
Synthesizing Switching Logic to Minimize Long-Run

Cost

Susmit Kumar Jha
Sanjit A. Seshia
Ashish Tiwari

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-16

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-16.html

March 4, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Synthesizing Switching Logic to

Minimize Long-Run Cost

Susmit Jha1, Sanjit A. Seshia1, and Ashish Tiwari2

1 UC Berkeley (jha,sseshia@berkeley.edu)
2 SRI International (tiwari@csl.sri.com)

Abstract. Given a multi-modal dynamical system, optimal switching logic
synthesis involves generating the conditions for switching between the sys-
tem modes such that the resulting hybrid system satisfies a quantitative
specification. We formalize and solve the problem of optimal switching logic
synthesis for quantitative specifications over long run behavior. Each tra-
jectory of the system, and each state of the system, is associated with
a cost. Our goal is to synthesize a system that minimizes this cost from
each initial state. Our paper generalizes earlier work on synthesis for safety
as safety specifications can be encoded as quantitative specifications. We
present an approach for specifying quantitative measures using reward and
penalty functions, and illustrate its effectiveness using several examples. We
present an automated technique to synthesize switching logic for such quan-
titative measures. Our algorithm is based on reducing the synthesis problem
to an unconstrained numerical optimization problem which can be solved
by any off-the-shelf numerical optimization engines. We demonstrate the
effectiveness of this approach with experimental results.

1 Introduction

One of the holy grails in the design of hybrid systems is to automatically synthesize
models from safety and performance specifications. In general, automated synthesis
is difficult to achieve, in part because synthesis often involves human insight and
intuition, and in part because of system complexity. Nevertheless, in some contexts,
it may be possible for automated tools to complete partial designs generated by
a human designer, enabling the designer to efficiently explore the space of design
choices whilst ensuring that the synthesized system meets its specification.

One such problem is to synthesize the mode switching logic for multi-modal
dynamical systems (MDS). An MDS is a physical system (plant) that can operate
in different modes. The dynamics of the plant in each mode is known. However,
to achieve safe and efficient operation, it is often necessary to switch between the
different operating modes. Designing correct and optimal switching logic can be
tricky and tedious.

In this paper, we consider the problem of synthesizing the switching logic for an
MDS so that the resulting system is optimal. We formulate a performance metric
which can be used to specify quantitative objectives about long-term behavior of the
system as minimizing some cost measure. Specifically, we formulate cost as penalty
per unit reward motivated by similar cost measure in Economics. For a given initial

state, the optimal long-term behavior corresponds to a trajectory of infinite length
with infinite number of mode switches which has minimum cost. So, discovering the
optimal long-term behavior requires

– discovering this infinite chain of mode switches, and
– the switching states from one mode to another.

Thus, a naive approach would require searching the optimal behavior over un-
bounded set of parameters. We reduce this problem to optimization over bounded
set of parameters representing the repetitive long-term behavior. The key insight is
that the long-term cost is essentially the cost of the repetitive part of the behavior.
We only require the user to provide the number of switches which are enough to
reach the repetitive behavior from an initial state. The system stays in repetitive
behavior after reaching it and hence, the user can pick any large number of switches
which would be enough to reach the repetitive behavior. We consider the superse-
quence of all possible mode sequences with the given number of mode switches and
use the times spent in each mode in this supersequence as the parameters for opti-
mization. If the time spent in a particular mode is zero, the mode is taken out of
the optimum mode sequence. The optimization problem is then formulated as an
unconstrained numerical optimization problem which can be solved by off-the-shelf
tools. Solving this optimization problem yields the time spent in each mode which
can then be used to find the switching states. By pruning out modes in which zero
time is spent, we also discover the optimum mode switching sequence. So, we dis-
cover both the optimum mode switching sequence and the switching states for each
initial state. These switching states can then be combined for different initial states
to yield the optimum switching logic for the hybrid system.

The contributions of this paper are as follows:

• We formalize the problem of synthesizing optimal switching logic by introducing
the notion of long-run cost which needs to be minimized for optimality (Sec-
tion 2).

• The synthesis problem requires optimization over trajectories and not just finite
segments. We show how to reduce optimization over an infinite trajectory to an
equivalent optimization over a bounded set of parameters representing the limit
behavior. (Section 4);

• We present an algorithm to solve this optimization problem for a single initial
state based on unconstrained numerical optimization (Section 5) and show how
our technique can be applied with multiple initial states. Our algorithm makes no
assumptions on the intra-mode continuous dynamics other than locally-Lipschitz
continuity and relies only on the ability to accurately simulate the dynamics.

Experimental results demonstrate our approach on a range of examples, including
a DC-DC Boost power converter circuit (Section 7).

2 Problem Definition

2.1 Multimodal and Hybrid Systems

We model a hybrid system as a combination of a multimodal dynamical system and
a switching logic.

Definition 1. Multimodal Dynamical System (MDS). A multimodal dynam-
ical system is a tuple 〈Q,X, f, Init〉, where Q := {1, . . . , N} is a set of modes,
X := {x1, . . . , xn} is a set of continuous variables, f : Q × R

X 7→ R
X defines a

vector field for each mode in Q, and Init ⊆ Q × R
X is a set of initial states. The

state space of such an MDS is Q×R
X . A function qx : R+ 7→ (Q×R

X) is said to
be a trajectory of this MDS with respect to a sequence t1, t2, . . . of switching times
if
(i) qx(0) ∈ Init and
(ii) for all i and for all t such that ti < t and t < ti+1, it is the case that q(t) = q(ti)
and

dx(t)

dt
= f(q(t),x(t)), (1)

where q and x denote the projection of qx into the mode and continuous state
components. The function x is continuous. The switching sequence is the sequence
of modes q(t1),q(t2),

If MDS is a multimodal dynamical system, then its semantics, denoted [[MDS]], is the
set of its trajectories with respect to all possible switching time sequences.

Definition 2. Switching Logic (SwL). A switching logic for a multimodal system
MDS := 〈Q,X, f, Init〉 is a tuple 〈(gq1q2)q1,q2∈Q〉 where gq1q2 ⊆ R

X is the guard
defining the switch from mode q1 to mode q2.

Given a multimodal system and a switching logic, we can now define a hybrid
system by considering only those trajectories of the multimodal system that are
consistent with the switching logic.

Definition 3. Hybrid System (HS). A hybrid system is a tuple 〈MDS, SwL〉 con-
sisting of a multimodal system MDS := 〈Q,X, f, Init〉 and a switching logic SwL :=
〈(gq1q2)q1,q2∈Q〉. The state space of the hybrid system is the same as the state space
of MDS. A function qx : R+ 7→ (Q × R

X) is said to be a trajectory of this hybrid
system if there is a a sequence t1, t2, . . . of switching times such that
(a) qx is a trajectory of MDS with respect to this switching time sequence and
(b) setting t0 = 0, for all ti in the switching time sequence with i ≥ 1, x(ti) ∈
gq(ti−1)q(ti) and for all t such that ti−1 < t < ti, x(t) 6∈ ∪q∈Qgq(ti−1)q.

Discrete jumps are taken as soon as they are enabled and they do not have
non-identity resets. For the notion of a trajectory to be well-defined, guards are
required to be closed sets. The semantics of a hybrid system HS, denoted [[HS]], is
the collection of all its trajectories as defined above.

2.2 Quantitative Measures for Hybrid Systems

Our interest is in automatically synthesizing hybrid systems which are optimal in
the long-run. Thus, we require a quantiative measure which can be used to define
optimality. This is done by extending the hybrid system HS with new continuous
state variables. The new continuous variables compute “rewards” or “penalties”
that are accumulated over the course of a hybrid trajectory. We also allow the new
variables to be updated during discrete transitions, which enables us to penalize or
reward discrete mode switches.

Definition 4. Performance Metric. A performance metric for a given multi-
modal system MDS := 〈Q,X, f, Init〉 is a tuple 〈PR, fPR, update〉, where PR := P ∪R
is a finite set of continuous variables (disjoint from X), partitioned into penalty
variables P and reward variables R, fPR : Q × R

X 7→ R
PR defines the vector field

that determines the evolution of the variables PR, and update : Q×Q×R
PR 7→ R

PR

defines the updates to the variables PR at mode switches.

Given a trajectory qx : R
+ 7→ (Q × R

X) of a multimodal or hybrid sys-
tem, and given a performance metric, we can define the extended trajectory qxe :
R

+ 7→ (Q × R
X × R

PR) as follows. Let t1, t2, . . . be the mode-switching time se-
quence defined by the trajectory qx. The extended trajectory qxe is defined with
respect to the same mode-switching time sequence and it is any function that sat-
isfies qxe(0) = (q(0),x(0),0) and qxe(t) = (q(t),x(t),PR(t)), where PR satisfies:
dPR(t)

dt
= fPR(qx(t)) for all t : ti < t < ti+1, andPR(ti) = update(q(ti−1),q(ti), limt→t

−

i
PR(t)).

We can now define the cost of a trajectory as follows. If qx is a trajectory of
a multimodal or hybrid system and qxe is the corresponding extended trajectory
defined by a given performance metric, then

cost(qx) := lim
t→∞

|P |
∑

i=1

Pi(t)

Ri(t)
(2)

where Pi and Ri are the projection of qxe onto the i-th penalty variable and i-th
reward variable, and |P | = |R|.

We are only interested in trajectories where the above limit exists and is finite.
We will further define cost of a part of a trajectory from time instant t1 to a time
instant t2 (t2 > t1) as follows:

cost(qx, t1, t2) :=

|P |
∑

i=1

Pi(t2)−Pi(t1)

Ri(t2)−Ri(t1)
(3)

where Pi and Ri are components of PR as before.
As the definition of cost indicates, we are interested in the long-run average

(penalty per unit reward) cost rather than (penalty or reward) cost over some
bounded/finite time horizon. Some examples of auxiliary performance variables (PR)
and cost function are described below.

– the number of switches that take place in a trajectory can be tracked by defining
an auxiliary variable p1 that has dynamics dp1

dt
= 0 at all points in the state

space, and that is incremented by 1 at every mode switch; that is,

p1(ti) = update(q, q′, p1(t
−
i)) = p1(t

−
i) + 1

– the time elapsed since start can be tracked by defining an auxiliary variable r1
that has dynamics dr1

dt
= 1 at all points and that is left unchanged at discrete

transitions; that is,

r1(ti) = update(q, q′, r1(t
−
i)) = r1(t

−
i)

– the average switchings (per unit time) can be observed to be p1

r1
. If this cost

becomes unbounded as the time duration of a trajectory increases, then this
indicates zeno behavior. Thus, if we use p1 and r1 as the penalty and reward
variables in the performance metric, then we are guaranteed that non-zeno
systems will have “smaller” cost and thus be “better”.

– the power consumed could change in different modes of a multimodal system and
an auxiliary (penalty) variable can track the power consumed in a particular
trajectory.

– the distance from unsafe region can be tracked by an auxiliary reward variable
that evolves based on the distance of the current state from the closest unsafe
state.

2.3 Optimal Switching Logic Synthesis

Definition 5. Optimal Switching Synthesis Problem. Given a multimodal
system MDS = 〈Q,X, f, Init〉 , and a performance metric, the optimal switching
logic synthesis problem seeks to find a switching logic SwL∗ such that the cost of a
trajectory from any initial state in the resulting hybrid system HS∗ := HS(MDS, SwL∗)
is no more than the cost of corresponding trajectory from the same initial state in
an arbitrary hybrid system HS := HS(MDS, SwL) obtained using an arbitrary switching
logic SwL, that is, ∀(x, q) ∈ Init . cost(qx∗) ≤ cost(qx) where qx∗(0) =
qx(0) = (x, q),qx ∈ [[HS∗]],qx ∈ [[HS]]

We will assume, without loss of any generality, that we are given an over-
approximation of the switching logic SwLover := 〈(goverqq′)q,q′∈Q〉. In this case, the
optimal synthesis problem seeks to find a switching logic SwL∗ := 〈(g∗qq′)q,q′∈Q〉 that
also satisfies the constraint that g∗qq′ ⊆ goverqq′ for all q, q′ ∈ Q, which is also written
in short as SwL∗ ⊆ SwLover .

The over-approximation SwLover of the switching set can be used to restrict the
search space for switching conditions. The set goverqq′ can be an empty set if switches

are disallowed from q to q′. The set goverqq′ can be R
X if there is no restriction on

switching from q to q′.

2.4 Running Example

Let us consider a simple three mode thermostat controller as our running example.
The multimode dynamical system describing this system is presented in Figure 1.
The thermostat controller is described by the tuple 〈Q,X, f, Init〉 where Q =
{OFF, HEAT, COOL}, X = {temp, out}, f is fOFF : ˙temp = −0.1(temp− out) in mode
OFF, fHEAT : ˙temp = −0.1(temp − out) + 0.5(80 − temp) in mode HEAT and fCOOL :
˙temp = −0.1(temp−out)+0.5(80−temp) in mode COOL, and Init = OFF×[18, 20]×

[12, 26]. For simplicity, we assume that the outside temperature out does not change.

The performance requirement is to keep the temperature as close as possible to
the target temperature 20 and to consume as little fuel as possible in the long run.
We also want to minimize the wear and tear of the heater caused by switching. The
performance metric is given by the tuple 〈PR, fPR, update〉, where penalty variables

+0.15(temp)

˙temp = −0.1(temp− out)
+0.05(80− temp)

HEAT

gFH

gHFgCF

gFC

COOL

˙temp = −0.1(temp− out)
OFF

˙temp = −0.1(temp− out)

˙discomfort = (temp− 20)2, ˙fuel = (temp− out)2

˙swTear = 0, ˙time = 1

update(M, M′, swTear) = swTear+ 0.5

for any two different modes M, M
′

in Q

Fig. 1. Thermostat Controller

P = {discomfort, fuel, swTear} denote the discomfort, fuel and wear-tear due to
switching and reward variables R = {time} denote the time spent. The evolution
and update functions for the penalty and reward variables is shown in Figure 1. We
need to synthesize the guards such that the following cost metric is minimized. Since
the reward variable is the time spent, minimizing this metric means minimizing the
average discomfort, fuel cost and wear-tear of the heater. We give a higher weight
(10) to discomfort than fuel cost and wear-tear.

lim
t→∞

10× discomfort(t) + fuel(t) + swTear(t)

time(t)

3 Related Work

There is a lot of work on synthesis of controllers for hybrid systems, which can
be broadly classified along several different dimensions. First, based on the prop-
erty of interest, synthesis work broadly falls into one of two categories. The first
category finds controllers that meet some liveness specifications, such as synthesiz-
ing a trajectory to drive a hybrid system from an initial state to a desired final
state [15, 12], while also minimizing some cost metric [4]. The second category finds
controllers that meet some safety specification; see [1] for detailed related work in
this category. While our work does not directly consider only safety or only liveness
requirements, both these requirements can be suitably incorporated into the defi-
nition of “reward” and “penalty” functions that define the cost that our approach
then optimizes. While optimal control problems for hybrid systems have been for-
mulated where cost is defined over some finite trajectory, we are unaware of any
work in control of hybrid systems that attempts to formulate and solve the optimal
control problem for long-run costs.

The second dimension that differentiates work on controller synthesis for hybrid
systems is the space of control inputs considered; that is, what is assumed to be
controllable. The space of controllable inputs could consist of any combination of
continuous control inputs, the mode sequence, and the dwell times within each
mode. A recent paper by Gonzales et al. [9] consider all the three control parameters,
whereas some other works either assume the mode sequence is not controllable [24,
21] or there are no continuous control inputs [2]. In our work, we assume there are
no continuous control inputs and both the mode sequence and the dwell time within
each mode are controllable entities.

The third dimension for placing work on controller synthesis of hybrid systems
is the approach used for solving the synthesis problem. There are direct approaches
for synthesis that compute the controlled reachable states in the style of solving
a game [1, 23], and abstraction-based approaches that do the same, but on an ab-
straction or approximation of the system [18, 8, 22]. Some of these approaches are
limited in the kinds of continuous dynamics they can handle. They all require some
form of iterative fixpoint computation. The other class of approaches are based on
using nonlinear optimization techniques and gradient descent [9, 2]. We also use
similar techniques in this paper and reduce the controller synthesis problem to an
optimization problem of a function that is computed by performing simulations of
the dynamical system.

Notions of long-run cost similar to ours have appeared in other areas. The notion
of long-run average cost is used in economics to describe the cost per unit output
(reward) in the long-run. In computer science, long-run costs have been studied
for graph optimization problems [11]. Long-run average objectives have also been
studied for markov decision processes (MDPs) [6, 13]. However, MDPs do not have
any continuous dynamics. There is some recent work on controller synthesis with
budget contraints where the budget applies in the long-run [7].

In contrast to existing literature, we present an automated synthesis algorithm
to synthesize switching logic SwL for a given MDS and performance metric such that
all trajectories in the hybrid system HS(MDS, SwL) have minimum long-term cost
with respect to the given performance metric.

4 Optimization Formulation

In this section, we formulate the problem of finding switching logic for minimum
long-run cost from an initial state as an optimization problem. Given a multimodal
system MDS = 〈Q,X, f, d, Inv, Init〉, an initial state (q0,x0) ∈ Init and the perfor-
mance metric tuple (Y, fY , update), we need to find the switching times t1, t2, . . .
and the mode switching sequence q such that the corresponding trajectory qx is of
minimum cost.

min
q,t1,t2,...

cost(qx) subject to (4)

1(Init) : qx(0) = (q0,x0) 2(Time elapse) : ∀t . ti < t < ti+1 . q(t) = q(ti) , i = 1, 2, . . . ;

3(Guards) : ∀i x(ti) ∈ goverq(i)q(i+1) 4(Flow) : ∀t dx(t)

dt
= f(q(t),x(t))

A naive approach to solve the above optimization algorithm requires searching
over all the mode sequences q and all the switching sequences t1, t2, . . . to discover
the trajectory qx of minimum cost. Since trajectories are of infinite length and
consequently the switching sequences have infinite number of switching times, such
a naive search is not feasible. In the rest of the section, we formulate an equivalent
optimization problem with finite number of switching times as variables.

Let trajectory segment qx[tf,te] of a trajectory qx of length L = tf − te be the

restriction of the trajectory to tf ≤ t ≤ te, that is, qx[tf,te] : T 7→ (Q × R
X) where

T = [tf, te] ⊆ R
+ and qx[tf,te](t) = qx(t) for tf ≤ t ≤ te. The switching times of

the trajectory segment is a finite subsequence tm, tm+1, . . . tn of the switching times
t1 . . . , tm, . . . , tn, . . . of the trajectory qx and tm−1 < tf ≤ tm and tn ≤ te < tn+1.
The special case of a trajectory segment is a trajectory prefix in which the trace
starts at time ts = 0.

Our goal is to minimize the lifetime cost. The lifetime cost is dominated by the
the cost of the limit behavior of the system. In Appendix A, we discuss different pos-
sible limit behaviors. We are only interested in the following stable limit behaviors
when the lifetime cost is defined by the limit in Equation 2.

– asymptotic: for any ǫ, there exists a time tǫ after which the trajectory gets
asymptotically ǫ-close to some state (qT ,xT), ||qx(t) − (qT ,xT)||2 < ǫ for all
t ≥ tǫ where ||., .|| denotes the Euclidean norm, or

– converging: there exists a time tconv after which the trajectory converges, qx(t) =
qx(tconv) for all t ≥ tconv, or

– cyclic: there exists a time tcyc after which the trajectory enters a cycle with
period L, qx(t) = qx(t+ kP) for all t ≥ tcyc and k ≥ 1.

In all these cases, we can reason about the long-run cost by considering some
finite, but arbitrarily long, trajectory prefixes. Suppose the trajectory qx is asymp-
totic to some hybrid state qx∞ = (q∞,x∞). In this case, we assume that the
penalty and reward variables PR also asymptotically approach some values PR∞ =
(P∞, R∞). Now consider the trajectory prefix qx[0,te]. We have

cost(qx) =
∑

i

P∞
i

R∞
i

and cost(qx[0,te]) =
∑

i

Pi(te)

Ri(te)
<

∑

i

P∞
i + ǫ

R∞
i − ǫ

< cost(qx) + δǫ

Hence, by choosing te appropriately, we can find a trajectory prefix whose cost is
arbitrarily close to the cost of the asymptotic trajectory.

Any repetitive trajectory qx can be decomposed into a finite prefix qxpref =
qx[0,tp] followed by a trajectory segment qxrep = qx[tp,tP] repeated infinitely. We
say

qx = qxpref . (qxrep)
ω

when ∀t ≤ tp . qx(t) = qxpref (t) and ∀t ≥ tp . qx(t) = qxrep(tp + r) where
r = (t− tp) mod L and L = tP − tp.

If the trajectory converges to some hybrid state after tconv, tp = tconv and tP is
any time after convergence, that is, tP > tp. If the trajectory enters a cycle with a
period L after time tcyc, then tp = tcyc and tP = tp+L. In Lemma 1 and Theorem 1,
we summarize how cost converges to a limit for trajectories with repetitive limit
behavior.

Lemma 1. For each repetition of the segment qxrep = qx[tp,tP], the change in
penalty and reward variables is constant, that is, for P = tP − tp.

∀k ≥ 1 . Pi(tp+ kP)− Pi(tp+ (k − 1)P) = Pi(tp+ P)− Pi(tp) = ∆Pi

∀k ≥ 1 . Ri(tp+ kP)−Ri(tp+ (k − 1)P) = Ri(tp+ P)−Ri(tp) = ∆Ri

Proof. The change in penalty and reward variables is given by the evolution function
fPR and the update on switch function update. We know that qxrep is repetitive
and so, qx(tp+ kP + t) = qx(tp+ t) for all t < tP − tp and k ≥ 1 and hence,

fPR(qx(tp+ kP + t)) = fPR(qx(tp+ t))

Also, for any mode switch time tp ≤ ti ≤ tP , t′i = ti + kP is also a switch time
because hybrid states at ti and t′i are the same. Further,

update(q(ti−1), q(ti), lim
t→t

−

i

PR(t))

= update(q(t′i−1), q(t
′
i), lim

t→t
′−

i

PR(t))

So, integrating fPR over continuous evolution and applying update function at
mode switches, we observe that

Pi(tp+ kP)− Pi(tp+ (k − 1)P) = Pi(tp+ P)− Pi(tp)

= ∆Pi

Ri(tp+ kP)− Ri(tp+ (k − 1)P) = Ri(tp+ P)−Ri(tp)

= ∆Ri

Theorem 1. For a trajectory qx which can be decomposed into qxpref . (qxrep)
ω,

the cost of the trajectory is equal to the cost of the repetitive segment qxrep, that is,
cost(qx) = cost(qxrep).

Proof.

cost(qx) := lim
t→∞

|P |
∑

i=1

Pi(t)

Ri(t)
[Equation 2] = lim

t→∞

|P |
∑

i=1

Pi(tp) +Pi(t)−Pi(tp)

Ri(tp) +Ri(t)−Ri(tp)

= lim
k→∞

|P |
∑

i=1

Pi(tp) + k∆Pi

Ri(tp) + k∆Ri

[Lemma 1] =
∆Pi

∆Ri

[Pi(tp),Ri(tp) are finite] =

|P |
∑

i=1

Pi(tP)−Pi(tp)

Ri(tP)−Ri(tp)

= cost(qx, tp, tP) [Equation 3] = cost(qxrep) [Definition of qxrep]

⊓⊔

Using Theorem 1, the optimization problem in Equation 4 is equivalent to the
following optimization problem. Intuitively, if the repetitive part of the trajectory
and the finite prefix before the repetitive part have finite cost, then the long run cost
of a trajectory in the limit is the cost of the repetitive part of the trajectory. More
generally, to also handle the case when the (optimal) trajectory is asymptotic, we
can replace the cyclicity requirement, qx(tp) = qx(tP), in the optimization problem
by the weaker requirement that the state qx(tP) at time tP be very “close” to the
state qx(tp) at time tp; see also Section 5.1.

min
q,t1,t2,...,tn

cost(qxrep) subject to (5)

1(Init) : qx(0) = (q0,x0) 2(Time elapse) : ∀t . ti < t < ti+1 . q(t) = q(ti) , i = 1, 2, . . . ;

3(Guards) : ∀i x(ti) ∈ goverq(i)q(i+1) 4(Flow) : ∀t dx(t)

dt
= f(q(t),x(t))

5(Repetitive Trajectory) : qx = qxpref . (qxrep)
ω

6(Repetitive Time) : qxpref = qx[0,tp], qxrep = qx[tp,tP]

where 0 ≤ t1 ≤ . . . tn ≤ tP, 0 ≤ tp < tP

5 Optimization Algorithm

In this section, we present an algorithm to solve the above optimization problem.
The key idea is to construct a scalar function F (q, t1, t2, . . . , tn, tp, tP) where q
denotes the switching mode sequence; t1, t2, . . . , tn denote the switching times, and
tp, tP denote the times denoting repetitive behavior, such that the minimum value
of F is attained when the switching mode sequence and switching times correspond
to the trajectory qx with minimum long-run cost, and qx[tp,tP] is the repetitive
part of the trajectory.

For any given value of the arguments, the function F would be computed using
numerical simulation 3 of the multimodal system. If F is a scalar function of several
variables which can be computed for given values of the arguments, minimization of
F can be done using unconstrained nonlinear numerical optimization techniques [3].

Our algorithm for solving the constrained optimization function in Equation 5
is based on defining the function F and then using unconstrained nonlinear opti-
mization techniques to minimize F . We use standard techniques for unconstrained
nonlinear optimization. The novelty of our technique lies in formulating the func-
tion F such that minimizing F yields the solution for the optimization problem in
Equation 5. For ease of presentation, we present our solution in two steps. Firstly,
we consider the problem with fixed switching sequence of modes and then, we show
how our technique can be used to discover the switching sequence as well.

5.1 Finding Switching States with Fixed Mode Sequence

Let Fq(t1, t2, . . . , tn, tp, tP) denote the function F with fixed mode sequence q.
Minimizing Fq over its arguments yields switching times t1, t2, . . . , tn and tp, tP
such that the trajectory qx starting from the initial state (q0,x0) enters repetitive
behavior at tp and the trajectory repeats with a period of tP − tp, that is, qx(tp) =
qx(tP), and the corresponding trajectory segment qxrep = qx[tp,tP] is of minimum
cost. So, minimizing F would yield the solution to the optimization problem in
Equation 5.

The optimization problem in Equation 5 is a constrained optimization problem.
The constraint qx = qxpref . (qxrep)

ω requires identifying a trajectory qx starting

3 We rely on simulating continuous behavior described by ODEs in a single mode for a
fixed time period and accurate simulation of ODEs is a well-studied problem.

from the given initial state (q0,x0) such that it enters repetitive behavior at time
tp, and q(tp) = q(tP) and x(tp) = x(tP) where tp < tP . We call this constraint
the repetition constraint. A standard technique for solving some constrained opti-
mization problems is to translate it into an unconstrained optimization problem by
modifying the optimization objective such that optimization automatically enforces
the constraint. This is done by quantifying the violation using some metric and then
minimizing the sum of the earlier minimization objective and the weighted violation
measure. A simple example of this approach is presented in Appendix B. In order to
enforce the repetition constraint by suitably modifying the optimization objective,
we introduce a distance function between the hybrid states. Let d be the distance
function between two hybrid states such that

d((q1,x1), (q2,x2)) = ||x1 − x2||2 if q1 = q2 and ∞ o.w.

where ||x1 − x2|| is the Euclidean norm. (Q × X, d) forms a metric space. So, the
distance between the hybrid states is 0 if and only if q1 = q2 and x1 = x2.

Let F (q, t1, . . . , tn, tp, tP) =











cost(qx[tp,tP]) +M × d(qx(tp),qx(tP))

if (a) 0 ≤ t1 ≤ . . . tn ≤ tP, tp < tP and (b) ∀i x(ti) ∈ gover
q(i)q(i+1)

∞ otherwise

where M is any positive constant and qx is a trajectory starting from the given
initial state, that is, qx(0) = (q0,x0); ∀t ti < t < ti+1 q(t) = q(ti) , i = 1, 2, . . .

and ∀t dx(t)
dt

= f(q(t),x(t)).
Fq is the restriction of the function F where the mode switching sequence is

fixed to q. The function Fq evaluates to a finite value only if the arguments satisfy
conditions (a) and (b). The first condition is that the switching times are non-
decreasing and the times for possible repetitive behavior satisfy tp < tP . The second
condition is that the switching states x(ti) at switching times ti lie in the user
specified over-approximation of the guards, that is, x(ti) ∈ gover

q(i)q(i+1). If any of these
two conditions are not satisfied by the arguments, then the function Fq evaluates
to infinite. If the two conditions are satisfied, Fq is the sum of the cost of the
trajectory segment qx[tp,tP] and the distance between the hybrid states at time tp
and tP weighted with a very large constant M . The minimum value of the function
Fq is attained when the hybrid states at time tp and tP are the same, that is, the
trajectory segment qx[tp,tP] is the repetitive part of the trajectory and the cost of
this segment is minimum. With the switching states given by qx(ti), the trajectory
starting with the given initial state would be qx[0,tp](qx[tp,tP])

ω. Since, the cost of
repetitive segment qx[tp,tP] is minimized, this trajectory is of minimum long-run
cost. Thus, the optimization problem in Equation 5 of Section 4 can be reduced to
the following unconstrained multivariate numerical optimization problem

min
t1,...,tn,tp,tP

Fq(t1, . . . , tn, tp, tP) (6)

For given values of 〈t1, . . . , tn, tp, tP 〉, Fq(t1, . . . , tn, tp, tP) can be computed
using a numerical simulator. We simulate starting from initial state (q0,x0) till time
tP with the switching times t1, . . . , tn and the mode switching sequence q. Starting

from some initial state (q0,x0), we simulate the continuous dynamics in different
modes till time tP . We simulate the continuous dynamics in the first mode in the
given mode sequence till time t1 and then the following mode in the given sequence
for time t2 − t1 time and so on. We simulate the last mode in the sequence for time
tP − tn. During simulation, we also compute the reward and penalty by recording
the extended trajectory qxe as defined in Section 2. The cost of the repetitive part
is computed using Equation 3 as

cost(qx[tp,tP]) = cost(qx, tp, tP) =
P(tP)−P(tp)

R(tP)−R(tp)

We also record the states at times tp and tP to compute the distance between them
d(qx(tp),qx(tP)). If the two conditions required for Fq to be finite are satisfied,
then Fq(t1, . . . , tn, tp, tP) is the sum of the cost of the repetitive part and the
weighted distance. We use a numerical nonlinear optimization engine to find the
minimum value of the function Fq.

Running Example We illustrate our technique for the running example with
a fixed sequence of modes say q = OFF, HEAT, OFF starting from the initial state
(OFF, temp = 22, out = 16). The outside temperature out does not change with
time and remains the same as the initial state. Only the room temperature temp

changes with time. The switching time sequence is t1, t2. Let tp denote the time
when the thermostat enters the repetitive behavior and tP be the time such that
temp(tp) = temp(tP). When t1 ≤ t2 ≤ tp ≤ tP and tp < tP , the function

Fq(t1, t2, tp, tP) = cost(qx[tp,tP]) + 1000(temp(tp)− temp(tP))2

and it is set to 2000 otherwise (approximating infinity in the formulation with a very
high constant). We use ode45 function in MATLAB [17] for numerically simulating
the ordinary differential equations representing continuous dynamics in each mode.
In order to find the minimum value of Fq and the corresponding arguments that
minimize the function, we use the implementation of Nelder-Mead simplex algo-
rithm [19] available in MATLAB as fminsearch function [16]. The minimum value
of Fq is obtained at

t0 t1 t2 tp tP

t 0 5.02 5.24 3.54 5.24

temp 22.0 19.6 20.2 20.02 20.2

So, the switch states corresponding to the minimum long-run cost for the given
initial state (OFF, temp = 22, out = 16) and given switching sequence of modes
OFF, HEAT, OFF is gHF = {20.2} and gFH = {19.6}.

We repeat the experiments with different initial states but with the same mode
switching sequence. Even with different initial states (OFF, temp = 20.5, out = 16),
(OFF, temp = 21, out = 16) and (OFF, temp = 21.5, out = 16), we obtain the same
switching states in this example: gHF = {20.2} and gFH = {19.6}.

When we change the mode switching sequence to OFF, HEAT, OFF, HEAT, OFF, we
discover the optimal switching sequence to be

t0 t1 t2 t3 t4 tp tP

t 0 5.02 5.24 6.73 6.95 3.54 6.95

temp 22.0 19.6 20.2 19.6 20.2 20.02 20.2

t1 = 5.02, t2 = 5.24, t3 = 6.73, t4 = 6.95, tp = 3.54, tP = 6.95 which again yields the
same optimal switching states gHF = {20.2} and gFH = {19.6}.

We observe that the optimal behavior with respect to the given cost metric
would be to switch from OFF mode to HEAT mode at temp = 19.6 and then switch
from HEAT to OFF mode at temp = 20.2 regardless of the initial room temperature
as long as the outside temperature out = 16. The optimal mode cycle is between
OFF and HEAT modes.

For an initial state with outside temperature higher than the outside room tem-
perature out > 20, the optimal cycle would be between OFF and COOL modes. With
the mode sequence OFF, COOL, OFF and the initial state (OFF, temp = 20.5, out = 26),
we discover the optimal switching states to be gCF = {20} and gFC = {20.3}.

5.2 Finding Optimal Mode Sequence

The algorithm presented above can be easily adapted to automatically discover the
switching mode sequence that corresponds to the minimum long-run cost trajectory.
Any mode sequence starting in mode 1 and with atmost k switches in a system
with N modes Q = {1, 2, . . .N} is a subsequence of 1(2 . . . N 1)k, that is, mode
1 followed by (2 . . . N 1) repeated k times. Let dwell-time of a mode i be the
time spent in the mode ti+1 − ti. Given the switching times t1, t2, ...tNk and tp, tP ,
we define the NZ function which removes the switch times and modes from the
switching sequence with zero dwell-times, that is,

NZ(q, t1, t2, . . . , tNk, tp, tP) = (q, ti1 , ti2 , . . . , tiK , tp, tP) where

q = qi1 , qi2 , . . . , qiK , 0 < ti1 < ti2 < . . . < tiK < tP and tm = tij for all ij < m < ij+1

For example, given the sequence of switching times 5, 6, 6, 11, 12, 12 and tp =
6.5, tP = 12.5 with the switching mode sequence q = 1, 2, 3, 1, 2, 3, 1,

NZ(q, 5, 6, 6, 11, 12, 12, 6.5, 12.5) = (q, 5, 6, 11, 12, 6.5, 12.5) where q = 1, 2, 1, 2, 1

Given a guess on the number of mode switches k such that k or less switches are
needed to reach the optimal repetitive behavior, we can use q = 1(2 . . . N 1)k as
the over-approximate switching mode sequence and then find the optimal switch-
ing subsequence corresponding to the minimal long-run cost behavior using the
following modified optimization formulation.

min
t1,...,tNk,tp,tP

F (NZ(q, t1, . . . , tNk, tp, tP)) (7)

If the optimal value returned by minimizing the above function is attained with
the arguments t∗1, . . . , t

∗
Nk, tp

∗, tP ∗, then the optimal switching sequence q and the
optimal switching time sequence is given by

(q, ti1 , . . . , tik , tp, tP) = NZ(q, t∗1, . . . , t
∗
Nk, tp

∗, tP ∗)

Running Example We illustrate the above technique on the running example be-
low. Let us guess that reaching the optimal repetitive behavior from the initial state
OFF, temp = 22, out = 16 takes atmost 2 switches. We consider the mode sequence
OFF, HEAT, COOL, OFF, HEAT, COOL, OFF which would contain all mode sequences with
2 switches (it also contains some mode sequences with more than 2 switches). We
try to minimize the corresponding function F (NZ(t1, t2, . . . , t6, tp, tP)).

The minimum value obtained for the function F with the starting state (OFF, temp =
22, out = 16) by our optimization engine corresponds to the following trajectory.

t0 t1 t2 t3 t4 t5 t6 tp tP

t 0 5.08 5.32 5.32 6.97 7.23 7.23 4.87 8.66

temp 22.0 19.6 20.2 20.2 19.6 20.2 20.2 19.7 19.7

The optimal mode sequence and the switching times points are obtained as

NZ(q, 5.08, 5.32, 5.32, 6.97, 7.23, 7.23, 4.87, 8.66) = (OFF, HEAT, OFF, HEAT, OFF, 5.08, 5.32, 6.97, 7.23, 4.87, 8.66)

Since tp = 4.87 and tP = 8.66, the repetitive part of the mode sequence is HEAT, OFF.
The switch from mode OFF to HEAT occurs at times t1 and t4. We observe that
temp(t1) = temp(t4) = 19.6. So, the optimal trajectory switches from OFF to HEAT

at temp = 19.6. The switches from HEAT to COOL and then to OFF occur at the
same times: t2 = t3 and t5 = t6. So, the dwell-time in the mode COOL is 0 and it
needs to be removed from the optimal switching sequence. The switch into mode
OFF occurs at times t3 and t6 with temp(t3) = temp(t6) = 20.2. Thus, the optimal
mode sequence is OFF, (HEAT, OFF)ω and the guards discovered from this trajectory
are gFH = 19.6 and gHF = 20.2. ⊓⊔

Thus, the approach presented so far can be used to synthesize switching condi-
tions for minimum cost long-run behavior for a given initial state. We need a guess
on the number of switches k such that the optimal behavior has atmost k switches.
Our technique can automatically synthesize the optimal mode sequence as well as
the switching states corresponding to the minimum long-run cost trajectory for the
given initial state. With a perfect numerical simulator and a numerical optimization
engine capable of finding the true minimum value of the function F , our technique
would find the behavior with minimum cost. But finding the globally minimum cost
is not guaranteed by existing optimization techniques. It can be observed from the
definition of the function F that it is discontinuous and hence, minimizing F is diffi-
cult. The adaptation to find the mode switching sequence further adds discontinuity
to the function F since, eliminating modes when the dwell time is 0 also removes
the switch cost of switching into and out of this mode. Since F is a discontinuous
function, standard numerical gradient based optimization techniques are not very
effective. We employ the Nelder-Mead simplex algorithm as described by Lagarias
et al [14, 19] for minimizing F since it is a derivative-free method and it can better
handle discontinuity. We use its implementation available as the fminsearch [16]
function in MATLAB.

6 Multiple Initial States

The approach presented in Section 5 can find the switching states corresponding to
optimal long-run behavior for a given initial state. However, multimodal systems
generallly have more than one initial state.

In this case, we use the approach of Section 5 on each initial state and then define
the optimal switching guards as follows. The guard g(qi, qj) for the transition from
Mode i to Mode j contains xk if for some initial state, the optimal trajectory had
a jump from qi to qj at state xk.

Let this procedure of finding optimal switching states described in Section 5
for a given single initial state (x, q) ∈ Init be called getSS((x, q)) which returns
the switching sequence q = qi1 , qi2 , . . . and switching states SwL(x,q) containing
(qi,xi) ∈ goverqiqj

for each switch (qi, qj) in q. Algorithm 1 can be used to find optimal
switching logic for a set of initial states.

Input: Set of initial state Init

Output: Switching Logic SwL

foreach (qi, qj) ∈ Q×Q do
gqiqj = {} // Initialize guards to empty sets

end

foreach (x, q) ∈ Init do

(q, SwL(x,q)) = getSS((x, q));
foreach switch (qi, qj) in q do

gqiqj = gqiqj ∪ {(qi,xi)} where (qi,xi) ∈ SwL(x,q)
end

end

return SwL = {gqiqj |(qi, qj) ∈ Q×Q}
Algorithm 1: Switching Logic Synthesis for Multiple Initial States

The correctness of this approach for handling multiple initial state relies on the
following non-interference theorem.

Theorem 2. From any two initial states, either the system enters a common repet-
itive behavior qxrep with minimum long-run cost starting from both initial states or
their trajectories have no common state.

Proof. There can be three possible scenarios for optimal trajectories from two dif-
ferent initial states illustrated in Figure 2.

– One of the initial state is reachable from another along the optimal trajectory
of the later.

– There is some state (q′,x′) reachable from both initial states along their optimal
trajectories.

– There is no state (q′,x′) reachable from both initial states along their optimal
trajectories.

In the first two cases, since the optimal trajectory must be deterministic, it follows
that the trajectories after their common state are same and hence, the trajectories

(x2, q2)

(x1, q1)

(ii)(i)
Common repetitive behavior

(iii)
Different repetitive behavior

(x2, q2)

(x1, q1)

(x1, q1)

(x2, q2)

Fig. 2. Optimal trajectories from two initial states

have common repetitive part. In the third case, there is no state reachable in both
optimal trajectories.

Nonlinear and hybrid systems show the phenomenon of bifurcation and can have
multiple equilibria and different limit cycles from different initial states [20]. The
above algorithm enumerates over all initial states. So, it is useful only when there
are finite number of initial states. If the set of initial states is infinite, then we
either sufficiently sample the initial states and generate the guards by generalizing
the finitely many points we find on the optimal guards, or consider a finite partition
of the initial states.

A common example of generalization is taking the convex hull of the points
found. This approach works whenever the human designer can inform the synthesis
algorithm about the form of the optimal guards.

Running Example Given the set of initial states 16 ≤ temp ≤ 26 and out ∈
{16, 26}. The set of initial states is partitioned into subsets where each subset is a
0.1 interval of room temperature temp and the outside temperature is 16 or 26. The
guards discovered are: gHF : temp ≥ 20.2∧out = 16, gFH : temp ≤ 19.6∧out =
16, gCF : temp ≤ 20.0 ∧ out = 26, gFC : temp ≥ 20.3 ∧ out = 26.

7 Case Studies

Apart from the running example of Thermostat controller, we applied our technique
to two other case studies - Oil Pump Controller and Control Scheme for the DC-DC
Buck-Boost Converter Circuit.

7.1 Thermostat Controller

If we change the cost metric in the thermostat controller to limt→∞
discomfort(t)+fuel(t)+swTear(t)

time(t)

giving equal weight to all the three penalties (instead of 10 : 1 : 1 weight ra-
tio used earlier) the optimal switching logic discovered with this cost metric are:
gHF : temp ≥ 20.0 ∧ out = 16, gFH : temp ≤ 18.8 ∧ out = 16, gCF : temp ≤
21.9 ∧ out = 26, gFC : temp ≥ 22.7 ∧ out = 26. We observe that the room tem-
perature oscillates closer to the target temperature when the discomfort penalty is
given relatively higher weight in the cost metric. This case-study illustrates that a

designer can suitably define a cost metric which reflects their priorities and, then,
our technique can be used to automatically synthesize switching logic for the given
cost metric.

7.2 Oil Pump Controller

Our second case study is an Oil Pump Controller. We use a simplified model of the
industrial case study in [5]. The example consists of three components - a machine
which consumes oil in a periodic manner, a reservoir containing oil, an accumulator
containing oil and a fixed amount of gas in order to put the oil under pressure,
and a pump. The simplification we make is to use a periodic function to model the
machine’s oil consumption and we do not model any noise (stochastic variance) in
oil consumption.

The state variable is the volume V of oil in the accumulator. The system has
two modes: mode ON when the pump is ON and mode OFF when the pump is OFF.
Let the rate of consumption of oil by the machine be given by m = 3 ∗ (cos(t) + 1)
where t is the time. The rate at which oil gets filled in the accumulator is p. p = 4
when the pump is on and p = 0 when the pump is off. The change in volume of oil in
the accumulator is given by the following equation V̇ = p−m where p and m take
different values depending on the mode of operation of the pump. For synthesis, we
consider two different sets of requirements [5].

In the first set of requirements, the volume of oil in the tank must be within
some safe limit, that is, 1 ≤ V ≤ 8 and the average volume of oil in the accumulator
should be minimized. The gas pressure in the accumulator is directly proportional
to the volume of oil and so, minimizing the average oil volume minimizes the average
gas pressure in the accumulator. In order to model these requirements using our
cost definition, we define one penalty variable p1 and one reward variable r1. Let
the evolution of penalty p1 be ṗ1 = V if 1 ≤ V ≤ 8, M otherwise where M is a
very large (M ≥ 105p1) constant (10

6 in our experiments) and that of reward r1 be

ṙ1 = 1. Minimizing the cost function cost1 = limt→∞
p1(t)
r1(t)

minimizes the average

volume limt→∞

∫
t

0
V (t)

t
and also enforces the safety requirement ∀t . 1 ≤ V (t) ≤ 8.

In the second set of requirements, we add an additional requirement to those
in the first set. We require that the the oil volume is mostly below some threshold
Vhigh = 4.5 in the long run. Practically, this models minimizing the cost of extra
safety features that need to be activated when the volume is above this threshold. We
model this requirement by adding an additional penalty and an additional reward
variable p2 and r2 with evolution functions: ṗ2 = 1 if V > Vhigh, 0 otherwise and

ṙ2 = 1 if V < Vhigh, 0 otherwise. The new cost function is cost2 = limt→∞(p1(t)
r1(t)

+
p2(t)
r2(t)

). Let thigh be the total duration when the volume is above Vhigh and tlow be

the duration that it is below Vhigh. Minimizing p2/r2 = thigh/tlow would ensure
that we spend more time with volume less than Vhigh in the accumulator.

The guards: gFN from OFF to ON and gNF from ON to OFF obtained for the above
cost1 objective are gFN : V ≤ 3.71 gNF : V ≥ 4.62 and for cost2 objective are
gFN : V ≤ 4.07 gNF : V ≥ 4.71.

We simulate from an initial state V = 4 and the behavior for both objectives is
presented in Figure 3. In both cases, the behavior satisfies the safety property that

the volume is within 1 and 8. Since, we minimize oil volume, the volume is close
to the lower limit of 1. We also observe that using the second cost metric causes
decrease in duration of time when oil volume is higher than the 4.5 but the average
volume of oil increases. This illustrates how designers can use different cost metrics
to better reflect their requirements.

0 5 10 15 20 25
0

1

2

3

4

5

Time

V
ol

um
e

cost2
cost1

Fig. 3. Volume in accumulator

7.3 DC-DC Buck-Boost Converter

In this case study, we synthesize switching logic for controlling DC-DC buck-boost
converter circuits described in [10]. The circuit diagram for the DC-DC converter is
presented in Figure 4. The parameters used in the experiments are as follows: Vd =
5V,C = 3.3µF,L = 47µH, rC = 0.06 ohms, rL = 0.1 ohms, rd = 0.05 ohms, rs =
0.05 ohms. Input E applied is 10 volts and the target voltage at the load R is 5
volts. The load resistance periodically varies between R = 100 and R = 200 at
intervals of 0.6 milliseconds.

A constant voltage E is applied to the converter which is expected to maintain
the output voltage VR across the variable load R at some target voltage Vd. The
converter can be modeled as a hybrid system with three modes of operation. The
state space of the system is X = 〈iL uC〉 where iL is the current through the
inductor and uC is the voltage across the capacitor. The output voltage VR can
be computed from the values of iL and uC for a given mode using the circuit
parameters. The load changed periodically between R = 100 and R = 200 at
intervals of 0.6 milliseconds. The dynamics in the three modes are given by the

Fig. 4. Circuit Diagram for DC-DC Boost Converter

state space equation Ẋ = AkX + BkE where k = 1, 2, 3 is the mode and E is the
input voltage. The coefficients of the equations are

A1 =

[−rL−rs
L

0
0 −1

C∗(R+rC)

]

, B1 =

[

1
L

0

]

, B2 =

[

1
L
R

(R+rC)∗ rC
L

]

, A3 =

[

0 0
0 −1

(R+rC)∗C

]

,

A2 =

[

−rL−rd
L

−1
L

R
R+rC

∗ (1
C
− rC∗(rL+rd)

L
) −R

R+rC
∗ (rC

L
+ 1

R∗C)

]

, B3 =

[

0
0

]

The inductor acquires and stores the energy from the source in the first mode. In the
second mode, the stored energy is transferred to the capacitor and the load. In the
third mode, the excess energy of the capacitor is transferred to the load. We mention
two key performance requirements of the DC-DC Boost Converter described in [10].
The first requirement is that the converter is resilient to load variations so that the
transient response to change in load is within some limits and the system does
not enter some unstable or chaotic region. The second requirement is to keep the
variance of the voltage across the load VR from the target voltage. This variance is
called the ripple voltage. We define penalty variable p1 with the following evolution
functions: ṗ1 = (VR − Vd)

2. We want to minimize the average deviation from the
target voltage. So, we define the reward variable r1 with ṙ1 = 1. The cost function

is cost = limt→∞
p1(t)
r1(t)

. This minimizes the average variance of VR from the target

voltage Vd. This corresponds to minimizing the ripple voltage. Since the load also
changes periodically, it also minimizes the transient variance in voltage.

Given the dynamics in each of the three modes and the cost function, the synthe-
sis problem is to automatically synthesize the guards g12, g23, g31 which minimizes
the cost. We are given the over-approximation of the guard gover23 : il = 0. The
guards obtained are as follows: g12 : iL > 1.9, g23 : iL = 0 and g23 : vC > 4.6. The
system remains in the first mode until the inductor current reaches the reference
current Iref . The system remains in the second mode until the inductor current
becomes 0. Then, the system switches to the third mode where it remains as long
as the capacitor voltage remains over the reference voltage Vref . We simulate the
synthesized system and the behavior is shown in Figure 5.

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4

x 10
−3

0

2

4

6

8

10

12

Time

V
ol

ta
ge

 (
 V

ol
ts

)
an

d
C

ur
re

nt
(A

m
p)

Inductor Current

Capacitor Voltage

R = 100 R = 100R = 200 R = 200

Fig. 5. DC-DC Boost Coverter

8 Conclusion

In this paper, we present an algorithm for automated synthesis of switching logic
in order to achieve minimum long-run cost. Our algorithm is based on reducing
the switching logic synthesis problem to an unconstrained numerical optimization
problem which can then be solved by existing optimization techniques.

References

1. E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Effective synthesis of
switching controllers for linear systems. Proc. of the IEEE, 88(7):1011–1025, 2000.

2. H. Axelsson, Y. Wardi, M. Egerstedt, and E. Verriest. Gradient descent approach to
optimal mode scheduling in hybrid dynamical systems. J. Optimization Theory and
Applications, 136(2):167–186, 2008.

3. J. Bonnans, J. Gilbert, C. Lemaréchal, and C. Sagastizábal. Numerical Optimization
– Theoretical and Practical Aspects, Second Edition. 2006.

4. M. Branicky, V. Borkar, and S. Mitter. A unified framework for hybrid control: Model
and optimal control theory. IEEE trans. on automatic control, 43(1):31–45, 1998.

5. F. Cassez, J. J. Jessen, K. G. Larsen, J.-F. Raskin, and P.-A. Reynier. Automatic
synthesis of robust and optimal controllers - an industrial case study. In HSCC, pages
90–104, 2009.

6. K. Chatterjee. Markov decision processes with multiple long-run average objectives.
In FSTTCS, pages 473–484, 2007.

7. K. Chatterjee, R. Majumdar, and T. A. Henzinger. Controller synthesis with budget
constraints. In HSCC, pages 72–86, 2008.

8. J. Cury, B. Brogh, and T. Niinomi. Supervisory controllers for hybrid systems based
on approximating automata. IEEE Trans. Automatic Control, 43:564–568, 1998.

9. H. Gonzalez, R. Vasudevan, M. Kamgarpour, S. S. Sastry, R. Bajcsy, and C. J. Tom-
lin. A descent algorithm for the optimal control of constrained nonlinear switched
dynamical systems. In HSCC, pages 51–60, 2010.

10. P. Gupta and A. Patra. Super-stable energy based switching control scheme for dc-dc
buck converter circuits. In ISCAS (4), pages 3063–3066, 2005.

11. R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics, 23:309–311, 1978.

12. T. Koo and S. Sastry. Mode switching synthesis for reachability specification. In Proc.
HSCC 2001, LNCS 2034, pages 333–346, 2001.

13. A. Kucera and O. Strazovsky. On the controller synthesis for finite-state markov
decision processes. Fundamenta Informaticae, 82(1-2):141–153, 2008.

14. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergence properties
of the nelder-mead simplex method in low dimensions. SIAM Journal of Optimization,
9:112–147, 1998.

15. P. Manon and C. Valentin-Roubinet. Controller synthesis for hybrid systems with
linear vector fields. In Proc. IEEE Intl. Symp. on Intelligent Control/Intell. Systems
and Semiotics, pages 17–22, 1999.

16. MathWorks. Find minimum of unconstrained multivariable function using derivative-
free method. http://www.mathworks.com/help/techdoc/ref/fminsearch.html.

17. MathWorks. Solve initial value problems for ordinary differential equations. http:

//www.mathworks.com/help/techdoc/ref/ode23.html.
18. T. Moor and J. Raisch. Discrete control of switched linear systems. In Proc. Eur.

Control Conf. ECC’99, 1999.
19. J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer

Journal, 7(4):308–313, January 1965.
20. S. S. Sastry. Nonlinear Systems: Analysis, Stability, and Control. Springer-Verlag,

1999.
21. M. Shaikh and P. Caines. On the optimal control of hybrid systems: Optimization of

trajectories, switching times, and location schedules. In HSCC, pages 466–481, 2003.
22. P. Tabuada. Controller synthesis for bisimulation equivalence. Systems and Control

Letters, 57(6):443–452, 2008.
23. C. Tomlin, L. Lygeros, and S. Sastry. A game-theoretic approach to controller design

for hybrid systems. Proc. of the IEEE, 88(7):949–970, 2000.
24. X. Xu and P. Antsaklis. Optimal control of switched systems via nonlinear opti-

mization based on direct differentiation of value functions. Intl. journal of control,
75(16):1406–1426, 2002.

A Limit Behaviors

We first discuss the possible limit behavior of a bivariate nonlinear system using a
simple example of a violin string [20]. Using a bivariate system allows us to represent
the limit behavior using 2-dimensional phase plots. We use linearization around the
equilibrium point to analyze the limit behavior. The limit behaviors of nonlinear
systems and hybrid systems are more diverse than linear systems. The stable limit
behavior can be cyclic or converging.

The violin string can be described as a second order system using the following
equation of motion.

Mẍ+ kx+ Fb(ẋ) = 0

The state of the system is described using 2 variables: x1 = x, x2 = ẋ and the
evolution of the system is described as follows:

ẋ1 = x2 = f1(x1, x2)

ẋ2 =
1

M
(−kx1 − Fb(x2)) = f2(x1, x2)

where Fb(x2) = −((x2 − b) + c)2 − d and the constant values are chosen as

M = 3, k = 3, b = 1, c = 2, d = 3

At equilibrium point (x∗
1, x

∗
2), the left-hand side of the evolution should be zero.

So,

ẋ∗
1 = x∗

2 = 0

ẋ∗
2 =

1

M
(−kx∗

1 − Fb(x
∗
2)) = 0

Using the given values, x∗
1 = 4

3 , x
∗
2 = 0.

Jacobean linearization around (x∗
1, x

∗
2) can be used to analyze the nature of the

limit behavior at equilibrium.

Df =

[

∂f1/∂x1 ∂f1/∂x2

∂f2/∂x1 ∂f2/∂x2

]

To analyze the limit behavior,

|Df |x∗ − λI| = 0

, the nature of the eigen-values (λ) can be used to accurately predict the limit
behavior for linear systems. The following cases are possible for a linear system:

– If both eigen-values are real and negative, the equilibrium is a STABLE NODE,
that is, the system converges to the equilibrium.

– If both eigen-values are real and positive, the equilibrium is a UNSTABLE
NODE, that is, the system will diverge.

– If real part of one eigen-value is positive and another is negative, the equilibrium
is a SADDLE, that is, it diverges from all initial states except a line.

– If the eigen-values are complex and both real parts are positive, the equilibrium
is a STABLE FOCUS, that is the system converges to the equilibrium going
through a damping cycle.

– If the eigen-values are complex and both real parts are negative, the equilib-
rium is a UNSTABLE FOCUS, that is the system diverges through increased
oscillations.

– If the eigen-values are purely imaginary, then the equilibrium is a CENTER and
the system enters a cycle.

Thus, the stable limit behavior for a linear system is either converging or cy-
cling. For a non-linear system, linearization only provides a hint regarding the limit
behavior. It is possible to enter limit cycles for a non-linear system even if the lin-
earization predicts an UNSTABLE FOCUS. Analytical techniques are not sufficient
to predict limit behaviors of nonlinear and hybrid systems. Simulation is used to
find the limit behaviors. But all STABLE behaviors are always either converging or
cyclic.

In our example of voilin strings, the eigen values for the given parameters are

λ =
1

3
± 2

√
2

3
j

Thus, linearization predicts that the system would enter an unstable focus but
simulation shows that the system enters a limit cycle from any initial state other
than (43 , 0). If the system starts from (43 , 0), it stays at the initial state. This il-
lustrates the phenomenon of BIFURCATION, that is, different initial states show
different limit behaviors in non-linear and hybrid systems.

B Constrained Optimization Example

We recall a standard procedure to solve constrained optimization problem with a
small example. This technique is used to solve the optimization problem with the
Equation 5. Consider the following example,

min
x,y

1

x2 + y2

subject to x+ y = 10

The above optimization problem can be transformed into the following equivalent
optimization problem without constraints by suitably modifying the optimization
objective.

min
x,y

1

x2 + y2
+M(x+ y − 10)2

where M is any positive number,

say M = 100

