
Analysis of Personal Computer Workloads

Min Zhou and Alan Jay Smith

Report No. UCB/CSD-99-1038

January 1999

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Analysis of Personal Computer Workloads �

Min Zhou and Alan Jay Smith
Computer Science Division, University of California, Berkeley, CA 94720-1776

January 1999

Abstract

Most published research on system behavior and
workload characterization has been based on either
Unix systems or large, usually IBM, mainframe sys-
tems. It is reasonable to believe that user behaviors
and workloads are di�erent for PC systems. Fur-
ther, the aspects of system design and most need-
ing study have changed from the mainframes dom-
inant in the 1960s and 1970s, and the Unix sys-
tems that became so popular in the 1980s to the
PCs that seem to be rapidly taking over many or
most aspects of computing. Our analysis focuses
instead on Windows95, which is currently the most
widely used computer operating system; the newly
released Windows98 is very similar. In this paper,
we describe our workload analysis based on 36 sets
of traces collected from Intel Pentium based PCs
running the Microsoft Windows95 operating sys-
tem. Following the discussion of our Windows95
trace data, we present some descriptive and statis-
tical characterization of this data, directed princi-
pally at user behavior and �le system behavior.

1 Introduction

All aspects of computer system design and op-
timization depend strongly on knowledge of or as-
sumptions about the workload that the system is
intended to or does support. Multi-user time-
sharing computer systems such as UNIX systems
and mainframe computer systems have been exten-
sively studied. Much comprehensive system work-
load analysis has been done on these systems; e.g.
[Smit81][Oust85][Bake91]. There is far less data

�The authors' research has been supported in part and
at various times by the National Science Foundation un-
der grants MIP-9116578 and CCR-9117028, by NASA un-
der grant NCC 2-550, by the State of California under
the MICRO program, and by Microsoft, Sun Microsystems,
Fujitsu Microelectronics, Sony Research Laboratories, Mi-
crosoft Corporation, Cirrus Logic, Quantum Corporation,
Toshiba Corporation, and Intel Corporation.

and analysis available for personal computer work-
loads, the subject of this paper. We will focus on
two major aspects of computer system workload in
our analysis: user input behavior and �le system
workload characteristics. Since the most dominant
PC operating system and architecture are Microsoft
Windows95 and Intel x86 based Architecture (IA)
respectively, we've selected Intel based PCs run-
ning Windows95 to study. We will refer to Intel
based PCs running the Microsoft Windows95 oper-
ating system as \PC systems" in the rest of this pa-
per. We note that Windows98 has been recently re-
leased, and is very similar to Windows95. We would
expect that our characterization of the Windows95
workload should also apply to the Windows98 envi-
ronment.

The �rst step in this research project was to de-
sign and develop a Windows95 PC system tracer,
WMonitor, which collects traces of user and �le sys-
tem activities. The design and operation of that
tracer is described in [Zhou98]. The original reason
for this tracing project was to collect data to be used
for studies of power management in portable com-
puters. Accordingly, our trace collects records of
user and �le system activity. Details of the record
types, formats and semantics appear in [Zhou98];
we provide more limited information as necessary
in this paper.

The selection of users to trace has a signi�cant
impact on the characteristics of the workload col-
lected. In this paper we report on analysis based
on traces collected from 36 real users, including en-
gineers, scientists, managers, home users and school
students, using a variety of system con�gurations.
In a few cases, we've broken out our analysis by user
type.

The analysis presented in this paper includes an
overall summary, and then focuses on speci�c top-
ics related to user input behavior and �le system
operation. Our user input behavior study covers
such major user input characteristics as commonly
used applications, user idle periods and command

1

clustering, etc. The �le system workload study
considers the distribution of di�erent �le system
calls, �le system IO throughput, �le system idle
periods, �le read/write size distributions and �le
size distributions. We also compare our analysis
to some existing �le system analysis results based
on UNIX �le systems[Oust85][Bake91][Cost85] and
mainframe computer �le systems[Smit81].

The rest of this paper is organized as follows:
Section 2 brie
y discusses some previous related re-
search. Section 3 is a brief summary of our tracer
and trace data; we also provide information about
the users and systems being traced. Section 4 pro-
vides some general characterization of the traces
analyzed in this paper. Section 5 analyzes user in-
put behavior, and Section 6 characterizes the sys-
tem workload from the �le system perspective. Sec-
tion 7 provides some miscellaneous analysis results
and discusses the limitations of our analysis. Fi-
nally, section 8 summarizes our results and discusses
directions for future work. In the appendices we
provide a description of our tracer and trace for-
mats, a system overview of Windows95, and some
more detailed analysis, as shown in a few additional
�gures and tables.

2 Related Work

In this section, we brie
y reference some related
workload studies. We concentrate on related work
by these others and others at Berkeley, but cite
some other work as well; this is a small fraction
of the dozens to hundreds of trace based workload
studies.

Ousterhout et al[Oust85][Bake91] studied the
Sprite distributed �le system. They measured
application-level �le access patterns, throughput
and distributed system �le caching behavior. Da
Costa[Cost85] discussed a BSD 4.2 UNIX �le sys-
tem tracing package and presented some summary
statistics; see also[Zhou85]. Among the topics con-
sidered were general �le system activity statistics,
�le IO transfer size and duration, and IO bu�er al-
location.

Kotz et al[Kotz95] traced and characterized the
�le system workload on a scienti�c multiprocessor
system. Spasojevic et al[Spas96] studied the perfor-
mance and workload characteristics of a wide-area
distributed �le system. They pro�led wide-area
�le system storage capacity, volume activity, client-
server interaction behaviors, cache performance and
availability. Smith[Smit81] studied long term �le
access patterns on a mainframe computer system.

Becker et al[Beck91] analyzed UNIX paging be-
havior and concluded that paging activity accounts
for 15% to 21% of all disk block accesses. Our anal-
ysis yields a lower result for this statistic; our results
are also lower than the �gures shown in[Oust85]
and[Bake91]. Zivkov et al [Zivk97a] [Zivk97b] stud-
ied DB2 disk reference patterns and disk caching.
Ruemmler[Ruem93] described disk access patterns
on HP UNIX workstations. His study found that
majority of all disk operations are writes (56% to
58%), disk accesses are rarely sequential, and the
majority of disk accesses are resulted from non-user
data accesses(swapping, metadat and program exe-
cution).

Nolan et al[Nola74] presented a workload char-
acterization based on the user workload collected
from Xerox Sigma timesharing systems. Hanson
et al[Hans85] studied user input in the UNIX shell
command environment and characterized UNIX
shell usage.

Douglis et al[Doug94] studied the �le system
level disk activities of Apple Powerbook computers.
Lorch et al[Lorc97] pro�led the system resource us-
age on Power-PC systems. Li et al[Li94] studied
�le system level disk activities of DOS/Windows-
3.1. Chen et al[Chen96] presented a comparative
performance analysis of Windows31, WindowsNT
and NetBSD based on their Pentium performance
measurements. Their study indicates a signi�cant
part of the cost of system functionality in Windows
systems is due to the OS structures rather than
the API required by Windows applications. Lee et
al[Lee98] traced and characterized several Windows
applications under Windows NT on the x86 proces-
sor. They used a binary instrumentation engine,
Etch, for the x86-Windows NT in their trace collec-
tion. Instruction set level desktop application per-
formance was studied from the perspectives of com-
puter architecture. These desktop applications were
contrasted to the programs in the integer SPEC95
benchmark suite.

3 Trace Description

In this section we discuss the type of data used
in our analysis and the users and machines from
which the trace data were collected; further infor-
mation about the tracing can be found in the ap-
pendices. In Appendix I, we provide an overview
of the Windows95 operating system and those ap-
plication programs shown in our study. We explain
how we collected our trace data fromWindows95 in
Appendix II.

2

3.1 PC Workload Traces

Our PC workload traces were collected dur-
ing our earlier related tracing project.[Zhou98]
The traces were collected with three end-uses in
mind. First, we are studying power management
in portable computer systems (see e.g.[Lorc97]),
and we wanted to collect those activities re
ect-
ing certain aspects of power consumption-user ac-
tivity and disk activity. Second, we are inter-
ested in extending some of our previous studies in
disk caching[Zivk96][Smit85] to PC-type systems.
Third, we are also interested in generally character-
izing the PC workload, which is the major focus of
the work described in this paper.

Our expectation was that the workload we
would observe on the PCs will di�er from previously
studied systems: the operations of personal com-
puter systems are more tightly coupled with user
activities (e.g. there are almost no batch or back-
ground jobs in PC workloads); the PC workload is
more bursty because of single user and single appli-
cation type workload, and the use of a GUI; Win-
dows95 sometimes does not behave in an optimized
way because it was designed to support both 32-bit
Windows applications and old MS-DOS programs
as well as 16-bit Windows applications.

Our traces are actually two separate trace
streams: user activity traces and �le system traces.
User activity traces consist of 1) user keyboard in-
put traces, 2) user mouse input traces, and 3) traces
of user-input-focused windows, which we used for
deriving application activities. The user-input-
focused window is the window where the user mouse
inputs and keyboard inputs are accepted. Our �le
system traces are generated from logical �le system
accesses and include function call names, �le names,
�le handles, logical addresses, block sizes, etc. Since
the virtual memory paging and swapping of Win-
dows95 is implemented on top of the �le system,
our �le system traces also contain virtual memory
paging and swapping information.

Each trace, over a continuous period of time, is
collected as a �le. The following �le is a WMonitor
trace record �le example:

USER_ID: 761

StartTime: 9E9C4F

Time Type Funct Details

130 3 OPEN C: [223] \DAT\WMONITOR.INI

0 3 WRITE C: [223] 93

0 3 CLOSE C: [223]

0 3 SEEK C: [2A8] 4B400:B

0 3 READ C: [2A8] 200

A 2 [e54] C:\WMONITOR\BIN\WMONITOR.EXE

0 3 READ C: [271] 1000 MM

0 3 FATTR C: \WINDOWS\SYSTEM\MFC40LOC.DLL

0 3 FDOPN C: \WMONITOR\BIN*.*

DB 0 K_DN 11

96 0 K_UP 91

0 3 RENAM C: \DAT\DATA.ZIP \RECYCLED\DC0.ZIP

0 3 DIR C: QLGD \WMONITOR\BIN\MSGHK.DLL

0 3 DELET C: \RECYCLED\DESKTOP.INI

0 1 START_MV

9E 1 STOP_MV

... ...

Stop_Time: 1D41D3C

There are four types of trace record events:
keystrokes, mouse events, �le system calls and ac-
tive application switches. Each trace event was
time-stamped incrementally by the reading num-
ber from a Windows95 internal millisecond counter
which keeps track of the elapsed time since Win-
dows was last started. A keystroke trace record
indicates one of the keys on the keyboard changing
status (key, and up or down). Thus note that a nor-
mal keystroke is two events, a capital letter is four
events (regular key and shift key, both up/down),
and special characters or functions (e.g. alt-cntl-
delete) can be even more events. A mouse trace
record indicates the mouse device event (a button
click or a movement).

An application trace record includes the name
of the new active application and the active win-
dow handle. Application traces are referred as win-
dow (user-input-focused window) switch traces in
the rest of this paper. Note that we treat window
switch events as application switch events because
in a graphical user interface (GUI) environment, an
application switch event usually coincides with a
window switch. A �le trace record contains the �le
system call type and other �le system call control
information such as disk drive names, �le handles,
�le names, bytes transferred, etc. A �le trace record
can be of di�erent formats depending on which �le
system call function. Details of the tracer and trace
formats are in Appendix II.

3.2 Machines and Users Studied

There are many di�erent types of PC users,
ranging from game players to engineers, and they
may di�er in their workload pro�les. Laptop PC
users may also behave di�erently from Desktop PC
users. Thus it is very di�cult to de�ne or select
\typical" PC users or to collect a \typical" PC
workload. We have attempted to collect as large
a number of user traces as possible, over as wide
a range of user types and machine types, includ-
ing both laptop and desktop PCs. The users being
traced include engineers, managers, assistants, stu-

3

dents, home PC users, and some others. The work-
load being traced includes software development,
computer aided design, logic synthesis and simu-
lation, document writing, Web browsing, remote-
dialup, PC game playing, etc.

Our Windows95 traces used in the paper were
collected from a few home PCs and a number of in-
dustry PCs in several corporate sites including Intel
Corp., Quantum Corp., Sony Corp., Toshiba Corp.,
and Fujitsu Corp, each of which has funded this re-
search at some time. Most of our trace data was
collected in 1997. Thirty-six sets of traces are dis-
cussed here. Each set of traces was collected from
a separate PC machine/user over the period of a
few days to a few weeks. Since the portion of the
time that each machine was powered on varied a
great deal, our tracing time for each user also varies
widely.

Table 1 shows some characteristics for each ma-
chine and user traced.

4 Workload Overall Statistics

Here we discuss the overall PC workload statis-
tics over our trace data sample. Table 2 shows the
trace size. \Number of Trace Files" is the total
number of trace data �les which are used in our
analysis. As shown in the table, the average size
of compressed traces per user is about 343.6 / 36
= 9.5M bytes. The tracing time is de�ned as the
duration during which the traced PC was powered
on and the tracer tool was enabled. The average
tracing time per user is 3092 / 36 = 85.9 hours. In
the same table, we show the fraction of time that
the user status can be assigned to the categories
of: busy, active, thinking, and inactive. We de-
�ne a trace period as an \idle" period if no trace
event happened within this period of time. We de-
�ne \busy" time as a period of the trace during
which there was no idle period longer than 0.5 sec-
ond. We de�ne \active" time as the duration of
all the idle periods each longer than 0.5 second and
shorter than 5 seconds. We de�ne \thinking" time
as the duration of all the idle periods each longer
than 5 seconds and shorter than 5 minutes. We de-
�ne \inactive" time as the duration of all the idle
periods each longer than 5 minutes. We can see that
\thinking time" accounts for a signi�cant portion of
the entire tracing time. This classi�cation is useful
for studies of power management, since various sys-
tem components are typically turned o� after cer-
tain periods of inactivity. For comparison, we also
show the total \tracing-o�" time in the same table.

Tracing-o� time is the total tracing calendar time
minus the total tracing time. Tracing-o� time cov-
ers the period when either the tracing target system
was powered o�, or the tracer was disabled by the
user.

Category Statistics

Number of Users 36
Number of Trace Files 1894
Total Data Size 4801 M bytes
(compressed data size) 343.6 M bytes
Total Records 184,095,396
Total Tracing Time 3,092.0 hours
-BusyTime (idle<0.5s) 438.3 hours
-ActiveTime (0.5s<idle<5s) 960.4 hours
-ThinkingTime (5s<idle<5m) 1245.5 hours
-InactiveTime (idle>5m) 448.8 hours
Tracing-O� Time 9860.8 hours

Table 2: Trace Data Overall Statistics for 36 Traces

Table 3 shows the number and rate of trace
events. The data shown in the table are the arith-
metic mean values over the 36 trace sets. (I.e.
the averages for each trace are then averaged.)
File system trace records account for 94.4 percent
of the total number of trace records. \KeyRec",
\MouseRec", \WinRec", \FSysRec" and \VMRec"
in the table represent keyboard trace record, mouse
trace record, window switch trace record, �le sys-
tem trace record, and Windows95 virtual memory
�le system call trace record, respectively. In this ta-
ble and the rest of the paper, we will use the term
\�le system calls" for simplicity whenever we dis-
cuss the regular �le system calls, but virtual mem-
ory operations and tracer �le system calls are not
included. The PC users input by means of a mouse
device as frequently as by a keyboard. The PC users
switch from one user-input-focused window, i.e. a
foreground Windows process, to another window as
often as about once per minute. File system calls
invoked by virtual memory activities, including pag-
ing and memory swapping, account for only a small
part of all �le system activities.

Figure 1 shows the busy period distribution as
a function of the longest idle interval contained
within the busy period. Three busy periods are
shown: that for the user (input) only, for the �le
system only, and for the system as a while. The Y
axis is the cumulative fraction of busy time over
the total tracing time, given a certain idle time
length. For example, consider the case in which

4

Number Brand Model Type Mem Disk (C:/D:/E:) Cal-TM TrcTM Ratio TrcEvent Corp. User-Type

1 Toshiba Protégé-610 laptop 16M 687M 199.5 h 30.96 h 16% 1116999 Intel Engineer/Hdware.
2 Toshiba Protégé-610 laptop 16M 687M 1028.2 h 54.77 h 05% 1990876 Other HomeUser/Pilot
3 Digital HiNote-UltraII laptop 64M 1372M 344.2 h 116.47 h 34% 8122170 Fujitsu Director
4 Fujitsu Lifebook-v655tx laptop 48M 1293M 503.5 h 153.50 h 30% 4753461 Fujitsu Manager
5 Fujitsu Lifebook-v655tx laptop 48M 1293M 719.3 h 195.21 h 27% 4619375 Fujitsu Manager
6 Fujitsu Lifebook-v655tx laptop 48M 1293M 185.1 h 36.74 h 20% 654949 Fujitsu Manager
7 Fujitsu Lifebook-v655tx laptop 48M 1293M 201.5 h 46.16 h 23% 1129639 Fujitsu Engineer/IC
8 Fujitsu Lifebook-v655tx laptop 48M 1293M 215.5 h 60.97 h 28% 605928 Fujitsu Engineer/Docmnt.
9 Fujitsu Lifebook-v655tx laptop 48M 1293M 715.1 h 179.68 h 25% 4188428 Fujitsu Engineer/Cad
10 Toshiba Pentium-PC laptop 24M 500M 215.3 h 15.13 h 07% 165920 Toshiba Engineer/IC
11 Toshiba Satellite-110ct laptop 24M 775M 215.0 h 36.93 h 17% 613989 Toshiba Engineer/Docmnt.
12 IBM Thinkpad 760ed laptop 32M 1.2G 535.5 h 64.98 h 12% 6745879 Ahold Manager
13 Dell Latitude CP233 laptop 64M 3.8G 301.4 h 80.69 h 27% 10116647 3com Engineer/Docmnt
14 Winbook XL233 laptop 32M 3.0G 125.6 h 23.35 h 19% 2728398 Quantum Manager
15 IBM Thinkpad 560 laptop 40M 2G 316.5 h 52.6 h 17% 17921936 Quantum Marketing
16 Dell Optiplex GXpro desktop 96M 2G/1G 510.0 h 77.80 h 15% 14371370 Quantum Manager
17 Dell Optiplex GXpro desktop 96M 2G/1G 170.2 h 27.62 h 16% 9004396 Quantum Web-Master
18 PC Pentium-266 desktop 64M 6.4G/3.1G 331.5 h 146.02 h 44% 13924018 Other Consultant
19 PC Pentium-120 desktop 24M 500M/4G 128.5 h 21.22 h 17% 1216834 Intel HomeUser/Engnr
20 PC Pentium-90 desktop 32M 1.2G 86.3 h 19.63 h 23% 648849 Intel Researcher
21 Dell Dimention-133 desktop 32M 1547M 972.4 h 81.91 h 08% 1447485 Other HomeUser/Studnt.
22 Compaq Prolinea-5150 desktop 16M 2G 430.5 h 40.28 h 09% 3648197 Sony Engineer/Sftware.
23 Sony PCV-120 desktop 64M 2G/2G 374.2 h 27.82 h 07%2603819 Sony Engineer/Sftware.
24 Sony PCV-120 desktop 64M 2G/2G 438.6 h 120.38 h 27%4246332 Sony Engineer/Sftware.
25 AST MS-T 5166 desktop 64M 2G/2G/1G 459.7 h 51.60 h 11% 9415271 Sony Engineer/Sftware.
26 Gtw2k P5-166 desktop 64M 1.5G 377.8 h 307.98 h 82%9475388 Sony Engineer/Hdware.
27 Sony PCV-120 desktop 32M 2G 380.3 h 352.98 h 93%10053795 Sony Engineer/Video
28 Sony PCV-120 desktop 32M 2G 378.7 h 100.96 h 27%2041658 Sony Manager
29 Sony P55c desktop 32M 2G/2G/1.6G 191.8 h 56.90 h 30% 9166259 Sony Engineer/Sftware.
30 Toshiba Pentium-PC desktop 24M 500M/500M 216.1 h 52.30 h 24% 5240669 Toshiba Assistent
31 Toshiba Pentium-PC desktop 48M 500M/500M 230.8 h 29.96 h 13% 2482814 Toshiba Engineer/CAD
32 Toshiba Pentium-PC desktop 64M 1.2G 215.6 h 46.27 h 21% 954125 Toshiba Engineer/Progmer
33 Toshiba Pentium-PC desktop 48M 1G 238.1 h 59.49 h 25% 1776593 Toshiba Engineer/Progmer
34 Toshiba Pentium-PC desktop 24M 500M/1.5G 188.6 h 42.02 h 22% 5332521 Toshiba Engineer/Docmnt
35 Toshiba Pentium-PC desktop 48M 1.2G 596.1 h 49.17 h 08% 8067977 Toshiba Engineer/CAD
36 Toshiba Pentium-PC desktop 48M 500M/500M 216.8 h 56.82 h 26% 2316542 Toshiba Clerk

Average (arithmetic mean) 359.8h 81.0 h 23.8% 5080820
Standard deviation 223.6 71.1 0.178 4504590

Table 1: Pro�le Data for Machines and Users Traced (We show both calendar time (\Cal-TM") and tracing time

(\TrcTM") in the table. Our calendar time for each user/machine is measured by the number of hours between the

date/time of the �rst record and that of the last record. Our tracing time for each user/machine is measured by the

number of hours when the machine was powered on and the tracer was enabled. \Ratio" is the ratio of tracing time to

calendar time. \TrcEvent" in the table is the total number of trace events for each user/machine being traced. Averages

(arithmetic mean) and standard deviations are also shown, as appropriate.)

Record# Percentage Rec#/h

KeyRec 3688020 2.05% 1192.7
MouseRec 3345516 1.86% 1082.0
WinRec 167184 0.09% 54.1
FSysRec 169528248 94.44% 54827.3
VMRec 2776680 1.55% 898.0
Total 179505648 100% 58054.1

Table 3: Trace Event Type Statistics (\Record#" is the

number of one type of trace records, \Rec#/h" is the

number of trace records per tracing hour.)

the user/�le system/overall system is de�ned to be
busy when when no user/�le system/overall system
idle period longer than 400 seconds (x=400) occurs,
then the cumulative user input busy time is about
50%, the cumulative �le system busy time is about
81%, and the cumulative overall system busy time
is about 83%, respectively. As may be seen, user
idle periods are more frequent and longer. Since
the �le system trace records constitute more than
90% of all trace records, and since the �le system
idle pattern has fewer �le system idle periods with
long idle length, the overall system idle pattern is
very close to the �le system idle pattern. The steps
on the curves in the �gure are caused to some extent

5

by automatic periodic events in the system; these
are discussed later in this paper.

Distribution of System Busy Period as function of idle length

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500 600 700 800 900
idle length (seconds)

cu
m

ul
at

iv
e

bu
sy

 p
er

io
d

cumulative user busy period

cumulative system busy period

cumulative file system busy period

Figure 1: System Busy Time Distribution as Function of

Maximum Idle Length

From the window switch traces, we are able to
determine the names of the most frequently ac-
cessed Windows applications. Table 4 lists some
of the application examples. We can roughly di-
vide these applications into six categories, which are
listed in the same table.

Category APPLICATION (exe,dll)

Windows System EXPLORER, SHELL32,
COMDLG32, WINHELP,
MPRSERV, ...

MS-O�ce/ WINWORD, ACCESS,
Group-Ware POWERPNT, EXCEL,

COREL70, ...
Engineering Tool MSDEV, DDRAW, ...
Misc. Tool NOTEPAD, CALC,

PHOTOSHOP, WINZIP,
ACRORD32, ...

Internet Browser NETSCAPE, IEXPLORE
Dos Application MASM, QUICKEN, ...

Table 4: Traced Applications and Categories (application

�les in the table are in the format of \exe" or \dll")

We estimate which application is active by de-
termining which user-input-focused windows is ac-
tive. Note that this is only an approximation. First,
we do not know the exact time an application was
started and ended; the running time of an appli-
cation is estimated by the di�erence in the times

between when the window was entered (including
opened) and exited (including closed). The number
of times that an application is invoked is estimated
by the number of times that the associated user-
input-focused window was switched to. We also as-
sume that all trace events were contributed by the
application which had the user-input-focused win-
dow. For a single user PC system, we believe that
these are reasonable approximations, but as will be
seen later, some anomalies in the data do occur.

The trace event frequencies vary from one ap-
plication to another. For example, some have very
frequent user inputs, while some do many IOs. For
the most frequent of the over 2000 di�erent applica-
tions observed in our 36 trace sets, we will provide
some simple statistics. For each application listed
in Table 5, there is a brief description in Appendix
I.

Table 5 shows information about 30 of the most
frequently run applications (\Application"). These
were selected based on the fraction of time that each
application was traced to be running (\Time"). In
the same table, we also show the average number of
times each application was invoked per hour (\In-
voked"), the rank numbers (\(r)") for the top 15 ap-
plications { ranked by the frequency of invocation,
the average number of user keyboard/mouse inputs
per hour (\KeyEvnt"/\MouseEvnt") while this ap-
plication was running, the average number of �le
system calls per hour (\FSCall") for this applica-
tion, and the average number of virtual memory sys-
tem �le system calls per hour (\VMFSCall"). These
numbers are the averages over the 36 sets of traces.
The total of the column \Time" is 100%, and the
overall numbers for columns \Invoked", \KeyEvnt",
\MouseEvnt", \FSCall", and \VMFSCall" for all
applications are shown in Table 3.

Please note that there can be multiple active ap-
plications running, and the switching of user-input-
focused windows may not exactly match the switch-
ing of applications. Thus there exist some anoma-
lies in the table, such as the non-zero user keyboard
inputs for the SCREEN-SAVER application. Also
note that the number of mouse input events can be
a�ected by the non-user mouse movement events
generated occasionally by the Windows95 system.

A further breakdown of some of these statistics
for these applications, by user type, appears in Ap-
pendix III.

6

A# Application Time Invoked(r) KeyEvnt MouseEvnt FSCall VMFSCall

1 SCREEN-SAVER 22.27% 0.631 (15) 0.493 69.740 81851.281 91.126
2 MSDOS-PROMPT 11.90% 20.795 (1) 2287.842 2403.032 38302.695 1146.286
3 EXPLORER.EXE 8.75% 9.766 (2) 360.204 1178.353 56780.555 1905.136
4 WINWORD.EXE 7.27% 2.748 (4) 3768.675 1828.820 89175.586 3355.310
5 NETSCAPE.EXE 5.42% 1.914 (7) 894.104 1717.102 98169.844 1762.945
6 SHDOCVW.DLL 3.73% 2.964 (3) 608.463 2689.685 110360.680 4216.126
7 EUDORA.EXE 4.92% 0.875 (12) 736.941 643.741 26085.711 78.857
8 XVISION.EXE 3.86% 0.523 7694.424 226.582 57960.309 319.893
9 MSDEV.EXE 3.44% 1.671 (8) 3131.524 1251.985 69845.750 3572.495
10 EXCEL.EXE 2.52% 2.114 (5) 2351.149 3246.628 34757.672 1696.109
11 OUTLLIB.DLL 2.14% 1.066 (10) 2909.180 1066.946 148826.953 615.960
12 POWERPNT.EXE 1.92% 0.613 1542.569 1768.188 53374.004 1913.137
13 XVL.EXE 1.71% 0.256 4011.402 577.732 4615.911 90.187
14 NOTEPAD.EXE 1.00% 0.486 3917.179 1644.862 19528.238 297.881
15 NLNOTES.EXE 1.32% 0.387 3602.648 1306.750 53022.855 1604.908
16 MSOFFICE.EXE 0.88% 0.452 4.067 391.209 76156.078 1339.221
17 EUDORA32.DLL 0.82% 0.694 (13) 596.353 380.499 17111.318 53.847
18 COMCTL32.DLL 0.33% 1.225 (9) 723.196 5067.785 152977.219 2395.858
19 WINHLP32.EXE 0.32% 0.681 (14) 296.368 3365.859 39658.922 1456.344
20 COMDLG32.DLL 0.27% 0.911 (11) 2827.191 5600.863 137626.312 4203.288
21 TELNET.EXE 0.41% 0.148 2668.629 278.863 8942.890 265.787
22 MSACCESS.EXE 0.24% 0.132 6142.746 2278.438 172882.156 564.209
23 SHELL32.DLL 0.27% 2.056 (6) 572.072 3376.698 284729.281 5505.349
24 VBE.DLL 0.21% 0.122 8407.045 793.665 36914.609 306.665
25 WINPROJ.EXE 0.20% 0.035 705.139 857.747 80627.891 192.924
26 SPIRIT.EXE 0.17% 0.012 0.000 98.654 37593.477 79.204
27 MAILNEWS.DLL 0.16% 0.105 8615.952 1727.342 8507.025 670.565
28 ACRORD32.EXE 0.21% 0.059 111.877 1661.644 109964.500 1355.485
29 MPRSERV.DLL 0.14% 0.174 1297.060 729.258 31022.410 424.266
30 RASAPI32.DLL 0.12% 0.335 498.163 1392.521 85277.273 1251.965
31 OTHER-APPS 12.66% 14.781 1925.915 1651.421 93608.320 1629.434

Table 5: The Most Frequently Used Applications (\A#" is the application number, \Application" is the application name,

\Time" is the percentage of each application was traced to the total tracing time, \Invoked(r)" is the number of times

each application was invoked per hour, \(r)" is the rank of the invoking count, \KeyEvnt/MouseEvnt/FSCall/VMFSCall"

are the counts of di�erent events per hour.)

5 User Behavior

We discuss PC user input behavior in this sec-
tion. First we compare the activity of di�erent user
types. Then we study the user input idle pattern.
Last, we consider the user input clustering behavior.

5.1 Types of Users

Our traces were collected from two di�erent
types of PCs: Desktop PCs and Laptop PCs. Ta-
ble 6 summarizes the trace event frequencies for
these two di�erent types of PC users. The statis-
tics of these two types of users are quite similar.
Desktop systems do slightly more �le system calls,
while laptop users have slightly higher user input
frequencies. Although the average main memory
size of laptop machines is slightly smaller than the
average main memory size of desktop machines, the

virtual memory operations on laptop machines are
less frequent than desktop machines.

We also categorize the users into three types: en-
gineers, managers, and other. \Other users" include
secretaries, assistants, and home PC users. Ta-
ble 7 compares the trace record frequencies among
these three types of users. Managers show the low-
est frequency of keyboard input and the lowest ap-
plication change rate. Secretaries, assistants and
home PC users generate the most frequent events
in each category. We believe that the di�erence be-
tween keyboard input frequency and mouse input
frequency can be interpreted as follows: because
a keyboard is a more e�cient tool than a mouse
for text input while a mouse is more e�cient in
controlling/information browsing, the ratio of key-
board activities to mouse activities normally re
ects
the ratio of the time the PC users spent on inputing
text to the time they spent on reading/browsing.

7

User Type Desktop User Laptop User

User# 21 15
KRec/h 1281 1042
MRec/h 838 1495
WRec/h 52 57
FRec/h 56289 52352
VRec/h 1008 712
MM 40MB 48.4MB

Table 6: Desktop User Vs. Laptop User (\User#" is the

number of users in this category. \KRec/h", \MRec/h",

\WRec/h", \FRec/h", and \VRec/h" are the total num-

bers of keyboard trace records, mouse trace records, win-

dow switch trace records, �le system trace records, and

virtual memory trace records per tracing hour, respectively.

\MM" is the average main memory size.)

As we will also see in our user idle period anal-
ysis, the di�erence between di�erent machine types
is small while the di�erences among di�erent user
groups are more obvious. It appears that trace
event frequencies or user idle periods are more likely
determined by which user group or which workload
type, but not by which type of machine being used.
The higher rate of virtual memory operations of the
group of \Other Users" are due to both higher rate
of user activity and the smaller size of mainmemory
in this group of machines.

User Type Engineers Manager Others

User# 23 8 5
KRec/h 1228 738 2127
MRec/h 847 1499 1598
WRec/h 52 39 111
FRec/h 50598 52850 88623
VRec/h 812 623 2188
MM 45.9MB 50MB 32MB

Table 7: Comparison of the Trace Statistics among Dif-

ferent User Types

5.2 User Idle Periods

User idle periods are an interesting topic of
study because if the user is not using the system,
various components can be powered down. In Sec-
tion 4, we presented the idle period distribution for
the user input, �le system and overall system. As

may be seen, the overall system is seldom idle for
long, whereas the PC users are idle (not generat-
ing any input) for a large portion of the time. The
cumulative busy period for users is only about 50%
with an idle length less than 5 minutes.

Figure 2 illustrates the user input idle period
probability density distribution. Note that the
spikes at 3-minutes, 4-minutes, 5-minutes and 10-
minutes (180, 240, 300, and 600 seconds, respec-
tively) are not normal user behavior. The Win-
dows95 system sometimes posts a few mouse move-
ment messages for resetting the mouse position to
an application window. For example, Windows95
will generate a few mouse movement messages to a
screen-saver program which is normally con�gured
to be activated after a user idle period of a few
minutes. Since these mouse input messages were
not from the real users, we can ignore these on-the-
minute probability density spikes. We will continue
the discussion in next section and give examples of
these automatic trace events in next section when
we discuss the �le system idle period probability
density distribution.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 100 200 300 400 500 600 700 800

idle length

pr
ob

al
ili

ty
 d

en
si

ty

User Idle Probability Density Distribution

Figure 2: User Idleness Probability Density (\idle length"
is measured in seconds.)

Figure 3 compares the user idle period for dif-
ferent user types. The upper plot of Figure 3 shows
that there is not much di�erence between the desk-
top PC user idle period distribution and that for
laptop PC users, while the other plot shows that dif-
ferent user groups have somewhat di�erent idle dis-
tributions: the secretary/assistant/homeuser group
has the fewest idle periods for long idle length and
the engineer user group has fewer idle periods than
the manager user group if we only consider the idle
periods shorter than one hour. These two plots also

8

agree with the comparison of trace event frequen-
cies shown in Table 6 and Table 7. Please note that
our analysis results are based on only the period
of tracing time when the machines were powered
on, but not when the machines were powered down.
Normally, a PC user would turn o� his computer at
home but not at work when he is not using them.
Likewise, in the upper plot of the �gure, the varia-
tion between the curves on the upper right corner is
due to the fact that the laptops are usually turned
o� when not being used. Appendix III shows user
idle behavior for di�erent applications.

cu
m

ul
at

iv
e

bu
sy

 p
er

io
d

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 2 16 128 1024 8192 65536

idle length

Desktop

Laptop

Desktop/Laptop Idleness Distrubtion Comparison

cu
m

ul
at

iv
e

bu
sy

 p
er

io
d

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 2 16 128 1024 8192 65536

idle length

Engineer
Secretary/Asistant/HomeUser

Comparison of Idleness Distrubtions for Different User Types

Manager

Figure 3: Upper: User Idle/Busy Time Distribution of

Di�erent Machine Types; Lower: User Idle/Busy Time Dis-

tribution of Di�erent User Types

Figure 4 illustrates the user input idle period
as a function of previous user idle period length.
Given a time series of user idle period lengths:
t0; t1; t2; :::tn�1; tn:::, the previous user idle period
length for the nth idle period tn is tn�1. The user

idle period distribution may vary as a function of
the length of the previous idle period. Figure 4 plots
a set of cumulative busy period distribution curves.
Each curve corresponds to the distribution for one
previous idle length. For example, the lowest curve
is the user idle period distribution when previous
idle is within 0.25 second. The next curve is the
distribution when previous idle is between 0.25 sec-
ond and 0.5 second. The �gure shows a clear but
surprising trend that the longer the previous user
idle length, the less chance that the next idle pe-
riod will be a long one. For example, it is unlikely
that there is only one user input event between two
long user idle periods.

User Busy/Idle Distribution of Different Previous Idle Length

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 2 16 128 1024 8192 65536

idle length x (seconds)

cu
m

ul
at

iv
e

bu
sy

 p
er

io
d

of
 id

le
 le

ng
th

 "
x"

previous idle=.25

previous idle=2

previous idle
=131072

previous idle=1

previous idle=0.5

Figure 4: User Idle Time Distribution as function of pre-

vious idle period length

5.3 User Input Clustering

In this subsection, we discuss user input cluster-
ing patterns. Figure 5 shows the distribution of the
number of commands (i.e. application switches) in
a user busy period. Since a \busy period" is de�ned
as the period of time with no idle length longer than
a certain length of time, we can have di�erent user
busy period de�nitions based on di�erent user idle
lengths. Figure 5 plots user commands for busy pe-
riods with maximum idle length of 5 seconds, 30
seconds, 1 minute, 2 minutes and 5 minutes in any
busy period, respectively. X axis is the number
of commands in a busy period. The limit of each
bucket on X axis is [2n; 2n+1 � 1]:TheY axis is the
percentage of tracing time during which there were
X number of commands input by the user.

Figure 6 shows the distribution of the number
of user input events in a busy period. User in-

9

Commands per Busy Period

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 4 16 64 256 1024 4096 16384

number of commands (window switch)

bu
sy

 p
er

io
d

w
ith

 "
x"

 c
om

m
an

ds
 (

pe
rc

en
ta

ge
)

5 seconds

30 seconds

1 minute

2 minutes

5 minutes

Figure 5: Number of Commands in a Busy Period (for

varying busy period de�nitions)

put events include keyboard input events (key down
and key up) and mouse input events (movement
and button events). As an example, consider the
curve for the one minute idle period (i.e. a busy pe-
riod is one with no idle period over one minute). For
23% of those busy periods, the number of user in-
put events was in the range of 4096 and 8191 (about
2048 to 4095 keystrokes assuming all user inputs are
keyboard inputs).

User Input per Busy Period

0%

5%

10%

15%

20%

25%

30%

1 8 64 512 4096 32768 262144

number of user input events

bu
sy

 p
er

io
d

w
ith

 "
x"

 in
pu

ts
 (

pe
rc

en
ta

ge
) 5 seconds

30 seconds

1 minute

2 minutes

5 minutes

Figure 6: Numer of User Inputs during a Busy Period (for
varying busy period de�nitions)

Table 8 shows the median numbers of com-
mands and user input events for di�erent de�nitions
of the busy period.

Figure 7 shows the transition matrix for the 20
the most frequently used applications. The columns

busy-period commands user-inputs

5-seconds 4 256
30-seconds 36 320
1-minute 56 576
2-minutes 60 576
5-minutes 68 704

Table 8: Median Numbers of Commands and User Inputs

During a Busy Period

and rows in the matrix correspond to the appli-
cations in Table 5. The last matrix column/row
represents the category of all other applications.
Each entry in the matrix represents the number of
times that an application switches to another, per
10,000 application switches. For example, for every
10,000 application switches, there are 71 switches,
or 0.71%, on average, from EXPLORER.EXE to
NETSCAPE.EXE (matrix[3, 5]).

6 File System Activity

In this section, we �rst look at frequencies of
Windows95 �le system calls. Next we analyze the
�le system idle period patterns. Then we exam-
ine di�erent �le system function calls. We will also
study the READ, WRITE and OPEN �le system
calls in more detail. Since Windows95 virtual mem-
ory paging and swapping operations are identifyable
�le system operations, we also present data on vir-
tual memory �le system calls. Last, we consider �le
access patterns.

6.1 File System Call Distribution

Table 9 shows the percentage of each of the 20
most frequent �le system calls out of the number of
total �le system calls. The percentages are calcu-
lated by the following formula:P36

user=1
FunctionCallCount
AllFSCallCount

36
� 100%

where FunctionCallCount is the count of a
given �le system function call for one user and
AllFSCallCount is the count of total �le system
calls for this user. The various �le system calls are
further explained in Appendix I.

As may be seen in Table 9, SEEK accounts for
31.06% of the total �le system calls. This function
call, however, is an advisory �le system call, which

10

SSAV MSDO EXPL WINW NETS SHDO EUDO XVIS MSDE EXCE OUTLL POWE XVL NOTE NLNO MSOF EUDO COMC WINH COMD OTHE Total

SSAVER 8 19 29 8 7 2 4 7 1 1 2 3 1 5 0 7 11 2 1 0 29 147
MSDOS 10 1310 175 21 33 17 9 36 22 16 3 4 7 15 9 17 1 17 5 9 199 1935

EXPLORER 21 166 730 46 71 45 27 8 25 13 19 13 12 28 4 26 2 70 4 2 453 1785
WINWORD 10 20 46 293 5 21 7 0 0 8 4 2 0 2 1 5 2 1 7 0 42 476

NETSCAPE 7 32 69 4 214 0 2 3 9 1 5 1 0 1 2 13 0 7 0 19 59 448
SHDOCVW 2 15 42 21 1 91 0 2 19 1 1 1 3 3 0 1 0 3 0 9 109 324

EUDORA 12 9 28 9 3 0 4 0 0 1 0 2 0 2 0 2 193 0 0 20 27 312
XVISIO N 8 32 8 0 3 2 0 21 0 1 0 0 0 7 0 3 0 0 0 0 2 87

MSDEV 1 25 28 0 9 19 0 0 75 0 0 0 0 1 0 0 0 0 0 6 35 199
EXCEL 2 17 13 7 1 1 1 1 0 216 0 0 1 0 1 3 0 0 1 0 8 273

OUTLLIB 1 3 19 3 4 2 0 0 0 0 117 1 0 0 0 3 0 3 1 0 20 177
POWERPNT 3 5 15 3 1 0 2 0 0 0 1 125 0 0 0 0 1 0 0 0 7 163

XVL 1 7 17 0 0 2 0 0 0 0 0 0 6 0 0 0 0 3 1 0 7 44
NOTEPAD 5 16 28 3 1 2 2 7 1 0 0 0 0 10 0 1 1 0 0 5 7 89
NLNOTES 0 9 6 0 1 0 0 0 0 1 0 0 0 0 2 1 0 0 0 1 20 41

MSOFFICE 8 16 45 6 11 0 2 0 0 5 2 1 0 1 0 29 1 2 0 0 11 140
EUDORA32 1 1 1 0 0 0 209 0 0 0 0 0 0 0 0 0 31 0 0 0 2 245
COMCTL32 2 21 20 1 6 3 0 0 0 0 3 0 3 0 0 0 0 12 7 3 126 207
WINHLP32 1 4 5 6 0 0 0 0 0 1 1 0 1 0 0 0 0 7 72 4 12 114
COMDLG32 0 9 2 0 18 9 21 0 6 0 0 0 0 5 2 0 0 3 4 1 66 146

OTHERS 45 204 497 42 60 106 23 1 42 10 20 10 11 8 22 29 2 78 12 65 1337 2624
Total 148 1940 1823 473 449 322 313 86 200 275 178 163 45 88 43 140 245 208 115 144 2578 9976

Figure 7: Application Transition Matrix

N# TrcEvnt Function Name Perc.

1 SEEK FileSeek 31.06%
2 READ ReadFile 24.35%
3 FDNXT FindNextFile 10.22%
4 WRITE WriteFile 5.14%
5 FDOPN FindFirstFile 4.10%
6 FNDCL FindClose 3.84%
7 OPEN OpenFile 3.84%
8 FATTR FileAttributes 3.77%
9 CLOSE CloseFile 3.67%
10 GDSKI GetDiskInfo 2.62%
11 IOC16 Ioctl16Drive 2.33%
12 FTMES FileDateTime 1.84%
13 DIR Dir 0.90%
14 QUERY QueryResourceInfo 0.59%
15 SEARC SearchFile 0.44%
16 FLCKS LockFile 0.40%
17 DSDIO DirectVolumeAccess 0.32%
18 DELET DeleteFile 0.16%
19 FLUSH FlushVolume 0.13%
20 COMMT CommitFile 0.09%
21 OTHER Other FS Calls 0.21%

Table 9: Most Used File System Calls (\TrcEvnt" is trace

event names; \Perc" is the percentage.)

only manipulates metadata, i.e. the FAT table, and
a large portion of the FAT table is normally cached
in the mainmemory. Therefore the SEEK operation
does not have a signi�cant impact on the disk IO
tra�c. Its high frequency is the result of the FAT
format �le system and Windows95 backward com-
patibility. An example is a frequently used SEEK
operation sequence: �rst SEEK to the beginning of
a �le and then SEEK the end of the �le. This se-
quence is used for fetching the whole list of FAT
table entries of this �le into the main memory, and
it is also used for emulating old MS-DOS function
calls.

FindNextFile, FindFirstFile and FindClose are
directory searching functions. These �le system
calls are very frequent because in the Windows GUI
environment, every �le folder open is followed by a
set of \Find" �le operations. This happens rarely in
a UNIX shell environment since normally a UNIX
shell user does not always issue an \ls" command
following every \cd". FileAttributes, GetDiskInfo,
FileDateTime, and Dir are all directory and meta-
data operations. IoCtl16Drive is a simulated 16-
bit direct IO operation, used for backward compat-
ibility. CloseFile
ushes out the bu�ered data to
the disks, updates the directories and releases the
�le handlers. More interesting �le system calls are
ReadFile, WriteFile and OpenFile. Our further �le
system study is based on these three types of func-
tion calls.

11

SEEK READ FDNXT WRITE FDOPN FNDCL OPEN FATTR CLOSE GDSKI IOC16 FTMES DIR QUERY SEARC FLCKS DSDIO DELET FLUSH COMMT OTHER Total

SEEK 1321 1581 0 140 2 0 7 4 42 1 1 5 0 0 0 1 0 0 0 0 0 3105
READ1354 700 1 25 19 0 34 40 219 11 4 4 13 0 1 5 2 0 0 0 0 2432

FDNXT 1 0 876 0 5 79 47 11 0 0 2 0 0 0 0 0 0 0 0 0 0 1021
WRITE 123 20 0 336 1 0 3 1 17 1 4 4 0 0 0 0 0 0 0 4 0 514
FDOPN 2 0 79 0 7 304 5 4 0 1 3 0 0 0 0 0 0 3 0 0 2 410
FNDCL 16 1 5 0 187 1 36 72 0 1 46 0 0 0 2 0 0 12 0 0 3 382

OPEN 76 104 0 5 3 0 21 5 10 1 135 19 1 0 0 3 0 0 0 0 1 384
FATTR 12 2 3 1 120 0 118 91 2 2 3 0 23 0 1 0 0 0 0 0 0 376
CLOSE 54 3 55 2 34 0 78 83 31 3 4 3 8 0 3 1 0 0 1 0 0 363
GDSKI 12 1 0 0 1 0 6 2 1 236 0 0 0 0 2 0 0 0 0 0 0 261
IOC16 0 0 0 0 13 0 1 0 0 0 24 133 0 56 1 0 0 0 3 0 1 232
FTMES 102 20 0 5 0 0 0 4 36 0 0 15 2 0 0 0 0 0 0 0 0 184

DIR 17 1 0 0 2 0 16 7 0 4 0 0 40 0 1 0 5 0 0 0 0 93
QUERY 0 0 0 0 4 0 4 48 0 0 0 0 0 0 0 0 0 0 0 0 2 56
SEARC 1 0 0 0 3 0 1 2 1 1 1 0 2 0 32 0 0 0 0 0 0 44
FLCKS 7 1 0 0 0 0 0 0 2 0 0 0 0 0 0 29 0 0 0 0 0 39
DSDIO 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 25 0 3 0 0 32
DELET 3 0 1 0 4 0 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 14
FLUSH 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 5 0 5 0 0 13
COMMT 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 4 8
OTHER 0 0 1 0 2 0 1 1 1 0 2 0 0 0 0 0 0 0 0 4 2 14
Total 3104 2434 1021 514 407 384 383 376 366 262 233 183 89 56 43 39 37 15 12 8 15 9981

Figure 8: File System Call Transition Matrix

Figure 8 shows the transition matrix for the 20
most frequently used �le system calls. The col-
umn/row numbers in the matrix: 1, 2, 3, ... , 20
match �le system function numbers \N#" in Ta-
ble 9. The matrix column/row number 21 repre-
sents all other �le system calls. Each entry in the
matrix represents the number of times that the �le
system call in the column directly follows the call
in the row, per 10,000 �le system calls. For exam-
ple, in every 10,000 �le system calls, there are about
1581, or 15.81%, SEEKs which are directly followed
by READs.

6.2 File System Idle Periods

As seen earlier in Figure 1, unlike user inputs,
PC �le systems are seldom idle for long periods of
time. As shown in the �gure, the cumulative �le
system busy time is about 82% of the total trac-
ing time for an idle length of 512 seconds or less;
i.e. during only 18% of the tracing time was the
PC �le system idle longer than 512 seconds. Please
note this statement does not mean that a PC disk
drive seldom idles for long period of time. The Win-
dows95 �le system caches �le system data in the
main memory, and thus many operations do not
go to the physical disk. This Windows95 �le sys-
tem caching, however, is beyond of the scope of this
paper. (See also Table 27 in Appendix III which
shows the measured �le system idle behavior with

logarithmic idle lengths.)
Figure 9 shows the �le system idle period

probability density distribution. We can ob-
serve that there are probability density spikes at
idle lengths of 1-minute, 1.5-minutes, 2-minutes,
and 5-minutes(60, 90, 120, and 300 seconds, re-
spectively). These on-the-minute spikes, which
also show up in the user input idle probabil-
ity density distribution, are caused by the auto-
matic features of many applications. Examples of
these automatic actions, which happen periodically,
are SCREEN-SAVER's automatic-startup, WIN-
WORD's automatic-saving and a dynamic HTML
down-loaded by the NETSCAPE browser. These
periodic events are a major reason that PC �le sys-
tems usually do not idle for long periods. See Ap-
pendix III for �le system idle period data for di�er-
ent applications.

6.3 Read/Write Bandwidth

Here we consider the �le system READs/
WRITEs and the number of bytes transferred for
such a �le system call. Table 10 gives the number
of bytes per hour transferred by (logical) reads and
writes. We see that bytes transferred due to virtual
memory paging and swapping accounts for a small
part (14.7%) of total bytes transferred. This per-
centage is smaller than 34.9% reported in [Bake91],
and 15%-21% reported in [Beck91]. The di�erence

12

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 100 200 300 400 500 600 700 800

idle length

pr
ob

al
ili

ty
 d

en
si

ty
File System Idle Probability Density Distribution

Figure 9: File System Idle Period Probability Den-

sity(\idle length" is measured in seconds.)

can be explained by two factors: most of the ma-
chines we traced have fairly large main memories
in comparison to the systems considered in previ-
ous studies[Bake91] and [Beck91]; and a Windows95
user normally runs only one application program at
a time.

Function Bytes per hour Percent

FS Read 37347 K 73.61%
FS Write 5948 K 11.72%
Paging Read 2479 K 4.89%
Paging Write 2874 K 5.66%
Swapping Read 1730 K 3.41%
Swapping Write 361 K 0.71%

Table 10: File System IO Tra�c (\FS Read" is regular

�le system READ, and \FS Write" is regular �le system

WRITE.)

The �le system idle period distribution, dis-
cussed in the previous subsection, suggests that the
�le system IO tra�c should be very bursty. Ta-
ble 11 gives the maximum total IO data transfer to
appear in any period of one hour, one minute or
10 seconds, in any of our 36 traces. Also shown in
each case is the rate per second. These �gures can
be compared with Table 10 to see how bursty the
�le system IO tra�c is.

The following two �gures, Figure 10 and Fig-
ure 11, show the distributions of the number of of
�le system IO bytes transferred in a period of one
hour or one minute. The X axis is the number of

Max TP READ WRITE Total IO

Per Hour 1424672K 353005K 1480949K
(bytes/s) (395.7K) (98.1K) (411.4K)
Per Min 141528K 94627K 145466K
(bytes/s) (2358.8K) (1577.1K) (2424.4K)
Per 10Sec 92935K 36803K 92935K
(bytes/s) (9293.5K) (3680.3K) (9293.5K)

Table 11: File System Maximum IO Tra�c Throughput

(\Max TP" is the maximum throughput.)

bytes transferred, and the limit of each bucket on
X axis is [2n; 2n+1 � 1] where n is bucket number.
The Y axis is the percentage of tracing time for the
di�erent �le system IO tra�c rates shown on the
X axis. For example, the �le system total (READ
+ WRITE) IO bytes transferred per hour were be-
tween 8388608 (223) and 16777215 (224 � 1) bytes
for 17.3% of the total tracing time.

Distribution of File System Burstyness

0%

4%

8%

12%

16%

20%

0.E+00 8.E+00 1.E+02 2.E+03 3.E+04 5.E+05 8.E+06 1.E+08 2.E+09

bytes transfered per hour

pe
rc

en
ta

ge
 o

f t
ra

ci
ng

 ti
m

e

hour_read
hour_write
hour_total

Figure 10: Distribution of File System IO Burstyness (per

hour)

The following two �gures, Figure 12 and Fig-
ure 13, show the distributions of the total number
of bytes transferred and number of read/write op-
erations as a function of the block size. The limit of
each bucket is [2n; 2n+1�1] where n is bucket num-
ber. The block size is the number of bytes trans-
ferred per �le system call of the regular �le system
READs and WRITEs. For example, as shown in
Figure 12, 16K bytes were transferred per hour as
part of the blocks with size of 4096 to 8191 bytes,
with 3900 �le READs falling into this range of block
sizes.

As can be seen from these �gures, most block

13

Distribution of File System Burstyness (minute)

0%

4%

8%

12%

16%

20%

0.E+00 8.E+00 1.E+02 2.E+03 3.E+04 5.E+05 8.E+06 1.E+08 2.E+09

bytes transfered per minute

pe
rc

en
ta

ge
 o

f t
ra

ci
ng

 ti
m

e

minute_read
minute_write
minute_total

42%

Figure 11: Distribution of File System IO Burstyness (per

minute)

Distribution of File System READ Operation of Different Block Size

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

8 128 2048 32768 524288

block size (bytes)

ki
lo

by
te

s
tr

an
sf

er
ed

 p
er

 h
ou

r

0

500

1000

1500

2000

2500

3000

3500

4000

4500

nu
m

be
r

of
 R

E
A

D
 c

al
ls

 p
er

 h
ou

r

read bytes transfered
num of reads

Figure 12: File System READs for Di�erent Block Sizes

Distribution of File System WRITE Operation of Different Block Size

0

200

400

600

800

1000

1200

1400

1600

8 128 2048 32768 524288

block size (bytes)

ki
lo

by
te

s
tr

an
sf

er
ed

 p
er

 h
ou

r

0

50

100

150

200

250

300

350

nu
m

be
r

of
 W

R
IT

E
 c

al
ls

 p
er

 h
ou

write bytes transfered
number of writes

Figure 13: File System WRITEs for Di�erent Block Sizes

sizes are intermediate, 4KB is the most popular
size. Since the Windows95 virtual memory page
size and the FAT-32 cluster size are both 4K bytes,
software designers also tend to use 4KB as the read
or write bu�er size. This distribution is di�erent
from the one in previous study [Cost85] which shows
the most frequently used READ block size was 512
bytes, and more than 48% WRITE block sizes were
smaller than 1024 bytes. This change is not just
Windows95 speci�c. It is also a natural result of
the growth in main memory size, and the increase
in the ratio of CPU to I/O speed. Additional dis-
cussion and data, speci�c to the 10 most frequently
used applications, appears in Appendix III.

6.4 File Access Patterns

In this subsection, we discuss �le access patterns
by analyzing �le system OPEN operations { 137687
in total in our traces, with 104223 unique �les. We
also study the distribution of �le sizes. and compute
the ratio of random IOs to sequential IOs.

Num Acc Num Files Num Acc Num Files

1/8 62920 32 254
1/4 13544 64 129
1/2 11067 128 101
1 7956 256 58
2 5145 512 26
4 1918 1024 11
8 731 2048 2
16 358 4096+ 1

Table 12: File Access Distribution (\Num Acc" is the

number of open access to one �le per 10 hours. \Num

Files" is the number of di�erent such �les. Note that

there are some �les which were accessed fewer than once

per 10 hours in average.)

Table 12 lists the �le access frequency distribu-
tion. In the table, we show how frequently a �le is
accessed by \OPEN" �le system calls in a 10-hour
period. \Num of accesses" in the table represents
the number of accesses to one �le in 10 hours. \Num
of �les" represents the number of di�erent such �les
that have been accessed the given number of times
in a bucket. The limit of each bucket (for integer
buckets only) is [2n; 2n+1�1] where n is bucket num-
ber. For example, there are about 358 �les among
104223 unique �les that have been accessed in an
average of 16 to 31 times in every 10 hours. It is
interesting to note that on average, 95487 �les, or

14

91.6% of the total PC �les, have been accessed only
once or fewer during 10 hours. Only 0.6% or 582
�les were opened more than 32 times during the
same time period. This distribution is derived from
the average distribution over 36 trace sets.

File Name AccessTimes FileSize

AVCONSOL.INI 45634 8576
10000.DAT 1262 64000
FINDFAST.EXE 1217 130859
WIN.INI 1123 37568
FRONTPG.INI 1102 465
50000.DAT 913 0
MAIN.IND 616 65280
MAIN.IDX 614 3107731
CUSTOM.INI 594 46
ISETUP.INI 593 17571
SYSTEM.INI 509 22480
DESKTOP.INI 479 65024
FONTS.MFM 387 144055
CONTROL.INI 352 6479
PCN.CFG 350 1277
COMMAND.COM 294 116802

Table 13: 16 Most Frequently Accessed Files (\Ac-

cessTimes" is the number of accesses per 10 hours. The

list excludes Windows shortcut link �les which are included

in Table 12.)

Table 13 shows the most frequently accessed
�les. Most of these �les are initialization pa-
rameter �les. Although such �les as AVCON-
SOL.INI, FRONTPG.INI, MAIN.IND, 10000.DAT,
and 50000.DAT have a very high access frequency,
they are user or application speci�c �les, and show
up only in a limited number of user trace sets. Con-
versely, some Windows component �les, such as
SYSTEM.INI, WIN.INI, CONTROL.INI, DESK-
TOP.INI, FINDFAST.EXE and COMMAND.COM
show up in most of our user trace datasets.

Since our �le system traces do not provide ac-
tual �le sizes, we use the largest o�set of any byte
transferred in any I/O to that �le as an estimate
of the \File Size". For example, an application
OPENs a �le, then SEEKs to the o�set address of
10000'th byte from the beginning of that �le, then
READs 500 bytes, then CLOSEs it. We say for
this round operations, the maximum o�set of this
�le accessed is 10000+500=10500. If this �le were
opened 5 times, and the largest o�set among all
maximum o�sets was 10500, we use 10500 as the

estimate of the size of this �le. Table 14 lists a few
examples indicating the accuracy of this estimation
method. In Table 14, the actual �le sizes were gath-
ered from Machine Number 21 of Table 1, and the
estimated �le sizes were derived from the traces col-
lected from this machine using the above method.
We list samples of four di�erent �les types in the ta-
ble, 1) read-only executable �les, 2) read-only data
�les, 3) read-write data �les, and 4) temporary �les.

�le type �le name e size a size

executable winzip32.exe 675328 736768
comdlg32.dll 66560 92672

readonly rmnet.hlp 302343 302343
color.gma 0 1050

readwrite cookies.txt 2056 2080
system.ini 2056 2056

temporary inz0433. mp 501312 501312
class61.mdm 0 688

Table 14: Estimating the File Sizes (\e size" is the esti-

mated �le size. \a size" is the actual �le size.)

Figure 14 compares the actual �le sizes and the
estimated �le sizes for 388 �les shown in the trace
of Machine Number 21. Both X axis and Y axes
are logarithmic. The �gure shows that the majority
of �le sizes from our estimation are accurate or very
close and the actual �le size is normally greater than
or equal to than the estimated �le size. Table 15 il-
lustrates the error distribution of the estimated �le
sizes. Note that the data presented in this table and
�gure is very pessimistic. The traces were collected
18 months before the �le sizes were speci�cally col-
lected, and thus many of the errors are due to the
�le size having changed, not to its having been es-
timated incorrectly.

ErrRange Percent ErrRange Percent

(-1,-1) 1.5% (0.05,0.1] 13.7%
[-1,-0.1) 3.1% (0.1,0.5] 12.1%
[-0.1,-0.05) 1.0% (0.5, 1] 25.5%
[-0.05,0.05] 43.0%

Table 15: Error Distribution of Estimated File

Size. (\ErrRange" is calculated with: (actual �le size-

estimated �le size)/(actual �le size); \percent" is the per-

centage of �les whose estimated �le sizes fall into the cor-

responding error range.)

Figure 15 illustrates the �le size distribution us-

15

ing the above �le size estimation method, consid-
ering only non-zero �le sizes. We exclude zero size
�les because our estimation method generates many
zero byte �le sizes 1, but zero byte �les are very rare
in reality. Therefore we have excluded zero size �les
to improve the utility and accuracy of our analysis.
TheX axis in the �gure represents the estimated �le
size in byes. The limit of each bucket on X axis is
[2n; 2n+1�1] where n is bucket number. The Y axis
represents the number of di�erent �les that have the
estimated �le size given on theX axis. For example,
there are about 6435 di�erent �les with estimated
�le sizes between 2048 bytes and 4095 bytes.

Estimated File Size Vs. Actual File Size

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07

Estimated File Size (bytes)

A
ct

ua
l F

ile
 S

iz
e

(b
yt

es
)

Figure 14: Estimated File Size Vs. Actual File Size

Table 16 lists 10 of the largest �les accessed
when each of the 10 most frequently used appli-
cations were started. Examples of such large �les
are those DLL �les associated with one or multiple
applications. Loading an application could be sped
up if the system could take advantage of the knowl-
edge of which �les need to be accessed before the
start of the application.

Table 17 compares the ratios of sequential �le
system IOs and random �le system IOs, in terms
of both total bytes transferred and total number of
function calls. Please note that we regard the �rst
READ or WRITE call after a �le OPEN call as a
random IO. As seen in the table, the majority �le
system IOs are random IOs. The ratio of sequential

1There are three SEEK methods: seek from begin-
ning/current position/end of a �le. We cannot compute the
logical address in a �le with the third SEEK method. Some
�les were only accessed by the following �le system operation
sequence: OPEN, SEEK(B), SEEK(E), CLOSE, while some
other �les were only opened and closed without any READ,
WRITE, or SEEK operation against them. We do not know
the size of these �les. We used 0 for the size of such �les.

Distribution of File Size

0

2000

4000

6000

8000

10000

12000

14000

1 8 64 512 4096 32768 262144 2E+06 2E+07

file size (bytes)

nu
m

be
r

of
 d

iff
er

en
t f

ile
s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

cu
m

ul
at

iv
e

pe
rc

en
ta

ge
 o

f d
iff

er
en

t f
ile

s

Figure 15: File Size Distribution

IO to random IO for the WRITE �le system call is
higher than for the READ call, i.e. there are more
sequential WRITEs than sequential READs for the
same number of WRITE calls and READ calls.

IO Types Random IOs Sequential IOs

Bytes Read 87.97% 12.03%
Read Call 93.14% 6.86%
Bytes Written 77.68% 22.32%
Write Calls 75.44% 24.56%

Table 17: File System Random IOs vs. Sequential IOs

7 Miscellaneous Analysis

7.1 Trend Signi�cance Test

In this subsection, we analyze the discrete-time
time series of trace events to see if there exists any
increasing or decline trend of activities for these
time series. We consider each of our 944 contin-
uous tracing period as one time series per �le. User
input trace events and �le system trace events are
analyzed separately as two di�erent time series.

In our trend test, we use a statistic described
by Lewis and Shedler [Lewi73] to test a time se-
ries for being a stationary uncorrelated Poisson pro-
cess against the alternative of being a Poisson pro-
cess with monotonic trend. In a discrete-time se-
ries trend test, this statistics is as follows (see also

16

Application Files Accessed when an Application Started

EXPLORER.EXE ANAMES.NSF CCALVIN.NSF CONAGENT.EXE OUTBOX.MBX
P.ZIP P2.ZIP P3.ZIP P4.ZIP SENTITEMS.MBX
VCBKS40.MVB

WINWORD.EXE ATOK11.DIC CCALVIN.NSF LMSCRIPT.EXE MLANDATA
MSGRJP32.LEX MSO97.DLL MSPP32.DLL TTFCACHE
WINSPOOL.DRV WWINTL32.DLL

NETSCAPE.EXE CONAGENT.EXE EXCEL.EXE INBOX INBOX.SNM
NETSCAPE.EXE SENT SENT.SNM SPOOLSS.DLL
SYSTEM.DAT TRASH

SHDOCVW.DLL EPG.PCH EXCEL.EXE CONAGENT.EXE OUTBOX.MBX
REGSVR32.EXE SYSTEM.DAT TAPIADDR.DLL
TLN0LOC.DLL WINWORD.EXE WFM0002.ACV

EUDORA.EXE ATI.MOD CVS.MBX DESCMAP.PCE EUDORA.EXE
IN.MBX POINTLIB.DLL SPOOLSS.DLL SYSTEM.DAT
TRASH.MBX WINWORD.EXE

XVISION.EXE COMDLG32.DLL EXCEL.EXE HOSTS HTML32.CNV
MSO97.DLL POINTLIB.DLL SYSTEM.DAT
TTFCACHE XV7004.ZIP XVISION.EXE

MSDEV.EXE BPCAV.PCH BUS 60.AVI CONAGENT.EXE EPG.PCH
EXCEL.EXE REGSVR32.EXE SYSTEM.DAT
TLN0LOC.DLL VCBKS40.MVB WINWORD.EXE

EXCEL.EXE ANAMES.NSF COMMAND.WAV CONAGENT.EXE
EJLMON21.DLL EXCEL.EXE FUNCRES.XLA
MSO97.DLL SORT.WAV SYSTEM.DAT WFM0002.ACV

OUTLLIB.DLL EXCEL.EXE HTML32.CNV MSO97.DLL OFFLADY.ACT
OUTLLIB.DLL MAILBOX.PST MSO97.DLL
SPOOLSS.DLL SYSTEM.DAT WINWORD.EXE

POWERPNT.EXE HOSTS LMSCRIPT.EXE MSO97.DLL OFFICE.CAG
POWERPNT.CAG POWERPNT.EXE SYSTEM.DAT
USER.DAT WINSPOOL.DRV ~$NORMAL.DOT

Table 16: 10 Largest Files Opened when an Application Starts

[Smit81]):

Tr(i) = (S � T=2)=

Tp

12 �N (i)

!

(where i is the number of this time series; F (i) is
its start time, L(i) is its ending time, and j is the
current time in this time series; T = L(i)�F (i)+1
is the total duration in seconds of this time se-
ries; N (i) is total number of seconds during each
of which certain tracing events were logged { either
user input events or �le system call events depend-
ing on the type of time series analyzed; I(i; j) is
the indicator function, for Second j in Time-series
i, whether certain tracing events were logged { its
value is 1 if certain tracing events logged, 0 if not;

S =
PL(i)

j=F (i)
I(i;j)(j�F (i))

N(i) .)

Our trend test shows that 99, or 10.5% of the
total 944 valid �le system call time series, displayed

signi�cant increasing trend, 94, or 10.0% of the to-
tal �le system call time series displayed signi�cant
declining trend, 128, or 13.6% of the total 944 valid
user input time series displayed signi�cant increas-
ing trend, and 136, or 14.4% of the total user in-
put time series displayed signi�cant declining trend.
Taking into account the fact that the interarrival
times for the events in these series are more skewed
than exponential, our analysis show no trend e�ects.

7.2 Serial Correlation Test

We would like to be able to predict or estimate
the next idle period, based on the sequence of idle
periods thus far. To test the predictability of these
two time series, we apply the following �rst order
serial correlation estimator (used by [Smit81]) to
the user input idle period series and �le system idle
period series separately.

The user input input idle time series and the �le

17

S1 =

1
n�1

Pn�1
i=1

�
xi �

1
n�1

Pn�1
i=1 xi

��
xi+1 �

1
n�1

Pn�1
i=1 xi+1

�
�

1
n�1

Pn�1
i=1

�
xi �

1
n�1

Pn�1
i=1 xi

�2
1

n�1

Pn�1
i=1

�
xi+1 �

1
n�1

Pn�1
i=1 xi+1

�2�1=2

(where xi is the idle length, and n is the number of idle periods in one trace �le.)

system call idle time series analyzed in the serial
correlation test are the same as those used in the
trend signi�cance test. The serial correlation test
results for both user input idle series and �le sys-
tem idle series shows no signi�cant or usable corre-
lations. Most correlation coe�cient values observed
were small. Among 944 user input idle series and
944 �le system idle series, 908 (96.2%) user input
idle series have a correlation coe�cient value less
than 0.25, 839 (88.9%) user input idle series have
such a value less than 0.1, 869 (93.9%) �le system
idle series have such a value less than 0.25, and 862
(85.0%) �le system idle series have such a value less
than 0.1. Therefore, we conclude that both the pre-
dictive power of user input idle series and that of
�le system idle series are low.

7.3 Tracing Overhead

In this subsection we discuss the tracing over-
head and its potential impact on our results. Be-
cause we do not trace processor activities and the
user inputs are very sparse, �le system tracing dom-
inates our trace. Two types of tracing overheads
exist: �rst, monitoring and generating the trace
record; second, dumping the bu�ered trace records
to the hard drives. We do not include processor
overhead analysis since processor activities are be-
yond the scope of our analysis. Our overhead mea-
surement focuses on trace record dumping, i.e. �le
system call counts contributed by the tracer versus
the counts of non-tracing regular �le system calls.

Statistical Item Statistics

Tracer FS Operation Counts 127493
Regular FS Operation Counts 4709118
Tracer FS Overhead 2.67%
Std. Deviation of Overhead 0.326%
90% Con�dence Interval (2.59%, 2.75%)

Table 18: Tracer Operation Overhead

Table 18 shows the tracer overhead and the 90
percent con�dence interval (over the 36 samples).
We conclude that the trace dumping overhead is
relatively insigni�cant compared to the regular �le
system activities. Our �le system analysis result
should not be a�ected by the trace dumping.

7.4 Limitations of the study

We note the following caveats and limitations in
our tracing and analysis:

� A change of window, as discussed in our anal-
ysis, does not exactly match an application
switch. This causes inaccuracy in our analysis
in two ways: 1) An application running in the
background may not have an associated win-
dow, and our analysis is unable to attribute
events to that application. Likewise, an ap-
plication may be started (e.g. Netscape) and
then the user will switch to another window
rather than wait. 2) A window switch may
occur a few seconds before or after the appli-
cation switch, so the window switch time used
in our analysis is not completely accurate.

� Due to the absence of directory information in
the �le system traces, we use the largest o�set
of any byte transferred in any I/O to that �le
as the �le size estimate. In many cases, this
underestimates the �le size.

� Lack of caching information in our �le system
analysis. Our disk IO bandwidth analysis is
only at the logical level. The ratio of virtual
memory physical disk accesses to regular �le
system physical disk accesses can be di�erent
from the logical level ratio because the paging
IO cache hit rate is usually much lower than
the regular �le system IO cache hit rate.

8 Summary and Future work

In this paper, we have presented an analysis of
personal computer workloads. Our analysis covers

18

user input behavior and �le system activity. Our
analysis is based on a large set of PC user and �le
system traces which were collected from a variety
of PC users. The statistics derived from this pa-
per can be used in benchmark development as well
as for deriving synthetic workloads for trace driven
simulation in di�erent system resource management
algorithm studies.

We have provided general descriptive statistics
for PC users and �le systems. The available data
will permit us to do additional analysis of user be-
havior and �le system activities, and establish more
complete user and �le system statistical models.
Trace driven simulation can be applied to the evalu-
ation of various PC system resource management al-
gorithms. We anticipate using this data, and other
data currently being collected for WindowsNT sys-
tems for studies of disk and I/O optimization, and
for power management studies.

9 Acknowledgments

The Authors would like to thank Intel Corp., for
its technical support during the tracer development.
The authors also thank Intel, Toshiba (Japan), Fu-
jitsu Microsystems (USA), Quantum Corporation,
and Sony Research Laboratories (USA) for running
the tracer on a number of their machines. We would
also like to thank Hugo Patterson of Quantum for
comments and suggestions.

Bibliography

[Bake91] Baker, M., Hartman, J., Kupfer, M.,
Shirri�, K., Ousterhout, J.: Measurements
of a Distributed File System Proceedings
of the 13th ACM Symposium on Operating
Systems Principles, Jul. 1991, 1-15.

[Beck91] Becker, J., Park, A.: Analysis of Paging
Behavior of UNIX. Performance Evalua-
tion Review , Aug. 1991, 36-41.

[Chen96] Chen, J., Endo, Y., Chan, K., Mazieres, D.,
Dias, A., Seltzer, M., and Smith, M.: The
Measured Performance of Personal Com-
puter Operating Systems. ACM Transac-
tions on Computer Systems., Vol. 14, No.
1, Feb. 1996, 3-40.

[Cost85] Da Costa, H.: A File System Tracing Pack-
age for Berkeley UNIX. Technical Report
of Computer Science Division (EECS),
University of California at Berkeley, No.
UCB/CSD-85-235 , Jun. 1985.

[Doug94] Douglis, F., Kaashoek, F., Marsh, B.,
C�aceres, R., Li, K., Tauber, J. Storage Al-
ternatives for Mobile Computers. Proceed-
ings of the First USENIX Symposium on
Operating Systems Design and Implemen-
tation, Monterey, CA, Nov. 1994, 25-37.

[Gold74] Goldberg, R.: Survey of Virtual Machine
Research. IEEE Computer , Jun. 1974, 34-
45.

[Hans85] Hanson, R.: A Characterization of the Use
of The UNIX C Shell. Technical Report
of Computer Science Division (EECS),
University of California at Berkeley, No.
UCB/CSD-86-274 , Dec. 1985.

[Kotz95] Kotz, D., Nieuwejaar, N.: File-System
Workload on a Scienti�c Multiprocessor.
IEEE Parallel and Distributed Technology,
Spring 1995, 51-60.

[Lee98] Lee, D., Crowley, P., Baer, J., Anderson,
T., and Bershad, B.: Execution Character-
istics of Desktop Applications on Windows
NT. The 25th Annual International Sym-
posium on Computer Architecture., Jul.
1998, 27-38.

[Lewi73] Lewis, P. and Shedler, G.: Empirically De-
rived Micromodels for sequences of Page
Exceptions. IBM Journal of Research and
Development, Vol. 17, Sep. 1973, 86-100.

[Li94] Li, K., Kumpf, R., Horton, P., Anderson,
T. A Quantitative Analysis of Disk Drive
Power Management in Portable Comput-
ers. Proceedings of the 1994 Winter
USENIX Conference, San Francisco, CA,
Jan. 1994, 279-291.

[Lorc97] Lorch, J., Smith, A.: Energy Consump-
tion of Apple Macintosh Computer. Tech-
nical Report of Computer Science Division
(EECS), University of California at Berke-
ley, No. UCB/CSD-97-961 , Jun. 1997.

[Nola74] Nolan, L., Strauss, J. Workload Character-
ization for Timesharing System Selection.
Software Practice and Experience , Vol. 4,
1974, 25-39.

[Nort97] Norton, P., Mueller, J.: Peter Norton's
Complete Guide to Windows95, Second
Edition, 0-672-31040-6, Sams Publishing,
Indianapolis, IN, 1997.

[Oney96] Oney, W.: System Programming for Win-
dows95 , Microsoft Press, Redmond, WA,
1996.

[Oust85] Ousterhout, J., Da Costa, H., Harrison,
D., Kunze, J., Kupfer, M., Thompson, J.:
A Trace-Driven Analysis of the UNIX 4.2
BSD File System. Proceedings of the 10th
Symposium on Operating System Princi-
ples, Orcas Island, WA, Dec. 1985, 15-24.

19

[Petz96] Petzold, C.: Programming Windows95 ,
Microsoft Press, Redmond, WA, 1996.

[Ruem93] Ruemmler, C., Wilkes, J.: UNIX Disk Ac-
cess Patterns. Proceedings of the Winter
1993 USENIX Conference, San Diego, CA,
Jan. 1993, 405-420.

[Schu95] Schulman, A.: Unauthorized Windows95:
A Developer's Guide to Exploring the
Foundations of Windows, Chicago, IDG
Books, 1995.

[Smit81] Smith, A.: Long Term File Migration: De-
velopment and Evaluation of Algorithms.
Communications of the ACM , Val. 24, No.
8, Aug. 1981, 521-532.

[Smit85] Smith, A.: Disk Cache: Miss Ratio Analy-
sis and Design Considerations. Proceedings
of the 5th annual Symposium on Computer
Architecture, Apr. 1985, 242-248.

[Spas96] Spasojevic, M., Satyanarayanan, M.: An
Empirical Study of a Wide-Area Dis-
tributed File System. ACM Transactions
on Computer Systems , Vol 14, No. 2, May
1996, 200-222.

[Zhou85] Zhou, S., Da Costa, H., Smith, A.: A
�le System Tracing Package for Berkeley
UNIX. Proceedings of USENIX Conference
and Exhibition, Portland, Jun. 1985, 407-
419.

[Zhou98] Zhou, M., Smith, A.: Tracing Windows95.
Available at
URL http://djinn.cs.berkeley.edu/mzhou/
tracer.ps.

[Zivk97a] Zivkov, B., Smith, A.: Disk Caching in
Large Databases and Timeshared Systems.
Technical Report of Computer Science Di-
vision (EECS), University of California
at Berkeley, No. UCB/CSD-96-913 , Sep.
1996, Proc. Mascots'97 (Fifth Intl. Work-
shop on Modeling, Analysis and Simulation
of Computer and Telecommunications Sys-
tems) Conference, Haifa, Israel, January,
1997, pp. 184-195.

[Zivk97b] Zivkov, B., Smith, A.: Disk Cache De-
sign and Performance as Evaluated in
Large Timesharing and Database Systems,
Proc. CMG (Computer Measurement
Group) Conference, December 7-12, 1997,
Orlando, FL., pp. 639-658.

Appendix I: Overview of Win-

dows95

In this appendix, we summarize some major charac-
teristics of the Windows95 operating system.

Windows95 is a 32-bit protected-mode operating
system designed to run 16-bit and 32-bit application
programs on Intel architecture based personal comput-
ers. Windows95 uses the VFAT format �le system,
a version of MS-DOS FAT �le system with long �le-
name support. Windows95 provides up to a 4 gigabyte
virtual memory. The actual virtual memory size de-
pends on the physical memory and swap space avail-
able. Windows95 supports preemptive multitasking of
Windows-based and MS-DOS-based applications. Win-
dows95 runs only on PCs based on Intel architecture
processors, 80386s or more advanced models. Win-
dows95 does not attempt to provide a secure environ-
ment in which program and data can be insulated from
another program's inattentive or intentional misbehav-
ior. [Petz96][Oney96][Nort97][Schu95]

A1.1 Windows95 virtual machine

The general concept of virtual machines dates back
to early IBM mainframe computers and the work by
Robert Goldberg. [Gold74] The virtual machines in
the PC world were created when the early versions
of Windows needed to support multiple MS-DOS ap-
plications and Windows applications running at the
same time.[Oney96][Nort97] A virtual machine created
by software reacts to application programs the same
way a real machine does, which enables the MS-DOS
programs to own the keyboard, the mouse, the display
screen, the processor, and the user's attention as if they
were running on their own dedicated hardware. Specif-
ically, in the kernel of the Windows95 operating sys-
tem, a Virtual Machine Manager (VMM) manages all
virtual machines. The VMM works with Virtual Device
Drivers (VxDs) to simulate hardware devices and to pro-
vide system services to applications and to each other.
There is at least one virtual machine running on a Win-
dows95 system, the system virtual machine, which runs
all Windows applications and the Windows95 system
itself. One or more MS-DOS virtual machines running
MS-DOS applications can co-exist on a Windows95 sys-
tem.

A1.2 Windows95 memory model

Generally speaking, Windows95 supports three dif-
ferent memory models: the Windows3.1 protected-mode
segmented memory model, the WindowsNT
at mem-
ory model, and the Virtual-86 model. In the protected-
mode segmented memory model, the processor uses a
selector (which points to a segment descriptor entry in
the memory descriptor table) and an o�set pair to refer-
ence a memory location. The virtual memory is divided
into segments of up to 64KB each. In the
at mem-
ory model, there is only one segment which contains all
the programs. Virtual memory with a two-level page
table paging scheme is used where each 32-bit address
is split into three �elds: page table directory pointer,

20

page table pointer, and page o�set. Each page frame
is 4K bytes. In the virtual-86 mode, 20-bit addresses
yield only 1MB of address space. A segment/o�set pair
is used to generate the 20-bit memory address.

A1.3 Windows95 processes and
threads

Each Windows application occupies a process that
consists of a dedicated address space and one or more
threads of execution. Each thread corresponds to a se-
quence of program steps and the evolving state of pro-
cessor registers and system objects associated with that
sequence. Windows95 uses a priority-based scheme to
preemptively multi-task threads.

Windows95 supports three types of applications:
Windows 32-bit application programs, Windows 16-bit
application programs, and MS-DOS application pro-
grams. Both 32-bit and 16-bit Windows application
programs run on the system virtual machine while each
MS-DOS application programs run on a separate MS-
DOS virtual machine. The system virtual machine has
one process for each program, and each 32-bit Windows
program can consist of more than one thread. The addi-
tional virtual machines are for MS-DOS programs, and
each contains exactly one process and one thread.

The 32-bit Windows programs adopt the
at mem-
ory model, wherein all code and data can be addressed
in a single segment covering all of the virtual memory.
The 16-bit Windows programs use the Windows3.1 seg-
mented memory model, in which available virtual mem-
ory is subdivided into segments of up to 64 KB each.
The 16-bit Windows programs load segment selectors
into the processor's segment registers to access more
than 64 KB of memory. The 32-bit programs partici-
pate in preemptive multitasking under the overall con-
trol of the scheduling subsystem of the virtual machine
manager, while the 16-bit Windows applications must
cooperatively multi-task amongst themselves { from this
point of view, sometimes Windows95 is not viewed as
a preemptive multitasking system. MS-DOS program
multitasking depends on the scheduling among di�er-
ent virtual machines.

Most of the time, one or a few windows are asso-
ciated with one Windows program. Similarly to the
UNIX foreground process, a user-input-focused window
in Windows is the foreground window to which the user
input will be posted.

A1.4 Window95 �le system

Windows95 uses an installable �le system manager
(IFS manager), the highest layer in the �le system, to
handle all �le system calls from Windows 32-bit appli-
cations, Windows 16-bit applications and MS-DOS ap-
plications. We will discuss IFS in the next subsection
in more detail. The IFS manager calls on �le system
drivers (FSDs) to support di�erent �le system formats.

The �le system formats currently supported by Win-
dows95 include FAT-16 (File Allocation Table with 16
bit entries), FAT-32 (32 bit FAT entry version of FAT,
used in the OSR2 (OEM Service Release 2) version of
Windows95 and Windows98 and the CD-ROM �le sys-
tem. The FSDs in turn talk to disk drivers which inter-
face with the hardware directly.

A FAT (including FAT-16 and FAT-32) format disk
consist of a BOOT sector, a �le allocation table, a root
directory, and a cluster section. BOOT stores the ba-
sic information about the disk and for the use of system
boot. The root directory stores the information describ-
ing each �le entry in the top level directory. The disk
cluster section is divided into separated clusters. The
notion of a cluster, which is a contiguous collection of
disk sectors, was introduced as the allocation unit. Each
FAT table entry is used to maintain the status of a disk
cluster, and the number of FAT table entries is equal
to the number of the clusters on a disk. A FAT table
is organized as a linear array containing multiple one-
way linked lists. One list corresponds to a �le or sub-
directory. The FAT entry location of the head of each
list is stored in the root directory or a sub-directory. In
a FAT �le system, sub-directories are stored as regular
�les.

FAT-16 uses a �xed FAT table size (32KB), 16-bit
FAT table entries, and variable cluster sizes. FAT-16
supports up to 2GB per logical hard drive. A hard
drive larger than 2GB needs to be partitioned into a
few logical hard drives for a FAT-16 format �le system.
For example, FAT-16 uses 32KB cluster for a 2GB hard
drive, 16KB cluster for a 1GB hard drive, ... , 4KB clus-
ter for a 128MB hard drive, etc. Di�erent from FAT-16,
FAT-32 uses a variable FAT table size, 32-bit FAT table
entries, and a �xed cluster size (4KB). It supports up
to a 2TB hard drive. Our target systems all use the
FAT-16 format �le system for their hard drives.

The FAT �le system used in Windows95 �le system
is called VFAT, virtual FAT { an improved version of the
old MS-DOS FAT format �le system plus long �lename
support. Similar to FAT, VFAT also can be classi�ed
as VFAT-16 and VFAT-32. The VFAT �le system has
two �le names for each �le, a DOS-8.3 format �lename
(maximum 8 bytes for the �le name and maximum 3
bytes for the �le name extension) and Windows95 spe-
ci�c long �lenames which can be as long as 256 bytes.

A1.5 Windows95 Installable File Sys-
tem and IFS Calls

The �le systems of both Windows3.1 and MS-DOS
depend on MS-DOS's INT21 code to manage �les on
disk. Since MS-DOS INT21 is not reentrant, multi-
ple processes cannot simultaneously perform �le sys-
tem calls without proceeding one at a time through
this critical section. Windows95 relies on the Installable
File System Manager to solve this problem and support
asynchronous I/Os. All �le system calls of Windows 32-

21

bit applications, Windows 16-bit applications and MS-
DOS applications go to the IFS manager. These �le
system calls include the accesses to the memory swap
�le as well. IFS manager calls on FSDs to implement
diverse �le systems like FAT and the CD-ROM �le sys-
tem. The FSDs talk to disk drivers which interface with
the hardware components such as hard drive and
op-
pies directly.

The IFS manager exports a number of virtual
device driver level services for use by other parts
of the system. These IFS services and Windows95
virtual device driver's dynamic loading, which was
designed for plug-and-play, allows third party soft-
ware and hardware vendors to write their own de-
vice drivers as part of Windows95 �le system. One
of the most important services provided by IFS man-
ager is the IFS Mgr InstallFileSystemApiHook service.
IFS Mgr InstallFileSystemApiHook takes the address of
the user VxD hook procedure as an argument, and
it returns the address of another hook procedure. A
VxD hook procedure is a VxD procedure which will be
triggered when the hook-targeting system service is in-
voked. All the VxD hook procedures should chain the
call instead of just processing it to give other poten-
tial hooks their chance to examine each request to the
targeted system services. Internally, the IFS manager
maintains its own list of API hooks so that the users
can add and remove the hooks in any order.

There are 31 most commonly used Windows95 in-
stallable �le system calls generated by IFS manager.
These calls are our �le system tracing targets. Next we
give the names of and an explanation for these instal-
lable �le system calls.

� FS ReadFile transfers data from the �le to a mem-
ory bu�er. The memory bu�er can be �lled
asynchronously using one or more I/O requests.
In a regular FSD implementation, Windows95
VCACHE facilities should be used to maintain
a cache of disk records to minimize the physical
I/O.

� FS WriteFile transfers data from a memory bu�er
to the �le. A cache of disk-sector-sized bu�ers
containing the data should be maintained and
the physical write operations should be performed
asynchronously.

� FS FileSeek is an advisory service that allows an
FSD to optimize its prefetches of a �le. This func-
tion is advisory because the read and write func-
tions both supply a �le position that overrides
anything recorded by the FSD.

� FS OpenFile takes indicated actions to open a �le
which matches the parsed pathname.

� FS CloseFile
ushes any output bu�ers to disk,
deletes internal structures related to the �le, and
generally cleans up after a series of operations on
an open �le.

� FS CommitFile
ushes bu�ered data of a �le han-
dle to disk.

� FS EnumerateHandle enumerates �le handle in-
formation.

� FS HandleInfo gets and sets information for a �le
by the �le handle.

� FS LockFile locks or unlocks a byte range in a �le
by the �le handle.

� FS FileDateTime sets or retrieves the time-
stamps which are associated with an open �le.
There are three Windows95 �le time-stamps: cre-
ation time, last-modi�ed time, and last-accessed
time.

� FS DeleteFile deletes the �les whose parsed path-
name appears in the request pathname.

� FS Dir performs a function on a directory. Direc-
tory functions include creating, deleting, checking
for the existence of a directory, or converting a di-
rectory name between its long-name form and its
8.3 form.

� FS DirectDiskIO is called by IFS manager to han-
dle MS-DOS INT 25h and INT 26h (absolute disk
read and write) requests.

� FS DirectVolumeAccess performs direct volume
(�le system storage resource logical unit) accesses.

� FS ConnectNetResource connects or mounts a
network resource.

� FS DisconnectResource is the function to take the
actions required when one of the FSD volumes is
unloaded or deleted.

� FS FileAttributes gets or sets the attributes of a
�le.

� FS FindChangeNotifyClose and
FS FindNextChangeNotify search for �le change
noti�es on a certain disk drive.

� FS FindFirstFile, FS FindNextFile
and FS FindClose go together to implement a
normal �le search. FS FindFirstFile initiates a
�le search that can include wildcards, and cre-
ates a context handle. FS FindNextFile contin-
ues the search with the context handle until no
more matches are possible. FS FindClose closes
the context handle.

� FS FlushVolume
ushes any pending output data
to the device.

� FS GetDiskInfo retrieves information about the
free space on a disk drive.

� FS GetDiskParms returns the real-mode address
of an MS-DOS disk parameter block.

� FS Ioctl16Drive performs an I/O control opera-
tion on the volume.

� FS QueryResourceInfoprovides basic information
about the �le system to the IFS manager.

� FS RenameFile renames one or more �les. Wild-
cards in the source name can be speci�ed by the
user.

22

� FS SearchFile is the MS-DOS equivalent of the
FS FindFirstFile family of functions.

� FS TransactNamedPipe performs named pipe op-
erations.

� FS UNCPipeRequest performs UNC path based
named pipe operations.

A1.6 Windows95 frequently used 30
applications

� SCREEN-SAVER Screen saver is a set of auto-
matic programs that start if the computer has
been idle for the number of minutes speci�ed by
the user.

� MSDOS-PROMPT MSDOS-Prompt is a system
application for providing MS-DOS application
running environment, a MSDOS virtual machine
in Windows95 system. Under Windows95, all
MS-DOS applications are started in a MSDOS-
Prompt Window and running in the MSDOS vir-
tual machine. All MS-DOS application programs
are categorized as the MSDOS-Prompt applica-
tion in our analysis.

� EXPLORER.EXE Explorer is the Windows95
desktop user interface application that provides
both program management and �le management.
It o�ers both a one-pane and a two-pane inter-
faces for the �le management, and a taskbar in-
terface for the program management.

� WINWORD.EXE WinWord is the Microsoft
word processing application. It is one of the major
applications in Microsoft O�ce groupware appli-
cations.

� NETSCAPE.EXE Netscape is a well known In-
ternet browsing application from Netscape Corp.
Its formal name is Netscape Navigator.

� SHDOCVW.DLL SHDOCVW.DLL is a compo-
nent of Windows95 system. It is known as the
system shell document object and control library.
It is in the format of DLL (dynamic linked li-
brary).

� EUDORA.EXE Eudora is the Microsoft Windows
POP/SMTP mailer application.

� XVISION.EXE XVision is an X server Windows
application, which is also known as Hummingbird
Exceed from Hummingbird Corp.

� MSDEV.EXE MSDev is known as the Microsoft
developer studio application. It is the com-
mon interface to most Microsoft Windows soft-
ware development tools: Microsoft Visual C++,
Microsoft Fortran PowerStation, Microsoft Vi-
sual Test, Microsoft Developer Network, and Mi-
crosoft Visual J++.

� EXCEL.EXE Excel is the Microsoft spreadsheet
application and is part of Microsoft O�ce group-
ware.

� OUTLLIB.DLL OUTLLIB.DLL is the Microsoft
O�ce OUTLOOK dynamic linked library.

� POWERPNT.EXE PowerPNT (powerpoint) is
the Microsoft presentation application, one of the
Microsoft O�ce groupware applications.

� XVL.EXE XVL is a component of XVision (X
server for Windows) application from Humming-
bird Corp.

� NOTEPAD.EXE Notepad is a small Microsoft
text �le editor application. It is the default Win-
dows text editor program.

� NLNOTES.EXE NLNotes is known as Lotus
Notes, a well known o�ce application from Lo-
tus.

� MSOFFICE.EXE MSO�ce is the Microsoft Of-
�ce shortcut bar application.

� EUDORA32.DLL EUDORA32.DLL is the dy-
namic linked library part of Microsoft Windows
POP/SMTP mailer application.

� COMCTL32.DLL COMCTL32.DLL is a compo-
nent of Windows95 system. It is known as the
custom control library. It is in the format of DLL
(dynamic linked library).

� WINHLP32.EXE WinHLP32 is the Microsoft
help application which reads WINHELP format
�les and provides online helping information.
WINHELP is the standard Windows software
help �le format.

� COMDLG32.DLL COMDLG32.DLL is a compo-
nent of Windows95 system. It is known as the
common dialog library which provides dialog fea-
tures to all the Windows application. It is in the
format of DLL (dynamic linked library).

� TELNET.EXE Telnet is a Windows application
which provides PC users the telnet remote login
environment. There are many di�erent versions of
this application from di�erent software vendors.

� MSACCESS.EXEMSAccess is the Microsoft per-
sonal database management application. It is also
known as ACCESS, which is a component of the
professional version of Microsoft O�ce software.

� SHELL32.DLL SHELL32.DLL is a component of
Windows95 system. It is known as Windows shell
common dynamic linked library.

� VBE.DLL VBE.DLL is a component of Microsoft
common shared libraries. It is known as the
VESA BIOS Extensions dynamic linked library.

� WINPROJ.EXE WinProj is a Microsoft project
management software.

� SPIRIT.EXE Spirit is a Windows application tool
speci�c only to a few of our tracing target PC
systems.

� MAILNEWS.DLL MAILNEWS.DLL is a system
mail/news dynamic linked library installed on the
Windows95 systems with Microsoft Internet Ex-
plorer (IE3/IE4).

23

� ACRORD32.EXE AcroRD32 is known as 32 bit
version of Acrobat Reader from Adobe Corp. It
is an application for reading PDF format docu-
ments.

� MPRSERV.DLLMPRSERV.DLL is a component
ofWindows95 system. It is known as the Multinet
Router program library. It is in the format of DLL
(dynamic linked library).

� RASAPI32.DLLRASAPI32.DLL is a component
of Windows95 system. It is known as Dial-Up
Network Dynamic Linked Library or Remote Ac-
cess 32-bit API Dynamic Linked Library.

Appendix II: WMonitor trace

record data �les

Trace record data �les record the following data:
USER ID, StartTime, StopTime, and the trace records.
StartTime and StopTime contain the Windows95 inter-
nal millisecond counter when the WMonitor starts and
stops instrumenting the system activities. The Win-
dows95 internal millisecond counter is the elapsed (inte-
ger) time in milliseconds since the Windows95 system's
most recent start. Each trace record includes four data
�elds: time stamp, trace type, function name, and in-
formation detail. We further discuss the trace record
structure in next subsection. All numbers are hexadec-
imal numbers except the number in USER ID record
in a trace record data �le. One trace record spans ex-
actly one text line with the return and line-feed charac-
ters, 0D and 0A in ASCII code, as the line separator.
We can determine the calendar date and time for Start-
Time, StopTime and each trace record based on the
time-stamp and the readings of the StartTime record
and the StartDate record in the corresponding WMon-
itor system pro�le log �le.

The following �le is a WMonitor trace record data
�le example:

USER_ID: 761

StartTime: 9E9C4F

Time Type Funct Details

130 3 OPEN C: [223] \DAT\WMONITOR.INI

0 3 WRITE C: [223] 93

0 3 CLOSE C: [223]

0 3 SEEK C: [2A8] 4B400:B

0 3 READ C: [2A8] 200

A 2 [e54] C:\WMONITOR\BIN\WMONITOR.EXE

0 3 READ C: [271] 1000 MM

0 3 FATTR C: \WINDOWS\SYSTEM\MFC40LOC.DLL

0 3 FDOPN C: \WMONITOR\BIN*.*

DB 0 K_DN 11

96 0 K_UP 91

0 3 FLCKS C: [26B]

0 3 RENAM C: \DAT\DATA.ZIP \RECYCLED\DC0.ZIP

0 3 DIR C: QLGD \WMONITOR\BIN\MSGHK.DLL

0 3 DELET C: \RECYCLED\DESKTOP.INI

0 1 START_MV

9E 1 STOP_MV

... ...

Stop_Time: 1D41D3C

With detailed information and time stamps for ev-
ery trace event available, WMonitor trace record data
�les can be used in comprehensive workload analysis
and tracing driven simulations. Except for the calendar
date and time information, WMonitor system activity
pro�ling information log �les can be reproduced from
the trace record data �les.

A2.1 WMonitor trace record structure

Each trace record in a WMonitor trace record data
�le includes up to four data �elds: time stamp, trace
type, function name, and detail information. The trace
record data �elds are separated by the character of
ASCII code 09. Each trace record contains up to 539
bytes. When a trace record reaches its maximum length,
two full Windows95 long �le pathnames, each of 256
bytes, are included.

The time stamp records the time when a traced
event triggers a WMonitor procedure. The incremen-
tal time stamp is used to reduce the record size. The
absolute time stamp can be derived by accumulating
the incremental time stamps and then adding the Start-
Time. The granularity of time stamp is one millisecond.
The upper limit of this time stamp is 0xFFFFFFFF.

Trace type can have one of the following four values:

� 0 { keyboard input event

� 1 { mouse or other pointing device input event

� 2 { user-input-focused window switch event

� 3 { �le system call event

Table 19 also lists all trace record types in a WMoni-
tor trace record data �le. Di�erent types of trace records
interpret the function name �eld and detail information
�eld di�erently, which we will discuss in the following
two sub-sections.

A2.2 User activity trace record

There are three types of user activity trace records:
keyboard input record, mouse input record and user-
input-focused window switch record.

� keyboard input record: For a keyboard input
event, the function name is either \K DN" (press-
ing a key) or \K UP" (releasing a key). The 1
byte (7 valid bits) key scan code is stored in the
detail information �eld. The 8th bit of this byte
indicates the status of the key being accessed: 1
{ up and 0 { down.

For example, if the input is a capital ASCII
\K", four keyboard trace events are recorded:
0x2A (scan code of \left shift") K DN, 0x25 (scan
code of \k") K DN, 0xA5 (scan code of \k" +
0x80) K UP, and 0xAA (scan code of \left shift"
+ 0x80) K UP, where \left shift" K DN and
\left shift" K UP are not generated if Caps Lock
is in function.

24

Trace type Explanation Data �eld

USER ID user id user-identi�cation
StartTime start time trace-starting-time�

Stop Time stop time trace-stopping-time�

0 keyboard input keyboard-event key-scancode
1 mouse input mouse-event
2 window switch [window-handle] application-name

3 �le system call see Table 20

Table 19: WMonitor Trace Records (� is the Windows internal millisecond counter readings when tracing starts/stops.)

� mouse input record: For a mouse input event,
the function name can be one of the follow-
ing mouse events: L DWN (pressing the left
mouse button), L UP (releasing left mouse but-
ton), L CLK (double clicking the left mouse but-
ton), M DWN (pressing middle mouse button),
M UP (releasing middle mouse button), M CLK
(double clicking middle mouse button), R DWN
(pressing right mouse button), R UP (releas-
ing right mouse button), R CLK(double clicking
right mouse button), START MV(starting mov-
ing the mouse), and STOP MV(stopping moving
the mouse). The detail information �eld is empty
for the mouse input event case.

� user-input-focused window switch record: For a
window switch event, the window handle and the
application software full pathname are stored in
the function name �eld and detail information
�eld, respectively.

A2.3 File system call trace record

Table 20 gives a list of �le system function call
names, the corresponding detail information �elds, and
installable �le system call names. We discussed the in-
stallable �le system calls previously.

File system call trace records include both regu-
lar �le access call records and memory swap �le access
call records. Memory swap �le access call records are
mapped memory reads, mapped memory writes, mem-
ory paging reads, or memory paging writes. Memory
swap �le access records distinguish themselves from reg-
ular �le access records by the last two bytes in the detail
information �eld: either \MM" (Mapped Memory) or
\PG" (memory PaGing).

Appendix III: Miscellaneous

Data

Table 21, Table 22, Table 23, Table 24, and Ta-
ble 25 show the same statistics, which we have seen in
Table 5, of 30 of the most frequently run applications

among desktop users, laptop users, manager type users,
engineer type users and other users, respectively.

Table 26 shows the measured user input idle behav-
ior with logarithmic scaled idle lengths.

The 4 small plots in Figure 16 are used to show the
di�erent user idle period behaviors among the most fre-
quently used applications. In each plot, we give both
the user input idle time distribution of 4 speci�c ap-
plications in dotted lines and the user input idle time
distribution of all programs with a solid line. PC users
behave di�erently when running di�erent applications.
The plots show that PC users are more active, and tend
to not idle for a long time with an application whose
dotted line is above the solid line. Examples of such
software tools are WINWORD, NETSCAPE, EXCEL,
and NOTEPAD etc. The plots also show that PC users'
idle behavior is roughly average when using system soft-
ware such as EXPLORER, EUDORA, and MSOFFICE
etc. Obviously, PC users are inactive when SCREEN-
SAVER is running.

Table 27 shows the measured �le system idle behav-
ior with logarithmic scaled idle lengths.

We use 4 small plots in Figure 17 to show the mea-
sured �le system idle behaviors of the most frequently
used applications. In each plot, we give both the �le sys-
tem idle time distribution for four speci�c applications
in dotted lines and the �le system idle time distribution
for all programs with a solid line. It can be seen how
the �le system idle pattern varies with di�erent running
applications. PC �le systems idle less time for such
applications as WINWORD, NETSCAPE, EUDORA,
EXCEL, and POWERPNT than for other applications.
The �le system idle behaviors of most other applications
are about the average.

Figure 18 and Figure 19 repeat the same analysis
we did in Figure 12 with additional data for 10 of the
most frequently used applications. Applications such
as EUDORA.EXE, XVISION, and SCREEN-SAVER
have signi�cantly fewer calls and transfer fewer bytes
than other applications. Applications with a large num-
ber of READs, such as NETSCAPE.EXE and MSDOS-
PROMPT, have fewer large sized READs than other
applications such as MSDEV.EXE.

Similarly, Figure 20 and Figure 21 show the distri-

25

function name detail information �eld IFS call name

READ diskdrive fhandle1 bytes vm opt2 FS ReadFile
WRITE diskdrive fhandle bytes vm opt FS WriteFile
FDNXT diskdrive handle3 FS FindNextFile

FCNNT diskdrive FS FindNextChangeNotify
SEEK diskdrive fhandle bytes position4 FS FileSeek
CLOSE diskdrive fhandle FS CloseFile

COMMT diskdrive fhandle FS CommitFile
FLCKS diskdrive fhandle FS LockFile
FTMES diskdrive fhandle FS FileDateTime
PIPRQ diskdrive FS TransactNamedPipe

HDINF diskdrive fhandle FS HandleInfo
ENMHD diskdrive FS EnumerateHandle
FNDCL diskdrive handle3 FS FindClose

FCNCL diskdrive FS FindChangeNotifyClose
CNNCT diskdrive FS ConnectNetResource
DELET diskdrive �lename FS DeleteFile

DIR diskdrive method5 �lename FS Dir
FATTR diskdrive �lename FS FileAttributes
FLUSH diskdrive FS FlushVolume

GDSKI diskdrive FS GetDiskInfo
OPEN diskdrive fhandle �lename FS OpenFile
RENAM diskdrive �lename1 �lename2 FS RenameFile

SEARC diskdrive �lename FS SearchFile
QUERY diskdrive FS QueryResourceInfo
DISCN diskdrive FS DisconnectResource

UNCPR diskdrive FS UNCPipeRequest
IOC16 diskdrive FS Ioctl16Drive
GDSPR diskdrive FS GetDiskParms

FDOPN diskdrive �lename FS FindFirstFile
DSDIO diskdrive FS DirectVolumeAccess

Table 20: File System Call Records (fhandle1 is the �le handle in the format of \[hex-number]". vm opt2 is the virtual

memory operation indicator which can be null (i.e. \ "), or one of \PG" or \MM". handle3 of FDNXT and FNDCL is

the �le searching context handle. position4 can be one of \begin", \end", or \current". method5 can be one of \mkdir",

\rmdir", \chechdir", \query8.3dir", or \querylongdir".)

26

User Busy/Idle Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 2 16 128 1024 8192 65536

user idle length (seconds)

bu
sy

 p
er

io
d

(p
er

ce
nt

ag
e)

SCREEN-SAVER
MSDOS-PROMPT
EXPLORER.EXE
WINWORD.EXE
ALL-PROGRAMS

User Busy/Idle Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 2 16 128 1024 8192 65536

user idle length (seconds)

bu
sy

 p
er

io
d

(p
er

ce
nt

ag
e)

NETSCAPE.EXE
SHDOCVW.DLL
EUDORA.EXE
XVISION.EXE
ALL-PROGRAMS

User Busy/Idle Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 2 16 128 1024 8192 65536

user idle length (seconds)

bu
sy

 p
er

io
d

(p
er

ce
nt

ag
e)

MSDEV.EXE
EXCEL.EXE
OUTLLIB.DLL
POWERPNT.EXE
ALL-PROGRAMS

User Busy/Idle Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 2 16 128 1024 8192 65536

user idle length (seconds)

bu
sy

 p
er

io
d

(p
er

ce
nt

ag
e)

XVL.EXE
NOTEPAD.EXE
NLNOTES.EXE
MSOFFICE.EXE
ALL-PROGRAMS

Figure 16: User Idle/Busy Time Distribution of Di�erent Applications

27

A# Application Time(r) Invoked(r') KeyEvnt MsEvnt FSCall VMFSCall

1 SCREEN-SAVER 20.19%(1) 0.553 0.769 105.090 87967.398 119.467
2 MSDOS-PROMPT 11.19%(2) 17.992(1) 2772.651 2146.047 44422.184 1531.045
3 EXPLORER.EXE 9.81%(3) 10.803(2) 458.039 1113.267 59752.309 2100.458
4 WINWORD.EXE 7.29%(4) 2.868(3) 3765.487 1847.313 108861.945 4249.324
5 NETSCAPE.EXE 6.87%(5) 2.242(6) 861.056 1266.012 94241.625 1726.872
6 SHDOCVW.DLL 5.37%(8) 2.738(5) 429.762 2635.267 101092.172 3459.110
7 EUDORA.EXE 0.36% 0.040 21.120 195.367 20102.994 250.122
8 XVISION.EXE 6.62%(6) 0.896(10) 7694.425 226.582 57960.312 319.893
9 MSDEV.EXE 5.89%(7) 2.865(4) 3131.524 1251.985 69845.750 3572.496
10 EXCEL.EXE 1.99% 1.469(8) 2552.007 3019.337 45318.383 766.171
11 OUTLLIB.DLL 2.98%(9) 0.986(9) 2705.327 654.595 151393.312 552.313
12 POWERPNT.EXE 0.18% 0.237 1722.181 2641.297 51856.781 3273.526
13 XVL.EXE 2.92%(10) 0.439 4011.402 577.732 4615.911 90.187
14 NOTEPAD.EXE 0.95% 0.601 3927.248 1867.932 30435.764 467.469
15 NLNOTES.EXE 0.02% 0.022 6894.016 1418.306 83230.367 827.870
16 MSOFFICE.EXE 0.77% 0.395 0.536 328.966 110597.719 1685.465
17 EUDORA32.DLL 0.03% 0.017 165.146 269.645 29028.352 323.761
18 COMCTL32.DLL 0.39% 1.776(7) 969.748 5905.655 197024.812 2868.450
19 WINHLP32.EXE 0.29% 0.781 443.907 3697.854 53124.121 1607.634
20 COMDLG32.DLL 0.31% 0.913 2564.405 5447.927 108565.922 3953.821
21 TELNET.EXE 0.66% 0.214 2694.514 214.075 9322.622 278.365
22 MSACCESS.EXE 0.42% 0.226 6142.745 2278.439 172882.188 564.209
23 SHELL32.DLL 0.24% 2.157 554.103 3478.052 214584.375 5394.480
24 VBE.DLL 0.36% 0.206 8428.405 787.312 36320.055 244.545
25 WINPROJ.EXE 0.00% 0.003 0.000 6243.163 442208.062 7972.039
26 SPIRIT.EXE 0.00% 0.000 n/a n/a n/a n/a
27 MAILNEWS.DLL 0.28% 0.179 8615.952 1727.342 8507.025 670.565
28 ACRORD32.EXE 0.25% 0.084 117.509 631.685 122621.852 995.427
29 MPRSERV.DLL 0.12% 0.102 938.017 515.811 34634.395 463.589
30 RASAPI32.DLL 0.05% 0.149 95.432 1493.428 80613.844 2069.950
31 OTHER-APPS 12.87% 16.926 1586.767 1622.998 97288.414 1809.894

Table 21: The Most Frequently Used Applications for Desktop Users (\A#" is the application number; \Application" is

the application name, \Time(r)" is the percentage of time each application was traced to the total tracing time, \(r)" is

the rank of tracing time. \Invoked(r')" is the number of times each application was invoked per hour, \(r')" is the rank of

the invoking count, \KeyEvnt/MsEvnt/FSCall/VMFSCall" are the counts of di�erent events per hour. \n/a" represents

\not available".)

butions of bytes transferred and number of calls between
for WRITE block sizes for the 10 most frequently used
applications.

Distribution of File System Read Vs. Different Block Size

0.E+00

1.E+04

2.E+04

3.E+04

4.E+04

5.E+04

6.E+04

7.E+04

8.E+04

9.E+04

8 128 2048 32768 524288

block size (bytes)

ki
lo

by
te

s
tr

an
sf

er
ed

 p
er

 h
ou

r

ALL-PROGRAM

SCREEN-SAVER

MSDOS-PROMPT

EXPLORER.EXE

WINWORD.EXE

NETSCAPE.EXE

SHDOCVW.DLL

EUDORA.EXE

XVISION.EXE

MSDEV.EXE

EXCEL.EXE

Figure 18: Bytes Transfered of READ Operations vs.

Di�erent Block Sizes of Di�erent Applications

28

A# Application Time(r) Invoked(r') KeyEvnt MsEvnt FSCall VMFSCall

1 SCREEN-SAVER 25.18%(1) 0.739 0.184 30.044 74983.461 59.302
2 MSDOS-PROMPT 12.88%(2) 24.718(1) 1698.112 2715.631 30858.846 678.259
3 EXPLORER.EXE 7.26%(4) 8.314(2) 175.156 1301.458 51159.625 1535.693
4 WINWORD.EXE 7.25%(5) 2.581(5) 3773.160 1802.811 61485.605 2097.828
5 NETSCAPE.EXE 3.38%(7) 1.455(9) 988.197 3001.398 109353.859 1865.646
6 SHDOCVW.DLL 1.43% 3.279(3) 1546.347 2975.285 159004.953 8189.200
7 EUDORA.EXE 11.30%(3) 2.044(6) 769.065 663.863 26354.199 71.171
8 XVISION.EXE 0.00% 0.000 n/a n/a n/a n/a
9 MSDEV.EXE 0.00% 0.000 n/a n/a n/a n/a
10 EXCEL.EXE 3.27%(8) 3.017(4) 2179.602 3440.749 25738.100 2490.340
11 OUTLLIB.DLL 0.96% 1.178(10) 3793.645 2856.020 137692.156 892.109
12 POWERPNT.EXE 4.35%(6) 1.139 1532.013 1716.874 53463.180 1833.185
13 XVL.EXE 0.00% 0.000 n/a n/a n/a n/a
14 NOTEPAD.EXE 1.07% 0.326 3904.690 1368.169 5998.755 87.528
15 NLNOTES.EXE 3.14%(9) 0.898 3579.865 1305.978 52813.758 1610.286
16 MSOFFICE.EXE 1.03% 0.532 7.770 456.484 40036.484 976.108
17 EUDORA32.DLL 1.92%(10) 1.642(8) 605.422 382.831 16860.672 48.170
18 COMCTL32.DLL 0.25% 0.453 175.362 3206.048 55103.969 1345.763
19 WINHLP32.EXE 0.37% 0.541 134.061 3000.632 24845.887 1289.911
20 COMDLG32.DLL 0.22% 0.908 3342.541 5900.784 194616.797 4692.518
21 TELNET.EXE 0.05% 0.056 2150.984 1574.466 1349.159 14.258
22 MSACCESS.EXE 0.00% 0.000 n/a n/a n/a n/a
23 SHELL32.DLL 0.30% 1.914(7) 592.402 3262.018 364096.406 5630.792
24 VBE.DLL 0.00% 0.003 0.000 3293.961 270903.344 24754.617
25 WINPROJ.EXE 0.49% 0.079 706.423 847.938 79969.289 178.754
26 SPIRIT.EXE 0.41% 0.028 0.000 98.654 37593.477 79.204
27 MAILNEWS.DLL 0.00% 0.000 n/a n/a n/a n/a
28 ACRORD32.EXE 0.15% 0.025 98.938 4028.051 80883.180 2182.745
29 MPRSERV.DLL 0.18% 0.275 1621.910 922.378 27754.391 388.687
30 RASAPI32.DLL 0.21% 0.596 633.282 1358.666 86841.891 977.528
31 OTHER-APPS 12.36% 11.777 2420.533 1692.875 88241.203 1366.250

Table 22: The Most Frequently Used Applications for Laptop Users

Distribution of File System Read Number Vs. Different Block Size

0

5000

10000

15000

20000

25000

8 128 2048 32768 524288

block size (bytes)

nu
m

be
r

of
 r

ea
d

op
er

at
io

s
pe

r
ho

ur

ALL-PROGRAM

SCREEN-SAVER

MSDOS-PROMPT

EXPLORER.EXE

WINWORD.EXE

NETSCAPE.EXE

SHDOCVW.DLL

EUDORA.EXE

XVISION.EXE

MSDEV.EXE

EXCEL.EXE

Figure 19: File System READ Operations Number vs.

Di�erent Block Sizes of Di�erent Applications

Distribution of File System Write Vs. Different Block Size

0.E+00

1.E+03

2.E+03

3.E+03

4.E+03

5.E+03

6.E+03

7.E+03

8 128 2048 32768 524288

block size (bytes)

ki
lo

by
te

s
tr

an
sf

er
ed

 p
er

 h
ou

r

ALL-PROGRAM

SCREEN-SAVER

MSDOS-PROMPT

EXPLORER.EXE

WINWORD.EXE

NETSCAPE.EXE

SHDOCVW.DLL

EUDORA.EXE

XVISION.EXE

MSDEV.EXE

EXCEL.EXE

Figure 20: Bytes Transfered of WRITE Operations vs.

Di�erent Block Sizes of Di�erent Applications

29

A# Application Time(r) Invoked(r') KeyEvnt MsEvnt FSCall VMFSCall

1 SCREEN-SAVER 17.09%(1) 0.789 2.270 15.898 43490.238 75.252
2 MSDOS-PROMPT 7.65%(5) 6.797(3) 603.063 4441.306 30333.857 787.215
3 EXPLORER.EXE 8.36%(4) 7.309(1) 191.558 1180.832 54394.719 1638.405
4 WINWORD.EXE 10.22%(3) 2.192(5) 2994.873 1123.016 85271.336 939.740
5 NETSCAPE.EXE 4.81%(6) 1.712(7) 319.880 2225.503 134431.297 1098.030
6 SHDOCVW.DLL 4.03%(8) 6.901(2) 1116.682 3088.711 129143.391 6147.991
7 EUDORA.EXE 14.77%(2) 2.256(4) 639.260 615.575 26418.029 73.226
8 XVISION.EXE 0.00% 0.000 n/a n/a n/a n/a
9 MSDEV.EXE 0.00% 0.000 n/a n/a n/a n/a
10 EXCEL.EXE 1.05% 0.623 1755.755 2675.299 57397.484 2354.195
11 OUTLLIB.DLL 1.46% 0.570 276.403 835.789 125518.109 106.047
12 POWERPNT.EXE 4.59%(7) 0.866(10) 1002.484 1566.688 43581.023 436.418
13 XVL.EXE 0.00% 0.000 n/a n/a n/a n/a
14 NOTEPAD.EXE 1.17% 0.665 1496.969 759.597 4144.574 246.772
15 NLNOTES.EXE 2.19%(10) 0.308 2624.637 1093.262 46710.875 3211.693
16 MSOFFICE.EXE 2.30%(9) 0.816 6.454 321.730 91846.250 539.777
17 EUDORA32.DLL 1.92% 1.814(6) 244.221 386.780 19264.875 25.867
18 COMCTL32.DLL 0.27% 0.666 316.344 4026.753 84427.758 2196.889
19 WINHLP32.EXE 0.09% 0.188 321.772 3106.099 53475.039 864.920
20 COMDLG32.DLL 0.26% 1.088(9) 4661.635 5319.023 254170.938 5323.927
21 TELNET.EXE 0.00% 0.000 n/a n/a n/a n/a
22 MSACCESS.EXE 0.00% 0.000 n/a n/a n/a n/a
23 SHELL32.DLL 0.26% 1.226(8) 541.496 3674.675 455546.688 9042.322
24 VBE.DLL 0.00% 0.000 n/a n/a n/a n/a
25 WINPROJ.EXE 0.92% 0.147 705.617 854.433 80335.086 182.145
26 SPIRIT.EXE 0.00% 0.000 n/a n/a n/a n/a
27 MAILNEWS.DLL 0.70% 0.404 8739.584 1670.039 6257.145 575.281
28 ACRORD32.EXE 0.81% 0.129 34.720 1492.520 111912.125 762.068
29 MPRSERV.DLL 0.08% 0.211 1311.225 1648.725 44862.289 865.152
30 RASAPI32.DLL 0.14% 0.494 1344.398 2227.797 56293.805 2776.335
31 OTHER-APPS 13.79% 10.620 2673.142 1422.441 109011.352 1991.548

Table 23: The Most Frequently Used Applications for Manager Type Users

Distribution of File System Write Number Vs. Different Block Size

0

200

400

600

800

1000

1200

1400

1600

1800

8 128 2048 32768 524288

block size (bytes)

nu
m

be
r

of
 w

rit
e

op
er

at
io

ns
 p

er
 h

ou
r

ALL-PROGRAM

SCREEN-SAVER

MSDOS-PROMPT

EXPLORER.EXE

WINWORD.EXE

NETSCAPE.EXE

SHDOCVW.DLL

EUDORA.EXE

XVISION.EXE

MSDEV.EXE

EXCEL.EXE

Figure 21: File System WRITE Operations Numbers vs.

Di�erent Block Sizes of Di�erent Applications

30

A# Application Time(r) Invoked(r') KeyEvnt MsEvnt FSCall VMFSCall

1 SCREEN-SAVER 25.96%(1) 0.643 0.139 89.116 62497.566 91.956
2 MSDOS-PROMPT 8.87%(3) 15.680(1) 2190.405 2034.186 46164.996 1568.427
3 EXPLORER.EXE 9.24%(2) 10.305(2) 380.564 1080.156 54092.098 1507.099
4 WINWORD.EXE 5.06%(7) 2.228(5) 4780.083 2135.123 87498.164 2297.597
5 NETSCAPE.EXE 5.98%(5) 2.037(6) 933.823 1391.715 78027.180 2049.089
6 SHDOCVW.DLL 3.52%(8) 1.691(8) 476.971 2420.674 102444.695 1925.847
7 EUDORA.EXE 2.56% 0.584 932.815 700.222 25419.334 90.148
8 XVISION.EXE 6.05%(4) 0.818 7694.425 226.582 57960.312 319.893
9 MSDEV.EXE 5.38%(6) 2.616(4) 3131.524 1251.985 69845.750 3572.496
10 EXCEL.EXE 2.91%(9) 2.692(3) 2694.053 3480.675 29598.010 1862.773
11 OUTLLIB.DLL 2.22% 0.708 3252.901 628.178 157123.641 646.350
12 POWERPNT.EXE 1.02% 0.417 1479.633 1956.064 28789.926 2522.706
13 XVL.EXE 2.67%(10) 0.401 4011.402 577.732 4615.910 90.187
14 NOTEPAD.EXE 1.05% 0.484 4640.805 1982.406 22913.561 299.226
15 NLNOTES.EXE 1.30% 0.499 4174.174 1431.508 56711.430 665.941
16 MSOFFICE.EXE 0.40% 0.294 0.890 491.598 55217.277 2135.177
17 EUDORA32.DLL 0.61% 0.455 981.155 373.635 14757.955 84.422
18 COMCTL32.DLL 0.40% 1.608(9) 848.314 5291.124 171492.312 2507.759
19 WINHLP32.EXE 0.45% 0.920(10) 277.457 3308.933 36323.160 1300.672
20 COMDLG32.DLL 0.30% 0.904 2532.241 5705.828 108048.227 3894.737
21 TELNET.EXE 0.31% 0.171 4666.352 470.625 11891.114 516.739
22 MSACCESS.EXE 0.38% 0.193 6215.635 2230.134 173006.000 473.225
23 SHELL32.DLL 0.29% 2.027(7) 625.306 2942.151 252742.172 4233.720
24 VBE.DLL 0.32% 0.165 8543.806 741.658 36372.191 165.521
25 WINPROJ.EXE 0.00% 0.000 n/a n/a n/a n/a
26 SPIRIT.EXE 0.27% 0.018 0.000 98.654 37593.477 79.204
27 MAILNEWS.DLL 0.01% 0.023 4751.519 3518.516 78833.273 3648.938
28 ACRORD32.EXE 0.04% 0.048 624.129 2784.463 97034.109 5295.204
29 MPRSERV.DLL 0.18% 0.177 1383.181 594.297 20218.197 217.350
30 RASAPI32.DLL 0.12% 0.283 244.227 947.914 98993.305 334.433
31 OTHER-APPS 11.85% 16.651 1455.495 1960.222 103894.641 1741.169

Table 24: The Most Frequently Used Applications for Engineer Type Users

31

A# Application Time(r) Invoked(r') KeyEvnt MsEvnt FSCall VMFSCall

1 SCREEN-SAVER 13.58%(2) 0.320 0.028 7.743 329207.812 115.780
2 MSDOS-PROMPT 32.63%(1) 66.718(1) 3041.361 2099.848 31462.283 753.221
3 EXPLORER.EXE 7.11%(4) 11.219(2) 555.639 1760.458 77331.359 4785.117
4 WINWORD.EXE 12.73%(3) 6.030(3) 2911.969 2174.929 97259.594 8393.284
5 NETSCAPE.EXE 3.79%(6) 1.670(8) 1772.296 3046.427 170730.250 1036.458
6 SHDOCVW.DLL 4.20%(5) 2.520(6) 334.792 3114.330 112037.203 10083.119
7 EUDORA.EXE 0.00% 0.000 n/a n/a n/a n/a
8 XVISION.EXE 0.00% 0.000 n/a n/a n/a n/a
9 MSDEV.EXE 0.00% 0.000 n/a n/a n/a n/a
10 EXCEL.EXE 3.11%(7) 1.840(7) 1198.493 2549.112 44701.109 623.354
11 OUTLLIB.DLL 2.86%(8) 3.509(5) 3834.659 2826.006 138223.938 924.655
12 POWERPNT.EXE 1.80%(9) 1.108(9) 3913.581 2103.139 157331.094 6363.308
13 XVL.EXE 0.00% 0.000 n/a n/a n/a n/a
14 NOTEPAD.EXE 0.54% 0.211 5812.422 1691.610 42350.117 461.572
15 NLNOTES.EXE 0.00% 0.000 n/a n/a n/a n/a
16 MSOFFICE.EXE 0.80% 0.594 0.304 482.811 51554.863 3205.181
17 EUDORA32.DLL 0.00% 0.000 n/a n/a n/a n/a
18 COMCTL32.DLL 0.11% 0.355 165.966 5348.107 104309.852 1229.585
19 WINHLP32.EXE 0.12% 0.366 587.671 4628.859 80322.172 4773.610
20 COMDLG32.DLL 0.16% 0.658(10) 665.555 5418.014 93872.234 3990.986
21 TELNET.EXE 1.50%(10) 0.281 786.732 98.220 6165.603 29.385
22 MSACCESS.EXE 0.02% 0.063 0.000 6349.296 162446.172 8231.838
23 SHELL32.DLL 0.16% 3.515(4) 194.749 6326.953 102685.852 6992.895
24 VBE.DLL 0.03% 0.115 364.109 3852.163 68813.672 8607.277
25 WINPROJ.EXE 0.00% 0.015 0.000 5739.186 511935.344 16069.720
26 SPIRIT.EXE 0.00% 0.000 n/a n/a n/a n/a
27 MAILNEWS.DLL 0.00% 0.000 n/a n/a n/a n/a
28 ACRORD32.EXE 0.00% 0.000 n/a n/a n/a n/a
29 MPRSERV.DLL 0.11% 0.102 615.354 688.585 98153.148 1502.833
30 RASAPI32.DLL 0.10% 0.322 42.922 2042.578 72421.891 3039.882
31 OTHER-APPS 14.54% 12.833 2555.819 841.064 31665.572 660.975

Table 25: The Most Frequently Used Applications for Other Type Users

idle length (sec') 1/4 1/2 1 2 4 8 16 32 64 128
cumu. busy peri. 4.6 7.9 13.4 20.1 25.1 28.7 31.9 35.4 39.3 42.8

idle length (sec') 256 512 1024 2048 4096 8192 16384 32768 66k 131k
cumu. busy peri. 48.3 55.7 63.3 69.1 76.5 83.4 87.8 90.9 96.9 97.7

Table 26: User Idle/Busy Time Distribution(\idle length" is user input idle length in seconds. \cumu. busy peri." is the

percentage of cumulative busy period.)

idle length (sec') 1/4 1/2 1 2 4 8 16 32 64 128

cumu. busy peri. 1.6 16.9 22.1 31.1 33.9 39.9 44.8 49.3 60.0 68.4

idle length (sec') 256 512 1024 2048 4096 8192 16384 32768 66k 131k
cumu. busy peri. 73.9 81.7 86.7 89.8 91.8 95.5 95.7 96.2 96.6 96.6

Table 27: File System Idle/Busy Time Distribution(\idle length" is �le system idle length in seconds. \cumu. busy peri."

is the percentage of cumulative busy periods.)

32

File System Busy/Idle Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 1 4 16 64 256 1024 4096 16384 65536

idle length x

cu
m

ul
at

iv
e

bu
sy

 p
er

io
d

w
ith

 id
le

 le
ng

th
 "

x"

ALL-PROGRAM

SCREEN-SAVER

MSDOS-PROMPT

EXPLORER.EXE

WINWORD.EXE

File System Busy/Idle Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 1 4 16 64 256 1024 4096 16384 65536

idle length x

cu
m

ul
at

iv
e

bu
sy

 p
er

io
d

w
ith

 id
le

 le
ng

th
 "

x"
ALL-PROGRAM

NETSCAPE.EXE

SHDOCVW.DLL

EUDORA.EXE

XVISION.EXE

File System Busy/Idle Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 1 4 16 64 256 1024 4096 16384 65536

idle length x

cu
m

ul
at

iv
e

bu
sy

 p
er

io
d

w
ith

 id
le

 le
ng

th
 "

x"

ALL-PROGRAM

MSDEV.EXE

EXCEL.EXE

OUTLLIB.DLL

POWERPNT.EXE

File System Busy/Idle Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 1 4 16 64 256 1024 4096 16384 65536

idle length x

cu
m

ul
at

iv
e

bu
sy

 p
er

io
d

w
ith

 id
le

 le
ng

th
 "

x"

ALL-PROGRAM

XVL.EXE

NOTEPAD.EXE

NLNOTES.EXE

MSOFFICE.EXE

Figure 17: File System Idle/Busy Time Distribution of Di�erent Applications

33

