that would never come and had to deny other incoming super-packets that
it would have been able to accommodate. Another option was to try to estimate
window length but any error in estimation would result in similar inefficiencies
and, as explained in Section 4, it is physically impossible to predict the number of
incoming packets with absolute certainty.

5.4 Throughput of short flows competing with long flows

We assume, as it is often the case, that the short flows are latency-sensitive,
their flow completion times are important, and that long flows are latency-tolerant
(throughput being their most important characteristic). This is motivated by the
fact that short flows generally have direct consequences, such as element display
in a browser or reactions to control messages, whereas long flows, such as video
streaming or file transfer, will rely on throughput being sufficient. To induce con-
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Figure 4: FCT of 50 simultaneous 100-packet-long TCP flows

gestion, we use the same setup as the previous experiment: three nodes, A — B
— C, with A sending data to C while link B — C is artificially congested. In this
scenario, node A will start 25 infinite flows to C and wait five seconds to allow
TCP to increase its congestion window to use all the available bandwidth. Then
A sends ten bursts of two short 10-packet-long flows to C, sending each burst as
soon as the previous one has completed. We then measure the flow completion
times of the short flows and the throughput of the long flows. We run this exper-
iment in three flavors: with regular packets, with super-packets on all flows, and
with super-packets only on the short flows.

Without super-packets, some of the short flows experience drops due to the
presence of long flows using all available bandwidth and filling the queue in the
router. All these flows take longer to complete and some of them even take or-
ders of magnitude longer due to retransmission timeouts. Enabling super-packets
mitigates this effect. The gains from super-packets are best when only the short
flows use them, since in our current implementation packets and super-packets
have the same drop rate, giving a clear advantage to flows using super-packets.
The initial congestion windows of the short flows therefore have much better odds
of not being dropped, causing the flows to complete rapidly. However, even if all
flows use super-packets, the short flows are still protected from the presence of
long flows, since their drop rate is still lowered, and they send much fewer pack-
ets than the long flows, ensuring that their probability of experiencing drops is
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Figure 5: FCT of short TCP flows in the presence of long flows (sorted in ascend-
ing FCT)

very low. We still observe that some short flows have their super-packets dropped
and experience timeouts, but their drop rate is still much lower than with regular
packets, ensuring that their completion times are still improved. It is also inter-
esting to notice that this mechanism does reduce the throughput of the long flows,
since reducing drops for short flows implies dropping more packets for the long
flows. However the throughput reduction caused by super-packets is lower than
1% (Figure 6) and we believe this to be a worthwhile tradeoff.

6 Related Work

There have been many efforts to try to reduce TCP latency, many of which concen-
trate on protecting latency-sensitive short flows from long flows only dependent
on throughput. Some of these approaches are orthogonal to ours, and many others
were developed targeting the single-tenant datacenter environment, often requir-
ing that their new protocol be either alone on the wire, or reliant on trusted input
from end hosts.
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Figure 6: Throughput of long TCP flows in the presence of short flows

6.1 Systems requiring isolation

A considerable amount of literature concentrating on datacenter networking has
yielded protocols that only give benefits if they are alone on the wire and used
as a complete replacement for TCP. These protocols fail if other endpoints use
TCP through the same switches, making them unusable outside of the controlled
datacenter environment.

e Data Center TCP (DCTCP) [9] lowers short flow latency by reducing switch
queue occupancy. DCTCP leverages Explicit Congestion Notification (ECN)
to extract more information about the network: switches mark packets if
the current queue occupancy is over a given threshold and the TCP sender
reacts to the fraction of marked packets to reduce the window size. This
has been shown to improve performance if all endpoints use DCTCP, but if
some decide to use TCP, they will gain better throughput than the DCTCP
senders and negate all DCTCP benefits by increasing switch queue occu-
pancy. This makes DCTCP unsuitable for any network with uncontrolled
endpoints. DCTCP also cannot address a case of severe incast where initial
windows from each flow are enough to overwhelm the switch.

High-bandwidth Ultra Low Latency (HULL) [10] builds on top of DCTCP
by also changing the switches. Instead of marking packets when the queue
is over a certain threshold, HULL has a notion of a “phantom queue” which
is a counter representing how many packets would be in the queue if the
bandwidth was only 95% of the actual link. It then marks all packets sent
over 95% utilization of the real link. Its reliance upon DCTCP makes it
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unusable in the presence of endpoints using regular TCP.

e The Rate Control Protocol (RCP) [11] is aimed at improving FCT instead
of throughput. RCP switches keep a rate value R(¢) depending on queue
occupancy and incoming traffic and packets carry a rate /2. Routers update
R, < min(R,, R(t)) and the receiver echoes R, back to sender, who will
then send traffic at maximum rate [7,. The advantages of RCP are negated
if the switches also handle TCP flows since they will fill buffers.

6.2 Systems requiring trust

Other datacenter-oriented systems require the sender to specify the service they
need, by either sending flow size in advance, indicating flow deadlines or request-
ing priorities. These systems require switches to trust the sender to send correct
priorities, and fail if all endpoints prefer to optimize their traffic at the expense
of others by only sending high priorities or short deadlines for example. For that
reason these systems fail in the presence of endpoints not under the operator’s
control.

e Preemptive Distributed Quick (PDQ) [12] flow scheduling uses Earliest
Deadline First and Shortest Job First to prioritize flows, however they rely
on the sender sending deadlines and flow lengths to the switches to ensure
correct priorities are given. It is therefore not suitable for an environment
containing untrusted endpoints.

e D3 [13] is a deadline-aware control protocol that is customized for the dat-
acenter environment. They rely on deadline information to prioritize traffic,
so they solve a datacenter specific problem and can’t be deployable in the
presence of untrusted endpoints.

e Differentiated Services [14] rely on Per Hop Behavior information given by
the sender, who must therefore be trustworthy.

6.3 Synergetic or orthogonal systems

Even though most of the literature on reducing latency targets datacenters, there
have been many efforts targeting the wide area and improving user-experience
while browsing. Many of these can be used in conjunction with our system to
increase latency gains.
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e Google proposed to increase the TCP initial congestion window size to 10
packets [7], this greatly benefits from super-packets since we help ensure
that all 10 packets are safely delivered. In a traditional browser workload
where many short TCP flows are sent simultaneously, super-packets con-
centrate drops to a small number of flows and ensure minimal latency for
most flows.

e TCP Fast Open [8] improves the latency of TCP’s three way handshake
by sending payload during the handshake, however since most web objects
require at least several packets worth of data, it would still benefit from the
use of super-packets.

e Considerable work has been put into improving web latency at the appli-
cation layer. One of the most used examples is SPDY [15], a candidate
for HTTP 2.0 that uses header compression, request multiplexing, pipelin-
ing and prioritization. Another is the use of Content Distribution Networks
(CDN) that cache highly demanded content closer to the edges of the net-
work. Both of these still rely on TCP to send data to a browser and would
see gains from super-packets.

e Jumbo Frames increase the physical MTU and can increase TCP perfor-
mance since they increase the MSS. However they also reduce multiplex-
ing efficiency and can still benefit from super-packets to further increase
throughput.

7 Discussion and Further Work

These results indicate that our intuition was correct: allowing routers to base their
admission decisions on the context of individual packets can help improve perfor-
mance of the flows involved. Additionally, super-packets can help mitigate com-
mon network deficiencies such as incast or long flows starving latency-sensitive
short flows.

However a deeper mathematical analysis would be needed to understand the
intricacies of how super-packets affect flows. Figure 3 indicates that in some
cases, all flows are positively affected by super-packets. This is counter-intuitive
since one might imagine that the rare flows that had their super-packets denied
might experience worse performance than when not using super-packets. We be-
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lieve that by the time the last flows are retransmitting, the other flows have taken
advantage of super-packets and there is less traffic on the link.

The current version of the admission policy algorithm enforces an equal drop
rate for super-packets of all lengths and regular packets. This can lead to users
only sending super-packets of the maximum length to obtain optimal per-packet
drop rates. We have implemented a version of the algorithm that bases its ad-
mission decision on the length of the super-packet, but more experimentation is
needed to prove that it possesses the same properties as the original algorithm, no-
tably the decoupling of throughput and MSS. We also reason about super-packet
lengths in terms of packets, not bytes, because queues and traffic shapers in the
Click Modular Router measure occupancy and rates in terms of packets. Moving
away from Click would allow us to count in terms of bytes, which is closer to how
actual routers reason about their queues.

Our current admission algorithm is based on reserving space for accepted
super-packets, using a fixed ratio of how much space we actually reserve com-
pared to how many packets we are expecting. This ratio has been determined
experimentally but it may not be optimal in all experienced workloads. We have
tested other queueing algorithms, notably one based on RED [16] that only ac-
cepts new super-packets under a given threshold. Our results were not conclusive
because the router would not be able to fulfill its commitment to forwarding some
accepted super-packets. An algorithm based on these combined approaches could
lead to improved super-packet performance.

One notable downside with the current implementation is that it is vulnerable
to denial-of-service attacks. One malicious super-packet sender could send mul-
tiple first packets without ever sending the rest of the super-packet, causing the
router to reserve space for long periods of time. If we assume that senders do not
spoof their address, we could implement access control and penalize senders that
do not use their reservations promptly. However, the current implementation is
not safe enough to be used in the wide area.

In conclusion, super-packets have proven to leverage contextual information
to improve TCP performance. However the gains we observed are not signif-
icant enough to warrant implementing this new scheme, especially since it re-
quires changes to routers inside the network. We are convinced that the concept is
promising but not usable in practice until a different take on the algorithm allows
significantly better results and all security concerns are addressed.
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